

## uOttawa

L'Université canadienne Canada's university

# ELG 5372 Error Control Coding

Lecture 11: Erasure Decoding, Modifications to Linear Codes, and Introduction to Cyclic Codes

Université d'Ottawa | University of Ottawa



uOttawa.ca

#### **Erasure Decoding**

- An erasure is a symbol where the probability of error is high.
  - For example, in BPSK, if the decision variable is close to 0, the certainty of the detection is low. Decoder may declare this symbol to be an erasure.
  - In packet transmissions, codewords may be interleaved over multiple packets. If one packet is not received, then the symbols contained in that packet are "erased".
- When the decoder declares an erasure, then we essentially have a symbol error with a known location.



### **Erasure decoding (2)**

- Consider the all 0 codeword in Hamming (7,4). Assume we receive the following:
  - 000X00X, where X is an erasure.
  - 0000000 and 0001000 0000001 or 0001001 are the possible received vectors.
  - Decoding the first yields 0000000
  - Decoding the second yields 0000000
  - Decoding the third yields 0000000
  - Decoding the fourth yields 0001101
- Comparing all to the non-erased bits of the received word, the fourth has 1 bit different, where the other three are the same. Therefore, the decoder outputs 0000000.



#### **Erasure decoding 3**

- We don't need to consider all combinations.
- Only when replacing all erasures with 0 and all erasures with 1 do we get distinct outputs from the decoder.
  - Binary erasure decoding algorithm
  - 1. Place 0's in all erased coordinates and decode as  $c_0$ .
  - 2. Place 1's in all erased coordinates and decode as  $c_1$
  - 3. Output codeword for which  $HD(\mathbf{c}_{i},\mathbf{r})$  is minimum.



#### **Erasure capability of code**

- Consider a linear block code with minimum distance  $d_{min}$ .
- A single erased symbol leaves a code with minimum distance at least d<sub>min</sub>-1.
- Therefore *f* erased symbols can be filled provided  $f < d_{min}$ .
  - In previous example, assuming no errors in the non erased bits, only 1 codeword has all zeros in the non-erased bits.
- If there are errors as well as erasures: For a code experiencing f erasures, then the minimum distance for the code left by the non-erased symbols is at least  $d_{min}$ -f.
- The number of errors that can be corrected is:

$$t_f = \left\lfloor (d_{\min} - f - 1) / 2 \right\rfloor$$

• Therefore  $2e + f < d_{min}$ .



#### Why does binary erasure algorithm work?

- Suppose we have *f* erasures and *e* errors, such that  $2e+f < d_{min}$ .
- Replacing all erasures by 0 introduces e<sub>0</sub> errors into the received codeword, therefore we have e+e<sub>0</sub> total errors. Also e<sub>0</sub> ≤ f.
- Replacing all erasures by 1 introduces e₁ errors into the received codeword, therefore we have e+e₁ total errors. Also e₁ ≤ f and e₀+e₁ = f.
- In the worst case,  $e_0 = e_1 = f/2$ . therefore both words to be decoded contain e+f/2 errors.
- If  $e_0 \neq e_1$ , then there will be one of the words that has less than e+f/2 errors.  $2(e+f/2) = 2e+f < d_{min}$ . Therefore, there is always one that is below the error correcting capability of the code.



### **Non Binary Erasure Decoding**

- For non binary codes, erasure decoding is more complicated and depends on the structure of the code
- Erasure decoding is popular for decoding of RS codes.
- Erasure decoding of RS codes will be discussed later in the course.



### **Modifications to Linear Codes**

- Extending a code
  - An (n.k,d) code is extended by adding an additional redundant coordinate to produce an (n+1,k,d+1) code.
  - For example we can use even parity to extend Hamming (7,4) to an (8,4) code with  $d_{min} = 4$ .

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix} \mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$



### **Modifications to Linear Codes 2**

- A code is punctured by deleting one of its parity bits
  - A (n,k) code becomes an (n-1, k) code.
  - If the punctured symbol is in a non-zero coordinate of the minimum weight codeword, the minimum distance will also be reduced by 1.
  - Puncturing corresponds to removing a column from the generator matrix.



### **Modifications to Linear Codes 3**

- Expurgating a code means to produce a new code by deleting some of its codewords
  - (n,k) → (n, k-1).
  - The results may or may not be a linear block code.
  - The minimum distance cannot decrease, but it may increase.
- Augmenting a code is achieved by adding codewords.
  - (n,k) -> (n,k+1)
  - New code may or may not be linear
  - Distance may decrease.
- A code is shortened by deleting a message symbol:

- (n,k) -> (n-1, k-1)

• A code is lengthened by adding a message symbol

- (n,k) -> (n+1, k+1)



### **Introduction to Cyclic Codes**

- For linear block codes, the standard array (or the syndrome lookup) can be used for decoding.
- However, for long codes, the storage and computation time of this method can be prohibitive.
- There is no mechanism by which we can design a generator matrix (or parity check matrix) to achieve a given minimum distance.
- Cyclic codes are based on polynomial operations.



#### **Basic Definitions**

- Let  $\mathbf{c} = (c_0, c_1, ..., c_{n-1})$  be a codeword.
- Let  $\mathbf{c}^R = (c_{n-1}, c_0, c_1, \dots, c_{n-2})$  be a right cyclic shift of  $\mathbf{c}$ .
- Let  $\mathbf{c}^{L} = (c_{1}, c_{2}, ..., c_{n-1}, c_{0})$  be a left cyclic shift of **c**.
- We can show that  $\mathbf{c}^{L} = \mathbf{c}^{RR...R}$  (*n*-1 times).
- Definition of a cyclic code
  - Let C be a linear (n.k) block code. C is a cyclic code if for every codeword c in C, then c<sup>R</sup> is also in C.



#### Example

| codeword | HW( <b>c</b> ) | codeword | HW( <b>c</b> ) |
|----------|----------------|----------|----------------|
| 0000000  | 0              | 1000110  | 3              |
| 0001101  | 3              | 1001011  | 4              |
| 0010111  | 4              | 1010001  | 3              |
| 0011010  | 3              | 1011100  | 4              |
| 0100011  | 3              | 1100101  | 4              |
| 0101110  | 4              | 1101000  | 3              |
| 0110100  | 3              | 1110010  | 4              |
| 0111001  | 4              | 1111111  | 7              |

It is easy to see that this code is a cyclic code



#### **Polynomial representation**

• 
$$\mathbf{C} = (C_0, C_1, \ldots, C_{n-1}) \rightarrow C(X) = C_0 + C_1 X + \ldots + C_{n-1} X^{n-1}.$$

- A shift left (not cyclic) is thus  $xc(x) = c_0 x + c_1 x^2 + \dots + c_{n-1} x^n$ .
- Vectorially, this is represented as  $(0, c_0, c_1, c_2, ..., c_{n-1})$
- Let p(x) be a polynomial and let d(x) be a divisor. Then p(x) = q(x)d(x) + r(x), where q(x) is the quotient and r(x) is the remainder.
- $\mathbf{C}^R = (C_{n-1}, C_0, \dots, C_{n-2}) \rightarrow C^R(x) = C_{n-1} + C_0 x + \dots + C_{n-2} x^{n-1}.$
- Therefore  $xc(x) = c^{R}(x) + c_{n-1}x^{n} c_{n-1}$ .
- Or  $xc(x) = c_{n-1}(x^n-1) + c^R(x)$ .
- $c^{R}(x)$  is the remainder when we divide xc(x) by  $x^{n}-1$ .
- $c^{R}(x) = xc(x) \mod(x^{n}-1).$



#### Example

- $(0001101) = x^3 + x^4 + x^6$ .
- $xc(x) = x^4 + x^5 + x^7$ .
- $(x^7 + x^5 + x^4) \div (x^7 + 1) = 1$  remainder  $1 + x^4 + x^5 = (1000110)$ .



## Rings

- A ring *R* is a set with two binary operations defined on it (+ and
  ) such that
- 1. *R* is a commutative group over +. The additive identity is denoted by 0.
- 2. The operation (multiplication) is associative (a•b) •c = a•(b•c).
- 3. The left and right distributive laws apply:
  - a•(b+c) = a•b+a•c
  - (a+b) •c = a•c+b•c
- 4. The ring is said to be a commutative ring if a•b = b•a for every a and b in *R*.
  - The ring is a ring with identity if there exists a multiplicative identity denoted as 1.
  - Multiplication need not form a group and there may not be a multiplicative inverse



## Rings (2)

- Some elements in a ring with identity may have a multiplicative inverse.
- For an a in R, if there exist another element such that a•a<sup>-1</sup> = 1, then a is referred to as a unit of R.
- Example: Z<sub>4</sub>

| + | 0 | 1 | 2 | 3 |  |  |
|---|---|---|---|---|--|--|
| 0 | 0 | 1 | 2 | 3 |  |  |
| 1 | 1 | 2 | 3 | 0 |  |  |
| 2 | 2 | 3 | 0 | 1 |  |  |
| 3 | 3 | 0 | 1 | 2 |  |  |

| • | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 |
| 2 | 0 | 2 | 0 | 2 |
| 3 | 0 | 3 | 2 | 1 |

 Although Z4 does not form a group over multiplication, it does satisfy the requirement to be a ring over + and •



## Rings (3)

• We can also show that  $GF(q = p^m)$  form rings over + and •.

| + | 0 | 1 | × | 0 | 1 |
|---|---|---|---|---|---|
|   |   |   |   |   |   |
| 0 | 0 | 1 | 0 | 0 | 0 |
|   |   |   |   |   |   |
| 1 | 1 | 0 | 1 | 0 | 1 |
|   |   |   |   |   |   |

For example, it is easy to show that GF(2) satisfies the requirements of being ring.



## **Rings of Polynomials**

• Let *R* be a ring and let f(x) be a polynomial of degree *n* with coefficients in *R*.  $(a_n \neq 0)$ .

$$f(x) = \sum_{i=0}^{n} a_i x^i$$

- The symbol x is called an indeterminate.
- The set of all polynomials with indeterminate *x* and coefficients in *R* form a ring called a polynomial ring (arithmetic is defined as in *R*).
  - We denote this as R[x].



### **Examples**

•  $Z_4[x]$  contains all polynomials with coefficients from  $Z_4$ .

$$- (2+3x) + (1+2x+x^3) = 3+x+x^3.$$

 $- (2+3x)(1+2x+x^3) = 2+2x^3+3x+2x^3+3x^4 = 2+3x+3x^4.$ 

• GF(2)[*x*] is a ring of polynomials whose coefficients are either 0 or 1 with operations in modulo-2 arithmetic.

$$- (1+x)(1+x) = 1+x^2.$$

$$- (1+x+x^3)(1+x^2+x^3)(1+x) = 1+x^7.$$

$$- (1+x+x^2)+(x+x^3) = 1+x^2+x^3.$$



### **Quotient Rings**

- Consider the ring of polynomials GF(2)[x].
- Let  $S_0$  be the set of all polynomials that are divisible by  $x^n+1$ .

$$- S_0 = \{0, x^{n+1}, x^{n+1}+x, x^{n+1}+x^n+x+1, \ldots\}$$

- For simplicity, let n=3.

- Therefore  $S_0 = \{0, x^3+1, x^4+x, x^4+x^3+x+1,...\}$ 

- Let  $S_1$  be the set of polynomials for which  $f(x) \mod(x^3+1) = 1$ -  $S_1 = \{1, x^3, x^4+x+1, x^4+x^3+x,...\} = 1+S_0$ .
- Let  $S_2$  be the set of polynomials for which  $f(x) \mod(x^3+1) = x$ . -  $S_2 = \{x, x^n+x+1, x^4, x^4+x^3, ...\} = x+S_0$ .



## **Quotient Rings (2)**

- $S_3 = \text{all polynomials mod}(x^3+1) = x+1 = x+1+S_0$ .
- $S_4 = \text{all polynomials mod}(x^3+1) = x^2 = x^2+S_0$ .
- $S_5 = \text{all polynomials mod}(x^3+1) = x^2+1 = x^2+1+S_0$ .
- $S_6 = \text{all polynomials mod}(x^3+1) = x^2+x = x^2+x + S_0$ .
- $S_7 = \text{all polynomials mod}(x^3+1) = x^2+x+1 = x^2+x+1+S_0$ .
- We can see that  $S_0$ - $S_7$  form the cosets GF(2)[x] under addition.
- Had we taken n = 4, we would have found 16 cosets, n = 5, 32 cosets etc.



## **Quotient Rings (3)**

| +                     | S <sub>0</sub> | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | S <sub>4</sub> | <b>S</b> <sub>5</sub> | S <sub>6</sub> | <b>S</b> <sub>7</sub> |
|-----------------------|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|
| S <sub>0</sub>        | S <sub>0</sub> | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | S <sub>4</sub> | S <sub>5</sub>        | S <sub>6</sub> | S <sub>7</sub>        |
| <b>S</b> <sub>1</sub> | S <sub>1</sub> | S <sub>0</sub> | S <sub>3</sub> | S <sub>2</sub> | S <sub>5</sub> | S <sub>4</sub>        | S <sub>7</sub> | S <sub>6</sub>        |
| S <sub>2</sub>        | S <sub>2</sub> | S <sub>3</sub> | S <sub>0</sub> | S <sub>1</sub> | S <sub>6</sub> | S <sub>7</sub>        | S <sub>4</sub> | $S_5$                 |
| S <sub>3</sub>        | S <sub>3</sub> | S <sub>2</sub> | S <sub>1</sub> | S <sub>0</sub> | S <sub>7</sub> | S <sub>6</sub>        | S <sub>5</sub> | S <sub>4</sub>        |
| S <sub>4</sub>        | S <sub>4</sub> | S <sub>5</sub> | S <sub>6</sub> | S <sub>7</sub> | S <sub>0</sub> | S <sub>1</sub>        | S <sub>2</sub> | S <sub>3</sub>        |
| <b>S</b> <sub>5</sub> | S <sub>5</sub> | S <sub>4</sub> | S <sub>7</sub> | S <sub>6</sub> | S <sub>1</sub> | S <sub>0</sub>        | S <sub>3</sub> | S <sub>2</sub>        |
| S <sub>6</sub>        | S <sub>6</sub> | S <sub>7</sub> | S <sub>4</sub> | S <sub>5</sub> | S <sub>2</sub> | S <sub>3</sub>        | S <sub>0</sub> | S <sub>1</sub>        |
| <b>S</b> <sub>7</sub> | S <sub>7</sub> | S <sub>6</sub> | $S_5$          | S <sub>4</sub> | S <sub>3</sub> | S <sub>2</sub>        | S <sub>1</sub> | S <sub>0</sub>        |



## **Quotient Rings (4)**

| •                     | S <sub>0</sub> | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | S <sub>4</sub> | <b>S</b> <sub>5</sub> | S <sub>6</sub> | <b>S</b> <sub>7</sub> |
|-----------------------|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|
| S <sub>0</sub>        | S <sub>0</sub> | S <sub>0</sub> | S <sub>0</sub> | S <sub>0</sub> | S <sub>0</sub> | S <sub>0</sub>        | S <sub>0</sub> | S <sub>0</sub>        |
| <b>S</b> <sub>1</sub> | S <sub>0</sub> | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | S <sub>4</sub> | S <sub>5</sub>        | S <sub>6</sub> | S <sub>7</sub>        |
| S <sub>2</sub>        | S <sub>0</sub> | S <sub>2</sub> | S <sub>4</sub> | S <sub>6</sub> | S <sub>1</sub> | S <sub>3</sub>        | S <sub>5</sub> | S <sub>7</sub>        |
| S <sub>3</sub>        | S <sub>0</sub> | S <sub>3</sub> | S <sub>6</sub> | $S_5$          | S <sub>5</sub> | S <sub>6</sub>        | S <sub>3</sub> | S <sub>0</sub>        |
| S <sub>4</sub>        | S <sub>0</sub> | S <sub>4</sub> | S <sub>1</sub> | $S_5$          | S <sub>2</sub> | S <sub>6</sub>        | S <sub>3</sub> | S <sub>7</sub>        |
| <b>S</b> <sub>5</sub> | S <sub>0</sub> | $S_5$          | S <sub>3</sub> | S <sub>6</sub> | S <sub>6</sub> | S <sub>3</sub>        | S <sub>5</sub> | S <sub>0</sub>        |
| <b>S</b> <sub>6</sub> | S <sub>0</sub> | S <sub>6</sub> | $S_5$          | S <sub>3</sub> | S <sub>3</sub> | S <sub>5</sub>        | S <sub>6</sub> | S <sub>0</sub>        |
| <b>S</b> <sub>7</sub> | S <sub>0</sub> | S <sub>7</sub> | S <sub>7</sub> | S <sub>0</sub> | S <sub>7</sub> | S <sub>0</sub>        | S <sub>0</sub> | S <sub>7</sub>        |



## **Quotient Rings (5)**

- Let  $R = \{S_0, S_1, \dots, S_7\}$ .
  - R forms a commutative group under + with  $S_0$  as identity.
  - R- $S_0$  does not form a group under •.
  - Therefore R is not a field.
  - However, R does form a ring, with  $S_1$  as multiplicative identity.

