uOttawa

ELG 5372 Error Control Coding

L'Université canadienne Canada's university

Lecture 11: Erasure Decoding, Modifications to Linear Codes, and Introduction to Cyclic Codes

Erasure Decoding

- An erasure is a symbol where the probability of error is high.
- For example, in BPSK, if the decision variable is close to 0 , the certainty of the detection is low. Decoder may declare this symbol to be an erasure.
- In packet transmissions, codewords may be interleaved over multiple packets. If one packet is not received, then the symbols contained in that packet are "erased".
- When the decoder declares an erasure, then we essentially have a symbol error with a known location.

Erasure decoding (2)

- Consider the all 0 codeword in Hamming (7,4). Assume we receive the following:
- 000X00X, where X is an erasure.
- 0000000 and 00010000000001 or 0001001 are the possible received vectors.
- Decoding the first yields 0000000
- Decoding the second yields 0000000
- Decoding the third yields 0000000
- Decoding the fourth yields 0001101
- Comparing all to the non-erased bits of the received word, the fourth has 1 bit different, where the other three are the same. Therefore, the decoder outputs 0000000.

Erasure decoding 3

- We don't need to consider all combinations.
- Only when replacing all erasures with 0 and all erasures with 1 do we get distinct outputs from the decoder.
- Binary erasure decoding algorithm

1. Place 0's in all erased coordinates and decode as \mathbf{c}_{0}.
2. Place 1 's in all erased coordinates and decode as \mathbf{c}_{1}
3. Output codeword for which $\mathrm{HD}\left(\mathbf{c}_{i}, \mathbf{r}\right)$ is minimum.

Erasure capability of code

- Consider a linear block code with minimum distance $d_{\text {min }}$.
- A single erased symbol leaves a code with minimum distance at least $d_{\text {min }}-1$.
- Therefore f erased symbols can be filled provided $f<d_{\text {min }}$.
- In previous example, assuming no errors in the non erased bits, only 1 codeword has all zeros in the non-erased bits.
- If there are errors as well as erasures: For a code experiencing f erasures, then the minimum distance for the code left by the non-erased symbols is at least $d_{\text {min }}-f$.
- The number of errors that can be corrected is:

$$
t_{f}=\left\lfloor\left(d_{\min }-f-1\right) / 2\right\rfloor
$$

- Therefore $2 e+f<d_{\text {min }}$.

Why does binary erasure algorithm work?

- Suppose we have f erasures and e errors, such that $2 e+f<d_{\text {min }}$.
- Replacing all erasures by 0 introduces e_{0} errors into the received codeword, therefore we have $e+e_{0}$ total errors. Also e_{0} $\leq f$.
- Replacing all erasures by 1 introduces e_{1} errors into the received codeword, therefore we have $e+e_{1}$ total errors. Also e_{1} $\leq f$ and $e_{0}+e_{1}=f$.
- In the worst case, $e_{0}=e_{1}=f / 2$. therefore both words to be decoded contain e $+f / 2$ errors.
- If $e_{0} \neq e_{1}$, then there will be one of the words that has less than $e+f / 2$ errors. $2(e+f / 2)=2 e+f<d_{\text {min }}$. Therefore, there is always one that is below the error correcting capability of the code.

Non Binary Erasure Decoding

- For non binary codes, erasure decoding is more complicated and depends on the structure of the code
- Erasure decoding is popular for decoding of RS codes.
- Erasure decoding of RS codes will be discussed later in the course.

Modifications to Linear Codes

- Extending a code
- An ($n . k, d$) code is extended by adding an additional redundant coordinate to produce an ($n+1, k, d+1$) code.
- For example we can use even parity to extend Hamming $(7,4)$ to an $(8,4)$ code with $d_{\text {min }}=4$.

$$
\mathbf{G}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right] \mathbf{H}=\left[\begin{array}{llllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Modifications to Linear Codes 2

- A code is punctured by deleting one of its parity bits
- A (n, k) code becomes an ($n-1, k$) code.
- If the punctured symbol is in a non-zero coordinate of the minimum weight codeword, the minimum distance will also be reduced by 1.
- Puncturing corresponds to removing a column from the generator matrix.

Modifications to Linear Codes 3

- Expurgating a code means to produce a new code by deleting some of its codewords
- (n, k) -> (n, k-1).
- The results may or may not be a linear block code.
- The minimum distance cannot decrease, but it may increase.
- Augmenting a code is achieved by adding codewords.
- (n, k) $->(\mathrm{n}, \mathrm{k}+1)$
- New code may or may not be linear
- Distance may decrease.
- A code is shortened by deleting a message symbol:
- (n, k) -> ($n-1, k-1$)
- A code is lengthened by adding a message symbol
- (n, k)-> $(\mathrm{n}+1, \mathrm{k}+1)$

Introduction to Cyclic Codes

- For linear block codes, the standard array (or the syndrome lookup) can be used for decoding.
- However, for long codes, the storage and computation time of this method can be prohibitive.
- There is no mechanism by which we can design a generator matrix (or parity check matrix) to achieve a given minimum distance.
- Cyclic codes are based on polynomial operations.

Basic Definitions

- Let $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ be a codeword.
- Let $\mathbf{c}^{R}=\left(c_{n-1}, c_{0}, c_{1}, \ldots, c_{n-2}\right)$ be a right cyclic shift of \mathbf{c}.
- Let $\mathbf{c}^{L}=\left(c_{1}, c_{2}, \ldots, c_{n-1}, c_{0}\right)$ be a left cyclic shift of \mathbf{c}.
- We can show that $\mathbf{c}^{L}=\mathbf{c}^{R R \ldots R}$ ($n-1$ times).
- Definition of a cyclic code
- Let C be a linear ($n . k$) block code. C is a cyclic code if for every codeword \mathbf{c} in C, then \mathbf{c}^{R} is also in C.

Example

codeword	HW(c)	codeword	HW(c)
0000000	0	1000110	3
0001101	3	1001011	4
0010111	4	1010001	3
0011010	3	1011100	4
0100011	3	1100101	4
0101110	4	1101000	3
0110100	3	1110010	4
0111001	4	1111111	7

It is easy to see that this code is a cyclic code

Polynomial representation

- $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \rightarrow c(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}$.
- A shift left (not cyclic) is thus $x c(x)=c_{0} x+c_{1} x^{2}+\ldots+c_{n-1} x^{n}$.
- Vectorially, this is represented as $\left(0, c_{0}, c_{1}, c_{2}, \ldots, c_{n-1}\right)$
- Let $p(x)$ be a polynomial and let $d(x)$ be a divisor. Then $p(x)=$ $q(x) d(x)+r(x)$, where $q(x)$ is the quotient and $r(x)$ is the remainder.
- $\mathbf{c}^{R}=\left(c_{n-1}, c_{0}, \ldots c_{n-2}\right) \rightarrow c^{R}(x)=c_{n-1}+c_{0} x+\ldots+c_{n-2} x^{n-1}$.
- Therefore $x c(x)=c^{R}(x)+c_{n-1} x^{n}-c_{n-1}$.
- $\operatorname{Or} x c(x)=c_{n-1}\left(x^{n}-1\right)+c^{R}(x)$.
- $c^{R}(x)$ is the remainder when we divide $x c(x)$ by $x^{n}-1$.
- $c^{R}(x)=x c(x) \bmod \left(x^{n}-1\right)$.

Example

- $(0001101)=x^{3}+x^{4}+x^{6}$.
- $x c(x)=x^{4}+x^{5}+x^{7}$.
- $\left(x^{7}+x^{5}+x^{4}\right) \div\left(x^{7}+1\right)=1$ remainder $1+x^{4}+x^{5}=(1000110)$.

Rings

- A ring R is a set with two binary operations defined on it (+ and -) such that

1. R is a commutative group over + . The additive identity is denoted by 0 .
2. The \cdot operation (multiplication) is associative $(a \bullet b) \cdot c=a \bullet(b \cdot c)$.
3. The left and right distributive laws apply:

- $a \cdot(b+c)=a \cdot b+a \cdot c$
- $(a+b) \cdot c=a \cdot c+b \cdot c$

4. The ring is said to be a commutative ring if $a \cdot b=b \cdot a$ for every a and b in R.

- The ring is a ring with identity if there exists a multiplicative identity denoted as 1.
- Multiplication need not form a group and there may not be a multiplicative inverse

Rings (2)

- Some elements in a ring with identity may have a multiplicative inverse.
- For an a in R, if there exist another element such that $a \cdot a^{-1}=1$, then a is referred to as a unit of R.
- Example: Z_{4}

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

\cdot	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

- Although Z4 does not form a group over multiplication, it does satisfy the requirement to be a ring over + and •

Rings (3)

- We can also show that GF $\left(q=p^{m}\right)$ form rings over + and \bullet.

+	0	1
0	0	1
1	1	0

\times	0	1
0	0	0
1	0	1

For example, it is easy to show that $\mathrm{GF}(2)$ satisfies the requirements of being ring.

Rings of Polynomials

- Let R be a ring and let $f(x)$ be a polynomial of degree n with coefficients in R. $\left(a_{n} \neq 0\right)$.

$$
f(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

- The symbol x is called an indeterminate.
- The set of all polynomials with indeterminate x and coefficients in R form a ring called a polynomial ring (arithmetic is defined as in R).
- We denote this as $R[x]$.

Examples

- $Z_{4}[x]$ contains all polynomials with coefficients from Z_{4}.
$-(2+3 x)+\left(1+2 x+x^{3}\right)=3+x+x^{3}$.
$-(2+3 x)\left(1+2 x+x^{3}\right)=2+2 x^{3}+3 x+2 x^{3}+3 x^{4}=2+3 x+3 x^{4}$.
- GF(2)[x] is a ring of polynomials whose coefficients are either 0 or 1 with operations in modulo-2 arithmetic.
$-(1+x)(1+x)=1+x^{2}$.
$-\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)(1+x)=1+x^{7}$.
$-\left(1+x+x^{2}\right)+\left(x+x^{3}\right)=1+x^{2}+x^{3}$.

Quotient Rings

- Consider the ring of polynomials $\mathrm{GF}(2)[x]$.
- Let S_{0} be the set of all polynomials that are divisible by $x^{n}+1$.
$-S_{0}=\left\{0, x^{n+1}, x^{n+1}+x, x^{n+1}+x^{n}+x+1, \ldots\right\}$
- For simplicity, let $\mathrm{n}=3$.
- Therefore $S_{0}=\left\{0, x^{3}+1, x^{4}+x, x^{4}+x^{3}+x+1, \ldots\right\}$
- Let S_{1} be the set of polynomials for which $f(x) \bmod \left(x^{3}+1\right)=1$
$-S_{1}=\left\{1, x^{3}, x^{4}+x+1, x^{4}+x^{3}+x, \ldots\right\}=1+S_{0}$.
- Let S_{2} be the set of polynomials for which $f(x) \bmod \left(x^{3}+1\right)=x$.
$-S_{2}=\left\{x, x^{n}+x+1, x^{4}, x^{4}+x^{3}, \ldots\right\}=x+S_{0}$.

Quotient Rings (2)

- $S_{3}=$ all polynomials $\bmod \left(x^{3}+1\right)=x+1=x+1+S_{0}$.
- $S_{4}=$ all polynomials $\bmod \left(x^{3}+1\right)=x^{2}=x^{2}+S_{0}$.
- $S_{5}=$ all polynomials $\bmod \left(x^{3}+1\right)=x^{2}+1=x^{2}+1+S_{0}$.
- $S_{6}=$ all polynomials $\bmod \left(x^{3}+1\right)=x^{2}+x=x^{2}+x+S_{0}$.
- $S_{7}=$ all polynomials $\bmod \left(x^{3}+1\right)=x^{2}+x+1=x^{2}+x+1+S_{0}$.
- We can see that $S_{0}-S_{7}$ form the cosets GF(2)[x] under addition.
- Had we taken $n=4$, we would have found 16 cosets, $n=5,32$ cosets etc.

Quotient Rings (3)

+	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}
S_{0}	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}
S_{1}	S_{1}	S_{0}	S_{3}	S_{2}	S_{5}	S_{4}	S_{7}	S_{6}
S_{2}	S_{2}	S_{3}	S_{0}	S_{1}	S_{6}	S_{7}	S_{4}	S_{5}
S_{3}	S_{3}	S_{2}	S_{1}	S_{0}	S_{7}	S_{6}	S_{5}	S_{4}
S_{4}	S_{4}	S_{5}	S_{6}	S_{7}	S_{0}	S_{1}	S_{2}	S_{3}
S_{5}	S_{5}	S_{4}	S_{7}	S_{6}	S_{1}	S_{0}	S_{3}	S_{2}
S_{6}	S_{6}	S_{7}	S_{4}	S_{5}	S_{2}	S_{3}	S_{0}	S_{1}
S_{7}	S_{7}	S_{6}	S_{5}	S_{4}	S_{3}	S_{2}	S_{1}	S_{0}

Quotient Rings (4)

-	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}
S_{0}								
S_{1}	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}
S_{2}	S_{0}	S_{2}	S_{4}	S_{6}	S_{1}	S_{3}	S_{5}	S_{7}
S_{3}	S_{0}	S_{3}	S_{6}	S_{5}	S_{5}	S_{6}	S_{3}	S_{0}
S_{4}	S_{0}	S_{4}	S_{1}	S_{5}	S_{2}	S_{6}	S_{3}	S_{7}
S_{5}	S_{0}	S_{5}	S_{3}	S_{6}	S_{6}	S_{3}	S_{5}	S_{0}
S_{6}	S_{0}	S_{6}	S_{5}	S_{3}	S_{3}	S_{5}	S_{6}	S_{0}
S_{7}	S_{0}	S_{7}	S_{7}	S_{0}	S_{7}	S_{0}	S_{0}	S_{7}

Quotient Rings (5)

- Let $R=\left\{S_{0}, S_{1}, \ldots S_{7}\right\}$.
- R forms a commutative group under + with S_{0} as identity.
- R - S_{0} does not form a group under \cdot.
- Therefore R is not a field.
- However, R does form a ring, with S_{1} as multiplicative identity.

