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Erasure Decoding

• An erasure is a symbol where the probability of error is high.  
– For example, in BPSK, if the decision variable is close to 0, 

the certainty of the detection is low.  Decoder may declare 
this symbol to be an erasure.

– In packet transmissions, codewords may be interleaved over 
multiple packets.  If one packet is not received, then the 
symbols contained in that packet are “erased”.

• When the decoder declares an erasure, then we essentially 
have a symbol error with a known location.



Erasure decoding (2)

• Consider the all 0 codeword in Hamming (7,4).  Assume we 
receive the following:
– 000X00X, where X is an erasure.
– 0000000 and 0001000 0000001 or 0001001 are the possible 

received vectors.
– Decoding the first yields 0000000
– Decoding the second yields 0000000
– Decoding the third yields 0000000
– Decoding the fourth yields 0001101

• Comparing all to the non-erased bits of the received word, the 
fourth has 1 bit different, where the other three are the same. 
Therefore, the decoder outputs 0000000.



Erasure decoding 3

• We don’t need to consider all combinations.  
• Only when replacing all erasures with 0 and all erasures with 1 

do we get distinct outputs from the decoder.
– Binary erasure decoding algorithm
1. Place 0’s in all erased coordinates and decode as c0.
2. Place 1’s in all erased coordinates and decode as c1

3. Output codeword for which HD(ci,r) is minimum.



Erasure capability of code

• Consider a linear block code with minimum distance dmin.
• A single erased symbol leaves a code with minimum distance at 

least dmin-1.
• Therefore f erased symbols can be filled provided f < dmin.

– In previous example, assuming no errors in the non erased 
bits, only 1 codeword has all zeros in the non-erased bits.

• If there are errors as well as erasures:  For a code experiencing 
f erasures, then the minimum distance for the code left by the 
non-erased symbols is at least dmin-f.  

• The number of errors that can be corrected is:

• Therefore 2e + f < dmin.
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Why does binary erasure algorithm work?

• Suppose we have f erasures and e errors, such that 2e+f < dmin.
• Replacing all erasures by 0 introduces e0 errors into the 

received codeword, therefore we have e+e0 total errors.  Also e0
≤ f.

• Replacing all erasures by 1 introduces e1 errors into the 
received codeword, therefore we have e+e1 total errors.  Also e1
≤ f and e0+e1 = f.

• In the worst case, e0 = e1 = f/2. therefore both words to be 
decoded contain e+f/2 errors.  

• If e0 ≠ e1, then there will be one of the words that has less than 
e+f/2 errors.  2(e+f/2) = 2e+f < dmin.  Therefore, there is always 
one that is below the error correcting capability of the code.



Non Binary Erasure Decoding

• For non binary codes, erasure decoding is more complicated 
and depends on the structure of the code

• Erasure decoding is popular for decoding of RS codes.
• Erasure decoding of RS codes will be discussed later in the 

course.



Modifications to Linear Codes

• Extending a code
– An (n.k,d) code is extended by adding an additional 

redundant coordinate to produce an (n+1,k,d+1) code.
– For example we can use even parity to extend Hamming 

(7,4) to an (8,4) code with dmin = 4.
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Modifications to Linear Codes 2

• A code is punctured by deleting one of its parity bits
– A (n,k) code becomes an (n-1, k) code.
– If the punctured symbol is in a non-zero coordinate of the 

minimum weight codeword, the minimum distance will also 
be reduced by 1.

– Puncturing corresponds to removing a column from the 
generator matrix.



Modifications to Linear Codes 3

• Expurgating a code means to produce a new code by deleting 
some of its codewords
– (n,k) -> (n, k-1).
– The results may or may not be a linear block code.
– The minimum distance cannot decrease, but it may increase.

• Augmenting a code is achieved by adding codewords.
– (n,k) -> (n,k+1)
– New code may or may not be linear
– Distance may decrease.

• A code is shortened by deleting a message symbol:
– (n,k) -> (n-1, k-1)

• A code is lengthened by adding a message symbol
– (n,k) -> (n+1, k+1)



Introduction to Cyclic Codes

• For linear block codes, the standard array (or the syndrome 
lookup) can be used for decoding.

• However, for long codes, the storage and computation time of 
this method can be prohibitive.

• There is no mechanism by which we can design a generator 
matrix (or parity check matrix) to achieve a given minimum 
distance.

• Cyclic codes are based on polynomial operations. 



Basic Definitions

• Let c = (c0, c1, …, cn-1) be a codeword.
• Let cR = (cn-1, c0, c1, …, cn-2) be a right cyclic shift of c.
• Let cL = (c1, c2, …, cn-1, c0) be a left cyclic shift of c.
• We can show that cL = cRR…R (n-1 times).
• Definition of a cyclic code

– Let C be a linear (n.k) block code.  C is a cyclic code if for 
every codeword c in C, then cR is also in C.



Example

codeword HW(c) codeword HW(c)

0000000 0 1000110 3

0001101 3 1001011 4

0010111 4 1010001 3

0011010 3 1011100 4

0100011 3 1100101 4

0101110 4 1101000 3

0110100 3 1110010 4

0111001 4 1111111 7

It is easy to see that this code is a cyclic code



Polynomial representation

• c = (c0, c1, …, cn-1) → c(x) = c0+c1x+…+cn-1xn-1.
• A shift left (not cyclic) is thus xc(x) = c0x+c1x2+…+cn-1xn.
• Vectorially, this is represented as (0,c0, c1, c2, …, cn-1)
• Let p(x) be a polynomial and let d(x) be a divisor.  Then p(x) = 

q(x)d(x) + r(x), where q(x) is the quotient and r(x) is the 
remainder.

• cR = (cn-1, c0, … cn-2) → cR(x) = cn-1+c0x+…+cn-2xn-1.
• Therefore xc(x) = cR(x) + cn-1xn – cn-1.
• Or xc(x) = cn-1(xn-1) + cR(x).
• cR(x) is the remainder when we divide xc(x) by xn-1.
• cR(x) = xc(x) mod(xn-1).



Example

• (0001101) = x3+x4+x6.
• xc(x) =x4+x5+x7. 
• (x7+x5+x4) ÷ (x7+1) = 1 remainder 1+x4+x5 = (1000110).



Rings
• A ring R is a set with two binary operations defined on it (+ and 

•) such that
1. R is a commutative group over +.  The additive identity is 

denoted by 0.
2. The • operation (multiplication) is associative (a•b) •c = a•(b•c).
3. The left and right distributive laws apply:

• a•(b+c) = a•b+a•c
• (a+b) •c = a•c+b•c

4. The ring is said to be a commutative ring if a•b = b•a for every a 
and b in R.
• The ring is a ring with identity if there exists a multiplicative 

identity denoted as 1.
• Multiplication need not form a group and there may not be a 

multiplicative inverse



Rings (2)
• Some elements in a ring with identity may have a multiplicative 

inverse.
• For an a in R, if there exist another element such that a•a-1 = 1, 

then a is referred to as a unit of R.
• Example: Z4

• Although Z4 does not form a group over multiplication, it does 
satisfy the requirement to be a ring over + and •

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

• 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1



Rings (3)

• We can also show that GF(q =pm) form rings over + and •.

+ 0 1 × 0 1

0 0 1 0 0 0

1 1 0 1 0 1

For example, it is easy to show that GF(2) satisfies the 
requirements of being  ring.



Rings of Polynomials

• Let R be a ring and let f(x) be a polynomial of degree n with 
coefficients in R. (an ≠ 0).

• The symbol x is called an indeterminate.
• The set of all polynomials with indeterminate x and coefficients 

in R form a ring called a polynomial ring (arithmetic is defined 
as in R).  
– We denote this as R[x].
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Examples

• Z4[x] contains all polynomials with coefficients from Z4.
– (2+3x) + (1+2x+x3) = 3+x+x3.
– (2+3x)(1+2x+x3) = 2+2x3+3x+2x3+3x4 = 2+3x+3x4.

• GF(2)[x] is a ring of polynomials whose coefficients are either 0 
or 1 with operations in modulo-2 arithmetic.
– (1+x)(1+x) = 1+x2.
– (1+x+x3)(1+x2+x3)(1+x) = 1+x7.
– (1+x+x2)+(x+x3) = 1+x2+x3.



Quotient Rings

• Consider the ring of polynomials GF(2)[x].
• Let S0 be the set of all polynomials that are divisible by xn+1.

– S0 = {0, xn+1, xn+1+x, xn+1+xn+x+1,…}
– For simplicity, let n=3.
– Therefore S0 = {0, x3+1, x4+x, x4+x3+x+1,…}

• Let S1 be the set of polynomials for which f(x) mod(x3+1) = 1
– S1 = {1, x3, x4+x+1, x4+x3+x,…} = 1+S0.

• Let S2 be the set of polynomials for which f(x) mod(x3+1) = x.
– S2 = {x, xn+x+1, x4, x4+x3,…} = x+S0.



Quotient Rings (2)

• S3 = all polynomials mod(x3+1) = x+1 = x+1+S0.
• S4 = all polynomials mod(x3+1) = x2 = x2+S0.
• S5 = all polynomials mod(x3+1) = x2+1 = x2+1+S0.
• S6 = all polynomials mod(x3+1) = x2+x = x2+x +S0.
• S7 = all polynomials mod(x3+1) = x2+x+1 = x2+x+1+S0.
• We can see that S0-S7 form the cosets GF(2)[x] under addition.
• Had we taken n = 4, we would have found 16 cosets, n = 5, 32 

cosets etc.



Quotient Rings (3)

+ S0 S1 S2 S3 S4 S5 S6 S7

S0 S0 S1 S2 S3 S4 S5 S6 S7

S1 S1 S0 S3 S2 S5 S4 S7 S6

S2 S2 S3 S0 S1 S6 S7 S4 S5

S3 S3 S2 S1 S0 S7 S6 S5 S4

S4 S4 S5 S6 S7 S0 S1 S2 S3

S5 S5 S4 S7 S6 S1 S0 S3 S2

S6 S6 S7 S4 S5 S2 S3 S0 S1

S7 S7 S6 S5 S4 S3 S2 S1 S0



Quotient Rings (4)

• S0 S1 S2 S3 S4 S5 S6 S7

S0 S0 S0 S0 S0 S0 S0 S0 S0

S1 S0 S1 S2 S3 S4 S5 S6 S7

S2 S0 S2 S4 S6 S1 S3 S5 S7

S3 S0 S3 S6 S5 S5 S6 S3 S0

S4 S0 S4 S1 S5 S2 S6 S3 S7

S5 S0 S5 S3 S6 S6 S3 S5 S0

S6 S0 S6 S5 S3 S3 S5 S6 S0

S7 S0 S7 S7 S0 S7 S0 S0 S7



Quotient Rings (5)

• Let R = {S0, S1, … S7}.
– R forms a commutative group under + with S0 as identity.
– R-S0 does not form a group under •.
– Therefore R is not a field.
– However, R does form a ring, with S1 as multiplicative 

identity.
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