
ELG 5372 Error 
Control Coding

Lecture 12: Ideals in Rings and 
Algebraic Description of Cyclic 

Codes



Quotient Ring Example

+ S0 S1 S2 S3 S4 S5 S6 S7

S0 S0 S1 S2 S3 S4 S5 S6 S7

S1 S1 S0 S3 S2 S5 S4 S7 S6

S2 S2 S3 S0 S1 S6 S7 S4 S5

S3 S3 S2 S1 S0 S7 S6 S5 S4

S4 S4 S5 S6 S7 S0 S1 S2 S3

S5 S5 S4 S7 S6 S1 S0 S3 S2

S6 S6 S7 S4 S5 S2 S3 S0 S1

S7 S7 S6 S5 S4 S3 S2 S1 S0



Quotient Ring Example

• S0 S1 S2 S3 S4 S5 S6 S7

S0 S0 S0 S0 S0 S0 S0 S0 S0

S1 S0 S1 S2 S3 S4 S5 S6 S7

S2 S0 S2 S4 S6 S1 S3 S5 S7

S3 S0 S3 S6 S5 S5 S6 S3 S0

S4 S0 S4 S1 S5 S2 S6 S3 S7

S5 S0 S5 S3 S6 S6 S3 S5 S0

S6 S0 S6 S5 S3 S3 S5 S6 S0

S7 S0 S7 S7 S0 S7 S0 S0 S7



Quotient Ring

• Recall the quotient ring R={S0, S1, …, S7}, where Si was the set 
of all polynomials in GF(2)[x] whose remainder is i = ax2+bx+c 
when divided by x3+1.

• Let’s identify each coset by its lowest degree polynomial
• S0 = 0, S1 = 1, S2 = x, S3 = x+1, S4 = x2, S5 = x2+1, S6 = x2+x and 

S7 = x2+x+1.
• Let Rnew = {0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1} where addition is 

defined as conventional polynomial addition and multiplication is 
conventional polynomial multiplication, both followed by 
computing the remainder modulo x3+1.

• Then Rnew is a ring as well.
– We denote this ring as GF(2)[x]/(x3+1).



Quotient Ring

• For Rnew, (x+1)(x2+x+1) = 0 and for R, S3S7 = S0.
– These rings are called isomorphic rings.



GF(q)[x]/f(x)

• For a field GF(q), the ring of polynomials can be partitioned by a 
polynoial f(x) of degree m into qm different equivalence classes
– One equivalence for each remainder modulo f(x). 

• This ring is denoted as GF(q)[x]/f(x).
• It can be a field, but only if f(x) is irreducible in GF(q).
• In our example GF(2)[x]/x3+1, it is not a field as x3+1 = 

(x+1)(x2+x+1).



Ideals in Rings

• Let R be a ring.
• Let I be a non empty subset of R
• I is an ideal if it satisfies the following conditions:

1. I forms a group under the addition operation of R
2. And any a in I and any r in R, a•r is in I.



Example

• Consider ring R (GF(2)[x]/x3+1).
• Trivial cases: {0} and {R} are ideals.
• I = {S0, S7}

– This set forms a group under addition
– S0•any element in R = S0
– S7•any element in R = S0 or S7.

• Consider Rnew
• I = {0, x2+x+1}

– Forms a group under addition
– 0(x2+x+1) = 0, 1(x2+x+1) = x2+x+1, x(x2+x+1) = x3+x2+x mod 

x3+1 = x2+x+1, (x+1)(x2+x+1) = x(x2+x+1)+(x2+x+1) = 0, 
x2(x2+x+1) = x(x(x2+x+1)) = x(x2+x+1) = x2+x+1 etc.



Examples

• In GF(2)[x]/x3+1, {S0, S3, S5, S6} also form an ideal.
• Since GF(2)[x]/x3+1 and Rnew are isomorphic, we can see that 

{0, x+1, x2+1, x2+x} form an ideal in Rnew.
• Vectorially, the ideal in Rnew is {(000), (011), (101), (110)}.
• The above ideal satisfies all the conditions of a cyclic code.



Principal Ideal

• An ideal, I, in ring R is said to be principal if there exists some 
element g in I such that every element a in I can be expressed 
as a=mg, where m is an element in R.  The element g is called 
the generator element.
– I = {S0, S7}, S0 and S7 can be expressed as multiples of S7.  

Therefore g = S7 and this ideal is said to be principal.
– I = {S0, S3, S5, S6}, either S3, S5 or S6 can act as the 

generator g.  This ideal is also said to be principal.



Cyclic Code Theorem 1

• Let I be an ideal in GF(q)[x]/xn-1.  Then
1. There exists a unique monic polynomial g(x) in I of minimal 

degree
2. I is principal with generator g(x).
3. g(x) divides xn-1 in GF(q)[x].

– A polynomial of degree m, g(x) = gmxm+gm-1xm-1+…+g0, is monic
if gm = 1.



Proof of CCT 1
• There is at least one ideal in any ring (since the entire 

ring is an ideal).
• There is a lower bound on the degrees of the 

polynomials in the ideal.  Hence there is at least one 
polynomial in the ideal of minimal degree (which may 
have to be normalized to be monic).

• To show uniqueness, suppose there are two monic
polynomials of minimal degree in the ideal, g(x) and 
f(x).  Then h(x) = g(x)-f(x) is also an element in I.  h(x) 
would have a smaller degree than g(x) and f(x), 
therefore this contradicts the statement that g(x) and 
f(x) are of minimal degree.



Proof of CCT 1 cont’d
• To show I is principle (all elements of I are multiples 

of g(x)), we assume that there exists a polynomial f(x) 
in I for which f(x) = m(x)g(x) + r(x), where m(x) and 
r(x) are in R.

• Since r(x) is the remainder, it has degree less than 
g(x).

• The definition of an Ideal tells us that m(x)g(x) is in I.  
Then r(x) = f(x)-m(x)g(x) must also be in I.  But since 
r(x) has a smaller degree than g(x), it contradicts the 
statement that g(x) is a polynomial of minimal degree 
in I.  Therefore the only solution is that r(x) = 0 and 
f(x) is a multiple of g(x).



Proof of CCT 1 cont’d

• To show that g(x) divides xn-1, we assume that it 
doesn’t

• Then xn-1 = h(x)g(x)+r(x) where r(x) has degree less 
than the degree of g(x).

• But h(x)g(x) is in I and r(x) = xn-1 - h(x)g(x), which is 
the additive inverse of h(x)g(x), which is also in I, 
again contradicting the statement that g(x) is a 
polynomial of minimal degree in I.

• Therefore r(x) = 0 and g(x) divides xn-1.



Example

• Consider the ring GF(2)[x]/x4+1
• {0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1, x3, x3+1, x3+x, 

x3+x+1, x3+x2, x3+x2+1, x3+x2+x, x3+x2+x+1}
• x4+1 =(x+1)(x3+x2+x+1) or (x2+1)(x2+1).
• Therefore we have the following principal Ideals

– {0}, {0, x+1, x2+x, x2+1, x3+x2, x3+x2+x+1, x3+1, 
x3+x}, {0, x3+x2+x+1}, {0, x2+1, x3+x, x3+x2+x+1} 



Example cont’d

• {0, x+1, x2+x, x2+1, x3+x2, x3+x2+x+1, x3+1, x3+x} →
{(0000), (1100), (0110), (1010), (0011), (1111), 
(1001), (0101)}.

• We can see that the above is a cyclic code.  
• Cyclic codes of length n form an ideal in 

GF(q)[x]/xn-1.
• They can be described by their generator 

polynomial g(x) which is a polynomial that 
divides xn-1.



Algebraic Description of Cyclic Codes

• cR(x) = xc(x) mod xn-1. 
• Think of c(x) as an element of GF(q)[x]/xn-1.  

– Since the arithmetic is done modulo xn-1, we simply state 
that cR(x) = xc(x).

• For an (n,k) cyclic code, the generator polynomial, g(x), is the 
generator of an ideal in GF(q)[x]/xn-1.
– The degree of g(x) is n-k.

• c(x) = m(x)g(x), where m(x) is a polynomial representing a 
message to be encoded.  Deg(m(x)) < k.
– If m(x) has degree greater than k-1, then c(x) will have 

degree greater than n-1 (before dividing by xn-1 and finding 
the remainder).  After performing the modulo operation, c(x) 
will not be a distinct codeword.



Example: Binary Cyclic Codes of Length 7

• x7-1 = (x+1)(x3+x+1)(x3+x2+1).
• (7,6) code: g(x) = x+1
• (7,4) code g1(x)= x3+x+1 or g2(x) = x3+x2+1.
• (7,3) code g3(x) = (x+1)(x3+x+1)=x4+x3+x2+1 or g4(x) 

= (x+1)(x3+x2+1) = x4+x2+x+1
• (7,1) code: g5(x) = (x3+x+1)(x3+x2+1) = 

x6+x5+x4+x3+x2+x+1.
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