Université d'Ottawa) University of Ottawa

Faculté de génie]]]I[Faculty of Engineering
Ecole de science informatique School of Electrical Engineering
et de génie électrique u Ottawa and Computer Science

L’Université canadienne
Canada’s university

ELG 4176/4576

COMMUNICATION SYSTEMS

LABORATORY

Fall 2016

Copying of any part of this document is strictly prohibited without written permission.

© P. Galko, 2016

ELG 4176/4576 COMMUNICATION SYSTEMS Fall 2016

i

Université d'Ottawa = University of Ottawa

Faculté de génie H]]] Faculty of Engineering
Ecole de science informatique School of Electrical Engineering
et de génie électrique u Ottawa and Computer Science

L’Université canadienne
Canada’s university

ELG 4176/4576 COMMUNICATION SYSTEMS Fall 2016

LABORATORY

General Instructions (“The Rules”):

At the start of the term, the class will divide itself evenly into groups of two students (one
group of three may be required). There are only two experiments and one computer based
simulation in this laboratory, and these experiments will be conducted in the first two thirds of the
term. The schedule of the lab periods for each group (labeled from 1 to 8) is given on the next page.
A formal lab report will be required from every student for each of the two labs, while a group
report is required for the simulation laboratory. The laboratory portion of the course mark will be
derived from the two laboratory reports you submit, the answers to the laboratory preparation
questions, your performance during the lab period and the grade for your on the simulation
laboratory report. Lab performance is judged on the care and efficiency with which the lab is done,
whether you participate in the lab or sit back and let your partners do all the work, your basic
competence with lab equipment, and your evident preparedness for the lab. The marks earned for
lab performance or for a report are not shared by the group members. The lab preparation question
answers are graded out of 5 during the lab session, lab performance is graded out of 5, while lab
reports are graded out of 40. The experimental lab mark is the sum of these marks for the two
experiments, and is 40% of the overall lab mark. The other 60% of the lab mark comes from the
simulation laboratory, where all members of the group share the same mark (provided all
contribute significantly to the project; should anyone fail to contribute their fair share to the
simulation lab and write-up, they will be asked to repeat the lab on their own and their mark will
be based only on their later report and will include a penalty).

Everyone is required to have a hard cover laboratory notebook (available in the book store at
the Unicenter) in which the experimental observations are entered as well as preliminary analysis
of experiment results. The book should be one with graph paper in it so that plots can be made.
Any preparation required for a laboratory should also be done in the lab notebook. This work will
be quickly checked by the teaching assistant at the start of the lab period and a grade assigned. The
same lab book may be used for other electrical engineering courses you are taking. Anyone who
comes to a lab without their own hard cover lab book will not be permitted to participate in that lab session
(and will have to make other arrangements to complete the lab on their own at the convenience of the TA; lab
performance will be given a grade of zero in all such cases). At the end of each lab period, your lab book
will be signed by the TA to verify the lab results were taken during the lab session. Don’t leave the
lab until the TA has signed and dated your lab book entries. You may be asked to show your lab
book later to verify your results in your lab book as witnessed by the teaching assistant match those
in your lab report. (You are never permitted in the lab without the TA being present.)

As the laboratories are largely demonstrations of different signal process notions, reports
should include an analysis of the expected results, a comparison with the observed results, and a
discussion of any differences. Aa) properly written abstract and a properly worked out set of solu-
tions to the lab preparation questions should also be part of any formal lab report that is submitted.
Laboratory reports are due by 11:00 AM one week after the laboratory was scheduled. Reports

Instructions - iii

ELG 4171/4571 Laboratory Instructions Fall 2015

should be submitted on regular paper well fastened together (preferably bound in some manner).
On each submitted report you must indicate

i) your name,

ii) the lab group number, and

iii) the group members present in the lab at the time the lab was done.
Reports must be submitted directly given to a TA or the lab technician (Alain LeHénaff), preferably
to the TA who supervised the lab session when the lab was done. Late reports are penalized by
deducting 10% of the maximum mark for each day late (i.e., one day late and the best you can get is
90%, two days late and the maximum is 80%, etc.). Late reports may only be submitted directly to
the laboratory assistants. Reports will be returned to students approximately one week after the
particular laboratory was handed in by the last group to do that lab.

All students must attend their scheduled laboratory sessions and submit a properly prepared
lab report on each lab. Failure to attend a session or submit an acceptable formal lab report for the
experiment will result in an “incomplete” mark being issued for you in the course. If you are ill,
you will have to obtain the appropriate documentation from the University's Health Services or
your physician verifying you were not able to attend the lab for valid reasons, and you will have to
make up the lab at some other time (at a time you negotiate with the Teaching Assistants). Labs
begin promptly at 8:30 AM (in ELG 4176); all group members must be present from the start. It is
unacceptable for anyone to be late for the lab period, and all are expected to fully participate in
every lab. Anyone missing for any significant portion of the lab will have to repeat the lab on
his/her own at a later date that the TAs will fix for their convenience, not necessarily yours. Your
cooperation to ensure the laboratory facilities and time is expected; penalties are imposed when the
rules are not followed.

Use of Laboratory Equipment:

The most common source of problems encountered in the labs is equipment failure due to
equipment abuse. To minimize the possibility of this occurring, only one student in a group should
make the connections in a set-up with the other group members independently checking that the
connections are correct BEFORE TURNING ON THE POWER. Pay particular attention to the
polarity of power supply connections. Ensure as well that you do not apply a larger signal input
than a piece of equipment can handle (in making initial adjustments, always start from a small sig-
nal level). Finally, note that ABSOLUTELY no eating, drinking, or smoking is permitted in the
laboratory.

ELG 4176 LABORATORY SCHEDULE 2016
Groups Scheduled for Each Lab Session
Date Lab Lab Group(s)
Sept. 9
14
21
28 1 1
Oct. 5 1 2
12 1 3
19 1 4
26 - study week
Nov. 2 1;2 5;1,2
9 1;2 63,4
16 1;2 7,8%:5,6
23 2 7,8%
30
Dec. 7

*QGroup 7 and 8 must arrange a time with the TA to do the lab before the scheduled time.

Instructions - iv

Université d'Ottawa = University of Ottawa

Faculté de génie H]]] Faculty of Engineering
Ecole de science informatique School of Electrical Engineering
et de génie électrique u Ottawa and Computer Science

L’Université canadienne
Canada’s university

COMMUNICATION SYSTEMS
LABORATORY 1

Measurement of Probability Distributions and Correlation Functions

Introduction:

Two of the basic characterisations we find of great importance in analysing signal are the
distribution of the values of the signal and the auto- and cross-correlations between signals. In this
lab we shall take advantage of a rather unique piece of equipment, the Hewlett-Packard 3721A
Correlator, to measure experimentally some of these quantities for some deterministic and random
signals.

The 3721A Correlator is an instrument which can sample a signal applied to its input, and sort
the sample values it finds into 100 intervals and display the histogram of this result on a CRT screen
to give a direct estimate of the distrubtion over time of a signal's amplitudes (assuming that the
sampling instants chosen are representative of arbitrarily chosen points). If a random process that
is ergodic is applied to the input, this same procedure will then estmate the processes amplitude
distribution.

In a similar vein, the 3721 Correlator is also able to sample up to two signals, store the recent
sample values and form the sum of the products of one set of samples with differently delayed sets
of the other samples so as to form the averages of the [b(t) delayed] products:

| N-1
Cn =7 Y a(mAT)b([n-m]AT) for m=0.

n=0

This corresponds to the definition of the correlation of two deterministic signals at the various time
shifts (-mAT)—only the averages of the product is over a limited time and just for the delay values
used. The values that this produces are thus estimates of the crosscorrelation between two
deterministic signals or ergodic processes involved at the delay values employed (the first few
multiples of the sampling interval). The correlator can display these computed values on a CRT to
provide a visual display of the correlation function.

References:
Chapter 5 in John G. Proakis and Masoud Saleh, Fundamentals of Communication Systems, Upper Saddle
River, NJ: Prentice-Hall, 2005.

Chapter 6 in L.W. Couch II, Digital and Analog Communication Systems,6th ed., New Jersey, Prentice-Hall,
2001

Chapter 4 in Communication Systems Engineering, 2nd ed. by Simon Haykin
Chapters 4 and 5 in Principles of Communications, 4th ed. by R.E. Ziemer & W.H. Tranter.
Chapters 10 and 11 in Modern Digital and Analog Communication Systems, 3rd ed. by B.P. Lathi.

I-1

ELG 4176/4576 COMMUNICATION SYSTEMS Fall 2016

Preparation:

1. If we were to sample a periodic signal at a randomly chosen point in its period, the value of the sample
would be a random variable. The distribution of this random variable is termed the amplitude distribution
of the periodic signal. Derive and plot the amplitude distribution of the sinusoid, triangular, and square
wave signals (specify both the density function and the distribution function)

2. Calculate and plot the autocorrelation function of a sinusoid and of a 50% duty cycle square wave.

3. Calculate the cross-correlation function between a sinusoid and square wave signal, both of which have the
save fundamental frequency.

[Hint: You may find it easier to compute this by making use of the Fourier series of the square wave,
noting that the cross-correlation of two sinusoids of different frequency is always zero.]

4. Explain what is meant by the term “bandlimited white noise”. Find the autocorrelation function
of it and compare it to the autocorrelation function a white noise process.

Apparatus:

1- HP 3721A Correlator

1 - LFG-1310 Function generator

1- Wavetek 186 phase-locked generator
1 - GR-1383 Noise generator

1 - Krohn-Hite 3202 variable filter unit
1- Marconi 2610 true RMS Voltmeter

1 - dual channel oscilloscope

The operating instructions and an explanation of the controls of the correlator are given in the Appendix of
these lab sheets; READ THESE INSTRUCTIONS BEFORE THE LAB!!

MIPORTANT MIPORTANT MIPORTANT
The HP 3721A Correlator is a valuable and rare piece of equipment and cannot be replaced any more. Even
though the input circuitry is supposed to withstand signals of a 100 V, please make sure that the signals you
apply to the input does not exceed the maximum usable input level of 4 V peak-to-peak.

PROCEDURE:

Refer to Item 3-46 and following in the Appendix for instructions on the specifics of different measurement
procedures. It should be noted that the averaging switch should be kept in position SUMMATION, the
DISPLAY GAIN in position MIN, and the DELAY OFFSET control in the ZERO position. To get meaningful
displays, you must stop the sampling process before the highest peak gets to the top of the screen and starts to
wrap around.

Part I: Experimental Measurement of a Probability Distribution.

1. Display the probability density function of an asymmetric square wave signal (1 kHz., 2 V peak-to-peak
and 25% duty cycle). How is the 25% duty cycle reflected in the display? Note that the display shows the
relative densities only, i.e., the top line of the CRT corresponds to the highest value of the density function.
Try different duty cycles and verify the results. Also change the voltage level and check the horizontal
scale calibration.

2. Switch the FUNCTION switch to INTEGRAL and measure the (cumulative) probability distribution
functions for the signals in part 1. Do the displays agree with the theory? Notice that the bottom line and
the top line represent probability 0 and 1 respectively.

3. Measure both the probability density function and the probability distribution function for:
a) a sinusoidal signal
b) a triangular signal
Do the displays agree with the results obtained in the preparation?

I-2

ELG 4176/4576 COMMUNICATION SYSTEMS Fall 2016
4. Display the probability density function of the GR-1383 noise generator. What form does this probability

density function seem to have? Estimate its mean value and its variance. Set up a KROHN-HITE filter as a
band pass filter, and connect this filter between the noise generator and the HP 3721A correlator. Choose a
number of bandwidths—e.g., 100 kHz, 500 kHz and 800 kHz, with a centre frequency of 1 MHz. Display
the probability density function of each of the resulting bandpass noises. Comment on its shape. Estimate
their mean and variance.

Part II: Measurement of Correlation functions.

1.

Apply a 2 V peak-to-peak 2 kHz sinusoidal, triangular and square wave in turn to the correlator unit and
display the autocorrelation function of each of these signals. How does the period of the autocorrelation
function compare with the signal period? Compare your experimental results with those of the preparation.

Apply a 1V peak-to-peak, 2 kHz sinusoid to one input of the correlator and a 1 V peak-to-peak square
wave from the Wavetek phase locked generator (locked to the same frequency as the sinusoid) to the other
input of the correlator. Measure the correlation between the two signals. Vary the phase of one signal
relative to the other and observe the effect of the cross-correlation..

Replace the square-wave with the output of the noise generator and measure the correlation between the
sinusoid and the noise signal.

I-3

ELG 4176/4576

COMMUNICATION SYSTEMS

Fall 2016

APPENDIX

HP 3721A Correlator (extracts from Operating Manual)

Section 1

INTRODUCTION

1-1 DESCRIPTION

1-2 The Hewlett-Packard Model 3721A Correlator is a
compact, digital instrument capable of computing and dis-
playing, in real time, autocorrelation,crosscorrelation and
probability functions. It has the added facility for recovery of
repeated events buried in noise frequently referred to as
'signal averaging'. To avoid by any confusion with
arithmetic averaging, an essential part of any statistical
measurement, this process will be referred to as Signal
Recovery when applied to the Correlator.

1-3 In this manual, the instrument will be referred to as
the 3721A or Correlator.

1-4 FEATURES

1-5 The 3721A features:

a. Simultaneous computation and display of 100 points
of the function selected. The computed function may be dis-
played indefinitely without deterioration.

b. Time interval between points on the display selectable
from 1 pys/mm to 1 s/mm: in correlation this represents a
delay span from 100 ps to 100 s. By using an external clock
the interval can be extended to any delay increment greater
than 1 ps

c. A choice of two methods of averaging: SUMMATION
AVERAGING—the digital equivalent of pure integration or
EXPONENTIAL AVERAGING—the digital equivalent of
analog exponential (RC) smoothing. The averaging time
constant can be varied from 36 ms to over 150 days.

d. Quick-look analysis feature giving rapid indication of
the final value of the function—in exponential averaging
modes.

e. Outputs for transferring displayed data to external X-Y
recorder and oscilloscope.

f. Compatibility with hp Model 3722A Noise Generator—
making a powerful combination for dynamic response mea-
surements.

g. Data Interface Option Series providing direct interfac-
ing of the 3721A with a computer or tape punch.

I-4

h. Delay Offset Option Series enabling the instrument to
be used with greater resolution, up to a maximum of 1 point
in 1150.
1-6 FUNCTIONS COMPUTED
1-7 Correlation. The 3721A computes and displays the
following correlation functions:

Autocorrelation of either Channel A or B input.

Crosscorrelation between Channel A and B; A
delayed with respect to B.
Crosscorrelation between Channel A and B; B

delayed with respect to A.
1-8 The instrument performs simultaneous computation
and display of the correlation function for 100 values of
delay. The vertical calibration (V2/cm) is automatically
displayed on an illuminated panel.
1-9 Signal Recovery. The 3721A improves the signal-to-
noise ratio of repeated events, provided each event is
marked by a synchronising pulse. After each synchronising
pulse, a series of 100 samples of channel B input is taken
and averaged with the corresponding samples from previ-
ous series. The vertical calibration (V/cm) is automatically
displayed on the illuminated panel.
1-10 Probability. The 3721A computes and displays the
following probability functions:

The amplitude probability density function (pdf) .

The integral of the pdf, the cumulative amplitude

probability distribution function (cdf) .
1-11 Both are performed on Channel A signal input only.
The signal's amplitude is displayed horizontally, with zero
volts in the centre, and vertical deflection represents the
probability (either density or integral).
1-14 Delay Offset (An Option) Enables the user to intro-
duce a selected amount of precomputational delay into the
delayed channel, to view the significant part of the com-
puted function with greater resolution:operational in corre-
lation modes only. There are four alternatives available,
giving maximum precomputational delays of 150, 250, 450
or 1050At throughout the range.

ELG 4176/4576

COMMUNICATION SYSTEMS

Table 1-1 Correlator Specifications

INPUT CHARACTERISTICS

Two separate input channels, A and B, with identical
amplifiers.

Input amplifier bandwidth. DC to 250 kHz nominal.
Lower cut-off frequency selectable, dc or 1~Hz (10%
down at 3 Hz).

Input range. Signals accepted from 40 mV to 4V rms,
over 6 ranges.

Overload. Maximum permissible voltage at input: DC
coupled 120 V peak; ac coupled 400 V = dc + peak ac.
Analog-to-digital conversion. Fine quantizer: 7 bits.
Coarse quantizer (feeds delayed channel): 3 bits. Coarse
quantizer linearized by internally-generated wideband
noise (dither).

Input impedance. Nominally 1 MQ, shunted by 100 pF to
ground

CORRELATION MODE

Computes the following functions:

Autocorrelation of A input

Autocorrelation of B input

Crosscorrelation of A and B inputs, A delayed

Crosscorrelation of A and B inputs, B delayed
Simultaneous computation and display of 100 values of
auto or crosscorrelation function. Display sensitivity indi-
cated directly in V2/cm on illuminated panel. Non-destruc-
tive read-out; computed function can be displayed for an
unlimited period without deterioration. (Non-permanent
storage; data cleared on switch-off.)
Timescale. (TIME/MM = delay increment At) 1us to 1
second (total delay span 100us to 100 seconds) in 1,
3.33, 10 sequence with internal clock. Other delay
increments with external clock; minimum increment 1 ps
(1 MHz), no upper limit.
Delay offset. Option Series 01 provides delay offset
(precomputational delay) facility Enables display

resolution to be increased to magnify area of interest
(Auto and Crosscorrelation measurements only).

Display sensitivity. 5 x10 to 5 V2/cm. Vertical calibra-
tion automatically displayed by illuminated panel.

Vertical resolution. Depends on display sensitivity.
Minimum resolution is 25 levels/cm. Interpolation facility
connects points on display.

Averaging. Two modes are provided: Summation (true
integration) or Exponential (digital 'RC' averaging).
Summation mode. Computation automatically stopped
after N process cycles, at which time each point on the
display represents the average of N products. N is
selectable from 128 to 128 x 1024 (27 to 217 in binary
steps). Display calibration automatically normalized for all
values of N.

Exponential mode. Digital equivalent of RC averaging
[passing the signal product through an RC lowpass filter],
with time constant selectable from 36 ms to over 107 sec-
onds. Approximate time constant indicated by illuminated
panel. Display correctly calibrated at all times during the
averaging process

PROBABILITY MODE (Channel A only)

Displays either amplitude probability density function
(pdf) or integral of the pdf of channel A input. Signal
amplitude represented by horizontal displacement on
display, with zero volts at centre; vertical displacement
represents amplitude probability.

Display sensitivity. Horizontal sensitivity 0.05 to 2 V/cm
in 5, 10, 20 sequence.
Horizontal resolution. 100 discrete levels in 10 cm wide
display = 10 levels/cm.

Vertical resolution. 256 discrete levels in 8 cm high dis-
play = 32 levels/cm.

Vertical calibration

Summation averaging. Process automatically stopped
when any one point of the display has occurred approxi-
mately N times: N being selectable from 128 to 131,072
(27 to 2'7 in binary steps). With the DISPLAY GAIN
switch set to MIN, this corresponds to 8 cm vertical
deflection. The total number of occurrences of the signal
at all amplitudes may be obtained from a counter
connected to the rear-panel PROCESS CLOCK output.
Exponential averaging. Continuous updating of display,
with time constant as given for Correlation and Signal
Recovery modes. The Correlator is not vertically
calibrated in exponential mode.

Sampling rate. 1 Hz to 3 kHz in 1, 3, 10 sequence with
internal clock. Other sampling rates with external clock;

maximum frequency 3 kHz, no lower frequency limit.

I-5

Fall 2016

ELG 4176/4576 COMMUNICATION SYSTEMS Fall 2016

Section 3

OPERATING INSTRUCTIONS

Figure 3-1 Front panel controls, connectors and indicators

25 26

24

23

22

o

"_

7 6 8 9 101113 14

1 LINE ON: toggle switch. Controls ac supply to the in-
strument.

2 RESET: push-button control. Clears stores and pre-
sets registers and counters to their initial states. Glows
when operating.

3 RUN: push-button control. Starts Correlator process-
ing. Glows when operating.

4 HOLD: push-button control. Stops processing but re-
tains display information already processed. Glows
when operating. The Correlator goes into the HOLD
state automatically when any of the major front-panel
controls are operated.

5 A INPUT RMS VOLTS RANGE: rotary switch. Sets
gain of channel A amplifier. In Probability modes the
inner (red) scale provides calibration for the horizontal
axis of the display.

6 A INPUT AC/DC: lever switch. Determines signal cou-
pling to channel A amplifier. Lower ac cut-off frequency
1 Hz.

7 A INPUT/PROBABILITY: BNC connector. Signal input
connector for channel A and Probability measure-
ments.

8 DITHER ON/OFF: lever switch. Introduces wideband
Gaussian noise into the delayed channel; improves the
analog-to-digital conversion linearity for non-Gaussian
signals

9 B INPUT RMS VOLTS RANGE: rotary switch. Sets
gain of channel B amplifier.

]:
m_:r—o
o)
O

12

10

11

12

13

14

15

16

17

I-6

33 3

i

15 17 16

B INPUT AC/DC: lever switch. Determines signal cou-
pling to channel B amplifier. Lower ac cut-off frequency
1 Hz.

B INPUT/SIGNAL RECOVERY: BNC connector.
Signal input connector for channel B and Signal
Recovery measurements.

FUNCTION: rotary switch. Selects measurement re-
quired:

PROBABILITY A INPUT only; DENSITY or INTEGRAL
AUTOCORRELATION; A or B CORRELATION;

A DELAYED OR B DELAYED

SIGNAL RECOVERY B INPUT only.

SYNC EXT/INT: lever switch. Operational in Signal
Recovery mode only. Selects trigger source (EXTernal
or INTernal) for initiating averaging sweep.

TRIGGER INPUT: BNC connector. Input for external
synchronising pulse to initiate Signal Recovery averag-
ing sweep. Operational in Signal Recovery mode only.
STIMULUS OUTPUT: BNC connector. Provides out-
put pulse to excite external event being recovered.
Operational in Signal Recovery mode only.
AVERAGING: rotary switch. Selects method of aver-
aging—SUMMATION or EXPONENTIAL.

NUMBER OF SAMPLES N/TIME CONST
MULTIPLIER N: rotary switch. In SUMMATION aver-
aging mode selects Number of Samples; in
EXPONENTIAL selects the Time Constant Multiplier.

ELG 4176/4576

18 TIMESCALE TIME/MM At: rotary switch. Sets delayed
sampling interval for Auto and Crosscorrelation modes
and the sampling interval for the Signal Recovery and
Probability modes. Provides calibration of the horizon-
tal axis of the display in modes other than Probability.

19 TIME CONSTANT: illuminated panel indicator.
Enables experiment time (Summation) or averaging
time constant (Exponential) to be estimated.

20 TIME CONSTANT: signal lamp. When lit, lamp indi-
cates experiment complete (Summation) or averaging
time constant reached (Exponential).

21 DISPLAY SENSITIVITY: illuminated panel indicator.
Provides calibration of the vertical axis of the display in
modes other than Probability.

22 INTERPOLATION ON/OFF: lever switch. In the ON
position, adjacent points of the display are intercon-
nected.

23 FOCUS: potentiometer. Controls sharpness of CRT
beam.

24 ASTIG: potentiometer. Adjusts geometry of CRT beam
m.

25 INTENSITY:
CRT beam.

26 TRACE ALIGN: potentiometer. Rotates trace around
centre of CRT screen.

potentiometer. Controls brightness of

3-1 INTRODUCTION

3-2 This section contains information and instructions for
the operation of the 3721A Correlator. Paragraphs 3-3
through 3-45 give information on preliminary setting up pro-
cedures and Paragraphs 3-46 through 3-50 give detailed
step-by-step measurement procedures.

3-3 SETTING CRT CONTROLS

COMMUNICATION SYSTEMS

CAUTION
BEFORE CONNECTING THE CORRELATOR TO THE AC
POWER SUPPLY BE SURE THAT THE CORRECT
VOLTAGE IS SELECTED AND THAT THE FUSE IS
CORRECTLY RATED

3-4 Set the CRT controls, which are similar to those of a

conventional oscilloscope, as follows:

1. Connect the instrument to the correct power supply
and switch on. Allow 15 minutes for warm-up.

2. Make sure that the instrument is in the RESET condi-

tion.
3. Set DISPLAY/ZERO/CAL switch to ZERO.
4. Adjust INTENSITY, VERTICAL SHIFT and

HORIZONTAL SHIFT controls for a spot trace of suit-
able brightness near the centre of the screen.

5. Adjust FOCUS and ASTIG controls for a clear circular
spot.

6. Adjust VERTICAL SHIFT and HORIZONTAL SHIFT
controls to place the spot on the screen centre.

7. Set AVERAGING switch to SUMMATION.

Set DISPLAY GAIN switch to MIN.

Set DISPLAY/ZERO/CAL switch to DISPLAY. Readjust
INTENSITY control for normal trace brightness.

10. Adjust TRACE ALIGN control for trace parallel to the
horizontal axis.

11. Adjust HORIZONTAL CAL control for 9.9 cm trace
width, starting at left hand origin.

12. Set FUNCTION switch to PROBABILITY INTEGRAL.
13. Set TIMESCALE switch to 333uS.

14. Set NUMBER OF SAMPLES N switch to 1 ¥ 1024.
15. Press RESET and then RUN push-buttons.

© x

Fall 2016

27 DISPLAY: 10cm wide by 8 cm high Cathode Ray
Tube with graticule calibrated in 1 cm squares. Major
axes calibrated in 2 mm graduations.

28 RECORD: push-button control. Initiates a single
sweep at a speed suitable for X-Y recorder.

29 DISPLAY/ZERO/CAL: lever switch. Left in DISPLAY
position for normal operation. ZERO and CAL positions
provide calibration points in centre and lower left hand
corner of display respectively for X-Y recording.

30 DISPLAY GAIN MIN/I/IMAX: lever switch. Provides
three magnifications of the vertical axis of displayed
trace .

31 VERTICAL SHIFT: potentiometer. Moves trace verti-
cally on the CRT screen.

32 CAL: potentiometer, Calibrates vertical axis of display.

33 RESTORE UP/DOWN: push-button switches. Enable
trace to be moved vertically on the CRT screen for in-
vestigation of points on the trace overrunning the
screen, without disturbing the setting of the VERTICAL
SHIFT control (31) .

34 HORIZONTAL SHIFT:
horizontally on the CRT.

35 CAL: potentiometer. Calibrates horizontal axis of dis-
play.

36 DELAY OFFSET (if Option Series 01 fitted): rotary
switch. Not fitted to standard 3721A. See Section IV of
this manual for more details.

16. The trace will split, one half rising to the top of the
graticule and the other half remaining on the bottom. If
necessary, adjust VERTICAL SHIFT and CAL controls
for correct display.

3-6 Local Control. The
operate as follows:

a. RUN sets the Correlator into the processing state.

b. HOLD stops the processing at the end of the current
updating cycle. On pressing the RUN push-button. process-
ing restarts. Information already in the delay store is not
cleared on restart. Operation of any of the major front-panel
controls automatically sets the HOLD condition.

c. RESET clears all information from the stores. The
Correlator is in the RESET condition when it is switched on.

3-8 INPUT SIGNALS

3-9 The Correlator accepts signal frequencies from 0 (dc)
to 250 Hz. If the signal contains frequencies of about 1 Hz
or lower, set the AC/DC coupling switch(es) to DC; other-
wise to AC. For normal use of the analog-digital converters,
input signals should be Gaussian and have amplitudes ly-
ing within the range 40 mV to 4 V rms. If the signal is non-
Gaussian the DITHER switch should be set to ON .

3-10 If the level of the signal to be investigated is un-
known it is necessary to measure it using a suitable volt-
meter (e.g.,, hp 3400A) and set the INPUT range switch(es)
accordingly. If the level is above or below the range of the
3721A it will be necessary to insert suitable attenuation or
pre-amplification.

3-11 CRT DISPLAY

3-12 Functions computed by the Correlator are displayed
on the internal CRT. Calibration of the screen varies with
the function being displayed.

3-13 Signal Recovery and Correlation Calibration. In
Signal Recovery and all Correlation modes horizontal cali-
bration is in TIME/MM and may be read directly off the
TIMESCALE switch scale, whilst vertical calibration is au-
tomatically given on the illuminated DISPLAY
SENSITIVITYT panel to the left of the CRT.

1This calibration is correct for all combinations of switches
affecting the vertical calibration but, because there are
many combinations it has been found necessary to
minimize the ranges used and to adjust the scale of the

potentiometer. Moves trace

three push-button controls

I-7

ELG 4176/4576

CRT display in other cases. This means that although
normally the full-scale vertical display can occupy 8 cm (full
screen height), occasionally it will Occupy 10cm (2 cm
more than full screen height) or only 64 cm (less than full
screen).

In probability modes the DISPLAY SENSITIVITY indicator
is inoperative and the full-scale vertical display can always
occupy 8 cm, irrespective of switch combinations.

3-14 Probability Calibration. In PROBABILITY modes
horizontal calibration is in V/CM and may be read off the A
INPUT RMS VOLTS RANGE switch scale (red scale).

Vertical calibration varies with the mode selected
(DENSITY or INTEGRAL) and with the method of
AVERAGING.

3-15 With EXPONENTIAL averaging the vertical axis is
uncalibrated.

3-16 With SUMMATION averaging and PROBABILITY
INTEGRAL mode the display freezes when the input signal
has been sampled 4N* times. (See Table 3-2 for difference
between N and N*.) Calibration is automatic in that the
highest point on the screen represents 100% probability
and the lowest point represents zero probability. With the
DISPLAY GAIN switch set at MIN, these are top and bot-
tom of the CRT screen respectively.

3-17 With SUMMATION averaging and PROBABILITY
DENSITY mode the display freezes when N* counts have
been made in the most measured amplitude interval (see
Table 3-2 for difference between N and N*).

3-18 For calibration the display may be normalized; this
can be accomplished by using the procedure detailed
below.

i. Measure the rms value of the signal using a suit-
able voltmeter, and let this value equal q.

Table 3-2
Corresponding values of N and N

Setting of NUMBER OF | Value of N | Value of N*
SAMPLES N Switch

128 128 127
256 256 254
512 512 508
1x1024 1024 1016
2x1024 2048 2032
4x1024 4096 4064
8x1024 8192 8128
16x1024 16384 16256
32x1024 32768 32512
64x1024 65536 65024
128x1024 131072 130048

i. Connect the signal to A INPUT/PROBABILITY
connector and set A INPUT RMS VOLTS RANGE
switch accordingly.

ii. Set 3721A FUNCTION switch to PROBABILITY
DENSITY, AVERAGING switch to SUMMATION and
DISPLAY GAIN switch to MIN.

iv. Connect rear-panel PROCESS CLOCKtt output
connector to a suitable counter (e.g.,, hp 5245L).
TtInstruments fitted with an option from Series 01 have
a PROCESS CLOCK output that does not stop after
processing is complete.

Instead, use Pin 19 of the 50-way connector on the
rear of the Correlator as an external stop signal for the
Counter. This pin at 12 V whilst the time constant lamp
is not lit and falls to 0 V when it lights.

v. Set the counter to zero and press RESET push-
button on 3721A.

vi. Press RUN push-button. When one point of the
display reaches 8 cm deflection (the top of the CRT

COMMUNICATION SYSTEMS

Fall 2016

screen), processing stops. The reading on the counter
is the number of process cycles; let this equal A.

vii. The probability at the highest point of the display

is:

p(x)peak= EQ \F(N*,A)
where N* is the number of samples in the voltage win-
dow where the highest point lies. N* is derived from the
setting of the NUMBER OF SAMPLES switch by refer-
ence to Table 3-2.

viii. The normalized probability at the highest point EQ
\o(",p)(x) peak is given by:
EQ \o(",p)(x) peak = EQ \F(N* q,A w)
where w is the voltage window at which the highest
point lies.
~(HORIZ V/CM setting)
10

W=

ix. With one point calibrated, all other points on the
plot can be calibrated in proportion. For example, if one
point is y cm from the baseline and x cm from the cen-
tre line, the normalized coordinates are:

P(X) peak =% P(X) peak
% X(HORIZ V/CM setting)
B q

3-25 SAMPLING RATE

3-26 The choice of the TIMESCALE control setting in
Correlation and Signal Recovery modes is important if
maximum statistical information is to be recovered. Firstly,
in these modes the choice of the sampling interval must
comply with the requirements of the Sampling Theorem
which states that, for complete recovery of the statistics of
a signal, the rate at which it is sampled be at least twice the
highest significant frequency present in the signal.
Secondly, if the CRT display is being used as the output
device, erroneous results may be interpreted due to the
inability of the eye to interpolate in certain circumstances.
This can happen with a periodic signal when there are less
than about five display points per cycle.

3-27 Figure 3-3 shows the autocorrelation function of a
sine wave where the number of points per cycle is more
than two (thus fulfilling the requirements of the Sampling
Theorem).

3-28 However the eye tends to see the trace shown solid
rather than the correct dashed one. If the TIMESCALE set-
ting is decreased the correct trace becomes readily appar-
ent and the possibility of false interpretation no longer
exists (see Figure 3-4)

Figure 3-3 Autocorrelation function of a sine wave

I-8

ELG 4176/4576

Figure 3-4 The autocorrelation function with the
timescale setting decreased

3-29 Note that the appearance of the trace is purely a
subjective matter and that the accuracy and usefulness of
any calculations are not affected provided the correct.
information to be used is appreciated.

3-30 This effect, sometimes termed "Optical Aliasing",
must not be confused with true aliasing,which occurs when
the Sampling Theorem requirements are not met. Optical
aliasing may occur both in the presence, and absence, of
true aliasing, and providing the sampling requirements are
met, may always be removed by decreasing the sample
interval. Use of the INTERPOLATION facility offered in the
3721A will often help in detecting Optical Aliasing, and in
general display interpretation.

3-31 AVERAGING

3-32 Two methods of averaging are provided on the
Correlator; SUMMATION and EXPONENTIAL.

3-33 Summation. When making Auto and
Crosscorrelation measurements or performing Signal
Recovery experiments using Summation averaging the
computation stops automatically after N updatings of the
displayed function. N, the number of samples taken, is set
by the front panel selector switch in the range 128 to 128 x
1024 (27 to 217) in binary steps.

3-34 Completion of the number of samples, N, being taken,
is indicated when the TIME CONSTANT lamp lights: a fur-
ther 100 samples are then taken for complete updating of
all 100 displayed points.

3-35 In Probability Density measurements the processing
is arranged such that when the highest point has occurred
N* times processing ceases. For convenience it is arranged
that this point occupies 8 cm (full screen height). (See
Table 3-2 for difference between N and N*.)

3-36 In Probability Integral measurements processing
ceases after 4 N* samples have been taken. Again for con-
venience the highest point occupies 8 cm (full-screen).

3-37 Exponential. Exponential averaging on the 3721A is
the digital equivalent of resistance capacitance averaging
where the time constant may be varied. This averaging
time constant is the product of N x At x number displayed
on the illuminated TIME CONSTANT panel. (See
Paragraph 3-40).

COMMUNICATION SYSTEMS

Fall 2016

3-38 With Exponential averaging in the 3721A this time
constant is progressively increased, automatically, from a
low value at the start of the experiment, to the value given
by the front panel TIME CONSTANT indicator. The CRT
display is calibrated throughout this progression giving the
Operator a 'quick-look' facility, from which he can gain
useful information about the signals under investigation,
without having to wait until the final time constant is
reached.

3-39 The TIME CONSTANT lamp will light when the final
value of time constant (as indicated by the TIME
CONSTANT indicator) has been reached, but processing
will continue indefinitely, until stopped by the Operator.

3-40 CALCULATION OF TIME CONSTANTS AND
SUMMATION TIME

3-41 The estimation of the variance or statistical accuracy
likely in analyzing a signal using the 3721A involves the
calculation of suitable Experiment Times (in Summation
averaging) or Time Constants (in Exponential averaging) to
obtain the desired accuracy and the relationship of the
TIME CONSTANT lamp to these. Table 3-3 below sets out
the calculations involved for various combinations. The
Averaging Time Constant Calculator (hp part number
03721-95011) supplied with the instrument, aids in calculat-
ing these results.

NOTE: At is the setting of the TIMESCALE switch and N is
the setting of the NUMBER OF SAMPLES/TIME CONST
MULTIPLIER switch.

3-42 Signal Recovery. The process of Signal Recovery
is a method of improving the signal-to-noise ratio in the ob-
servation of a repeated event. The improvement is in
proportion to the square root of N (as set by the NUMBER
OF SAMPLES/TIME CONST MULTIPLIER switch) and
therefore the length of any experiment is dependent on the
signal-to-noise ratio improvement required and on the time
between the trigger pulses denoting the start of each
repeated event.
3-43 With Summation averaging the experiment time will
be equal to:

(N x time interval between trigger pulses)
3-44 With Exponential averaging the signal is in effect,
smoothed by a resistance capacitance filter of a prese-
lected time constant equal to:

(N x time interval between trigger pulses)
3-45 Consider this time interval for the two cases of
external and internal trigger pulses.

a. External Trigger signal. With both methods of averaging
the time interval between trigger pulses should be at least
[100 At + (200 x 108)] seconds if all repetitions are to be
averaged; if less than this the instrument will function, but
less efficiently, as some repetitions will be ignored.

b. Internal Trigger (Stimulus) signal. With both methods of
averaging the time interval between trigger pulses is [100
At + (200 x 10%)] seconds.

Table 3-3 Calculation of Time Constants and Experiment Times

At >333ps
(Normal mode)

At = 100ps or 33us
(10:1 Batch mode)

At =1 Ops, 3.33us or 1us
(100:1 Batch mode)

AUTOCORRELATION/CROSSCORRELATION

Summation: The TIME CONSTANT
lamp will light N At s after the RUN
push-button is pressed. This is the
value to be used in the calculationt
of both variance and experiment
times.

Summation: The TIME CONSTANT
lamp will light 10.N.At after the RUN
push-button is pressed. This is the
value to be used in the calculationt
of experiment times. For variance

calculationst the product N At must
be used.

I-9

Summation: Approximate time for
the TIME CONSTANT lamp to light
is given by the Calculator and is
used for estimating experiment
times. The product N.At is to be used
for variance calculationst.

ELG 4176/4576

COMMUNICATION SYSTEMS

Fall 2016

TNote: A further 100At must be included in these calculations, to allow for the final updating of all 100 points.

Exponential: The averaging time
constant is N.At times the white illu-
minated factor in the TIME
CONSTANT indicator panel. This is
the value to be used in the calcula-
tion of both variance and experiment
times.

Exponential: The averaging time
constant is given by the Calculator.
The value to be used in variance
calculations is the product of N.At
and the white illuminated factor,
(Note that the green illuminated fac-
tor should be ignored is these calcu-

Exponential: The averaging time
constant is given by the Calculator.
The product of N.At and the white
section of the illuminated panel is to
be used for variance calculations.

lations.)

PROBABILITY DENSITY

Sampling set at 333us —calculations
as for Normal mode.

Sampling set at 333us —calculations
as for Normal mode.

Summation: Processing time is a
function of the characteristics of the
signal being measured. Without prior
knowledge of the amplitude
probability of the signal, it is not
possible to predict experiment times.
The time for variance calculations is
the same as the experiment time.

Exponential: The averaging time
constant for calculating both experi-
ment times and variance is given by
the product of N.At and the white
section of the illuminated panel.

PROBABILITY INTEGRAL

Summation: The TIME CONSTANT
lamp will light 4.N* At after the RUN
push-button is pressed. This value is
used to predict experiment times and
for variance calculations. NOTE: for
the significance of the expression N*
please refer to Table 3-2.

Sampling set at 333us —calculations
as for Normal mode.

Sampling set at 333us —calculations
as for Normal mode.

Exponential: The averaging time

constant is N.At times the white sec-
tion of the illuminated panel and this
is the value used to predict experi-
ment times and for variance calcula-
tions.

3-46 MEASUREMENT PROCEDURES
3-47 Autocorrelation. Autocorrelation gives a measure of the similarity between a signal and a delayed version of itself,
expressed as a function of the delay. Autocorrelation measurements can be made on either input A or input B. Input A
measurement procedure is as follows, (for channel B measurements set appropriate B INPUT controls and turn the
FUNCTION switch to AUTOCORRELATION B):

1. Set AC/DC switch for coupling required. When the input signal is dc or has frequency components less than
approximately 1 Hz, the DC position must be selected.

Set A INPUT RMS VOLTS RANGE switch for level of the signal being investigated (see Paragraph 3-8).

If the signal is Gaussian, set DITHER switch to OFF, otherwise to ON.

Set FUNCTION switch to AUTOCORRELATION A.

Set AVERAGING switch to SUMMATION or EXPONENTIAL as required.

Set TIMESCALE switch for correct sampling rate for signal being measured. Sampling rate must be at least twice the
highest significant frequency component of the input signal. Horizontal calibration of the display given directly from the
setting of the TIMESCALE control in TIME/MM.

Set NUMBER OF SAMPLES N/TIME CONST MULTIPLIER N switch as required.

Connect input signal to A INPUT connector.

. Press RESET push-button.

0. Press RUN push-button.

1. Allow processing to continue for a suitable length of time. The TIME CONSTANT indicator and lamp enable
approximate measurement times to be calculated. (See Paragraph 3-40).

12. Vertical calibration of the display is shown on the DISPLAY SENSITIVITY panel in V2/CM.

3-48 Crosscorrelation. Crosscorrelation gives a measure of the degree of similarity between two signals, expressed as a
function of the time shift between them. Crosscorrelation measurements can be made with either input A or input B delayed.
Measurement procedure is as follows:

1. Set AC/DC switches for A INPUT and B INPUT couplings required. When an input signal is dc or has frequency
components less than approximately 1 Hz, the DC position must be selected.

2. Set A INPUT RMS VOLTS RANGE and B INPUT RMS VOLTS RANGE switches for levels of the signals-being
investigated (see Paragraph 3-8).

o0k wN

ELG 4176/4576 COMMUNICATION SYSTEMS Fall 2016

3. I(f)the signal connected to the delayed channel (coarse quantizer) is Gaussian, set DITHER switch to OFF, otherwise to
N.

4, Set FUNCTION switch to CROSSCORRELATION; A DELAYED or B DELAYED as required.

5. Set AVERAGING switch to SUMMATION or EXPONENTIAL as required.

6. Set TIMESCALE switch for correct sampling rate for signals being measured. Sampling rate must be at least twice

the highest significant frequency of the higher frequency input signal.

Horizontal calibration of the display is given directly from the setting of the TIMESCALE control in TIME/MM.

7. Set NUMBER OF SAMPLES N/TIME CONST MULTIPLIER N switch as required.

8. Connect input signals to A INPUT and B INPUT connectors.

9. Press RESET push button .

10. Press RUN push button.

11. Allow processing to continue for a suitable length of time. The TIME CONSTANT indicator and lamp enable

approximate measurement times to be calculated. (See Paragraph 3-40) .

12. Vertical calibration of the display is shown on the DISPLAY SENSITIVITY panel in VZ/CM.

3-49 Probability. Probability measurements give a statistical assessment of the amplitude characteristics of the signal

under investigation. Measurements can be made of Probability Density Function (pdf) or the integral of the pdf, the

Cumulative Distribution Function (cdf). Probability measurement procedure is as follows:

1. Set AC/DC switch for coupling required. When the input signal is dc or has frequency components less than
approximately 1 Hz, the DC position must be selected.

2. Set AINPUT RMS VOLTS RANGE switch for level of signal being investigated (see Paragraph 3-8).
Horizontal calibration of the display is provided by the red scale (HORIZ V/CM PROBABILITY) on the A INPUT switch.

3. Set FUNCTION switch to PROBABILITY DENSITY (pdf measurement) or to PROBABILITY INTEGRAL (cdf
measurement).

4. Set AVERAGING switch to SUMMATION or EXPONENTIAL as required. Generally, SUMMATION averaging will be
found to be most useful. (With EXPONENTIAL averaging the vertical axis of the display is uncalibrated).

5. Set TIMESCALE switch for sampling rate for signal being measured: For TIMESCALE switch settings below 333pS,

sampling is limited at the fixed period of 333pS.

In Probability measurements the TIMESCALE setting determines the sampling rate only and does not provide

calibration of the horizontal axis of the display as in other modes

Set NUMBER OF SAMPLES N/TIME CONST MULTIPLIER N switch as required .

Connect input signal to A INPUT connector. (Probability measurements cannot be made on the B channel.)

Press RESET push-button.

Press RUN push-button.

0. Check that the display adequately fills the CRT screen horizontally. If not, adjust A INPUT HORIZ V/CM PROBABILITY

switch for suitable display.

11. Allow processing to continue for a suitable length of time. The TIME CONSTANT indicator and lamp enable

approximate measurement times to be calculated. (See Paragraph 3-40).

12. For vertical calibration of the display see Paragraph 3—14.

SO0ONOS

ELG 4176/4576 COMMUNICATION SYSTEMS Fall 2016

I-12

Université d'Ottawa = University of Ottawa
Faculté de génie I]]]] Faculty of Engineering

Ecole de science informatique School of Electrical Engineering

et de génie électrique u Ottawa and Computer Science

L’Université canadienne
Canada’s university

COMMUNICATION SYSTEMS
LABORATORY II

Noise Generation, Representation and Measurement

Introduction:

In this laboratory, you will examine two different noise generators to explore some of the properties of
random noise waveforms and to learn something about the differences and similarities of the two different
noise sources. These generators generate noise on two different principles—one amplifies the noise produced
by a special noisy vacuum tube, while the other bases its noise on the seemingly scattered results of a digital
filter with feedback.

Text References:
Chapter 5 in John G. Proakis and Masoud Saleh, Fundamentals of Communication Systems, Upper Saddle
River, NJ: Prentice-Hall, 2005.

Chapter 6 in L.W. Couch II, Digital and Analog Communication Systems,6th ed., New Jersey, Prentice-Hall,
2001

Chapter 4 in Communication Systems Engineering, 2nd ed. by Simon Haykin
Chapters 4 and 5 in Principles of Communications, 4th ed. by R.E. Ziemer & W.H. Tranter.
Chapters 10 and 11 in Modern Digital and Analog Communication Systems, 3rd ed. by B.P. Lathi.

Preparation:

1. Read through carefully the material in the Appendix to this lab.
2. Find the noise-equivalent bandwidth of an nth order Butterworth filter for which

1
IHPI? = ———=
D= T P
where f34p is the 3 dB frequency of the filter. What happens in the limit as n becomes arbitrarily large.
3. What is the period of a pseudorandom noise sequence (PRNS) of length 215 -1 produced by the Wavetek
132 generator? What then is the spacing in the line spectrum of its output?

Apparatus:

1- GR-1383 Random Noise Generator

1- Wavetek 132 Pseudorandom Noise Generator
1- True RMS Voltmeter

1 - Oscilloscope

1 - Spectrum analyzer

1 - Signal Generator

1 - Krohn-Hite 3202 filter unit

II-1

ELG 4176/4576 COMMUNICATION SYSTEMS Fall 2016

CAUTION CAUTION CAUTION
Spectrum analyzers are very expensive, delicate and sensitive pieces of equipment which can be very easily
abused. Make sure that at all times the signals you apply to the input does not exceed the maximum allowable
input level noted on the front of the unit. If you are unsure of a signal level, measure it on your oscilloscope or
with a voltmeter before you apply the signal to the spectrum analyzer.

Procedure:

Part I: Physical Noise (The GR 1383)

1. Display the output of the generator on the oscilloscope. Observe the effects of varying the amplitude
control. View the noise generator's output on the spectrum analyzer as well (don't forget the spectrum
analyzer's maximum input levels!) Observe the effects of different settings of the video filter. Record and
compare typical time and frequency domain waveforms. Observe (i) whether the obtained waveforms have
a DC-component, (ii) the bandwidth of the output, (iii) whether the bandwidth can be changed, (iv) whether
the oscilloscope can be synchronized to the noise signal, and (v) whether the noise signals have clearly
defined amplitude levels.

2. Determine what the “output level*“ meter on the GR 1383 actually measures.

3. Is the noise produced by this generator “white” in any reasonable sense?

Part II: Simulated Noise (The Wavetek 132)

1. Set the generator to generate a pseudorandom signal. Observe the output both in time and frequency,
varying the various control settings of “sequence length”, “noise frequency”, and ILITL and fu.
Record in a sketch the various waveforms obtain. Explain your observations.

2. Display the £ waveform on the oscilloscope. Observe the effects of varying the DC offset control on
the rear panel. Compare the waveform with a typical waveform obtained from the GR 1383. Comment on
any significant differences. The "noise sync" output on the rear panel can be used to synchronize the scope.
Why can the scope be synchronized when the Wavetek 132 is used but not when the GR 1383 is used.
What effects does the sequence length have on synchronization? Can you synchronize to the noise signal
when the oscilloscope is internally triggered?

3. Explain why is the spectrum of the waveform of part 2 is different than an “equivalent” waveform
generated by a GR 1383.

Part Lii: Noise Power Measurements

1. Use a Krohn-Hite filter [which you may recall from your measurements in ELG 3175 is a fourth order
(n=4) Butterworth filter when in MAX FLAT mode] connected as a bandpass filter, with a centre
frequency of 35 kHz. Use the GR 1383 to provide an input to the filter. Observe the output waveform.
Determine its midband gain and the 3 dB bandwidth of the filter.

2. Using a true RMS voltmeter, measure the output voltage. After correcting for gain, verify the
proportionality between noise power and bandwidth. Are your results in consistence with the
theoretical expected result? Explain.

II-2

ELG 4176/4576 COMMUNICATION SYSTEMS

APPENDIX

Fall 2016

GR1383 Random Noise Generator (extracts from Operating Manual)

Section | Introduction

1-1 PURPOSE

The Type 1383 Random-Noise Generator (Figure 1-1)
provides a high level of electrical noise at its output
terminals. This type of signal is useful in testing video- and
radio frequency systems for operation in the presence of
noise, and for measurement of the noise figure of such
systems. The noise signal can be used directly, or it can be
used to modulate the output of a signal generator. It is
useful in making crosstalk measurements and in
determining the effective bandwidth of filters. The 20 Hz to
20 MHz bandwidth of the noise makes it useful for even
wide-band video.

1-2 DESCRIPTION

The 1383 Random-Noise Generator consists of a
thermionic diode noise source with all-semiconductor
amplifiers and power supply. The noise output is useful

over the frequency range from 20 Hz to 20 MHz. The noise
output amplitude is indicated by a meter on the front panel,
and an output attenuator permits reduction of the output by
a total of 80 dB in 10 dB steps from a maximum of 1 V rms,

open circuit. The output impedance is 50 Q.

1-3 CONTROLS, CONNECTORS AND
INDICATORS

The controls, connectors and indicators on the front panel
of the 1383 Random-Noise Generator is listed and
described in Tables 1-1

The OUTPUT connector on the front panel is a GR874®)
coaxial connector. If desired, it may be removed from the
front panel and mounted on the rear of the instrument. A
snap-in hole cover (P/N 0480 2470) at the rear should be
moved to the front if this change is made, to cover the hole
in the front panel.

o]

. .
Figure 1-1 Type 1383 Random-Noise Generator
Table 1-1 Controls, Connectors, and Indicators on the Front Panel
Figure 1-1 Name Type Positions Function
ref.
1 POWER 2-position toggle switch OFF, POWER Energizes Instrument
2 — Pilot lamp — Indicates when instrument is
energized.
3 — Meter — Indicates open-circuit output voltage.
4 OUTPUT Continuous rotary control — Varies output voltage.
LEVEL
5 METER FULL 9-position rotary selector 1.0, 0.3, 0.1, 0.03, Attenuates output in 10 dB steps.
SCALE switch 0.01, 0.003, 0.001,
0.0003, 0.0001
6 OUTPUT 50 Q | GR874® coax al connector — Connection to generator output.
and ground jack

II-3

ELG 4176/4576

COMMUNICATION SYSTEMS

Fall 2016

Section 4

Principles of Operation

60MHz
OSCILLATOR

A '

Z

NOISE

AMPLIFIER GAIN
DIODE i

40-80 MHz coNTROL [™] MODULATOR ¥

/

20 MHz VIDEO
—» AMPLIFIER ATTENUATOR —O) OUTPUT
LP FILTER 20 H-POMHz O
7
METER
CIRCUIT

@

Figure 4-1. Block Diagram of the 1383 Random-Noise Generator

4-1 DESCRIPTION OF CIRCUIT

Figure 4-1 is a block diagram of the Type 1383 Random-
Noise Generator. The noise source is a thermonic diode [a
vacuum tube diode] operated in the temperature-limited
mode. The noise output of such a diode operated in this
way is exactly Gaussian, it is spectrally flat to extremely
high frequencies, and its level is proportional to the square
root of the DC plate current. To keep the amplitude stable,
the filament current of the noise diode is controlled by
feedback, to maintain a constant current. The noise output

of the diode is amplified in the frequency range from 40 to
80 MHz. By heterodyning against a 60 MHz local oscillator,
the noise frequency is translated to the 0-to-20 MHz band.
A sharp-cutoff low-pass filter ensures that higher noise
frequencies and residual local-oscillator signals are
removed. An AC-coupled amplifier is used to increase the
power of that noise to the output level of 1 V. The voltmeter
(which indicates the output level) and the output attenuator
complete the circuit. All power supplies are regulated
except the plate supply to the noise diode.

Section 5

Operating Procedure

5.1 GENERAL

With the instrument in position on the bench or installed in a
relay rack, set the screwdriver-operated slide switch S502
(4, Figure 1-2) to the range corresponding to the power-line
voltage. Connect the instrument to the line power, using the
power cable supplied (P/N 4200-9622), and turn on the
POWER switch.

Follow the instructions given in paragraphs 5.2 and 5.3 for
setting the OUTPUT LEVEL and METER FULL SCALE

5.2 OUTPUT LEVEL CONTROL.

The OUTPUT LEVEL control is a continuous rotary control
by means of which the output level can be set at any
selected value between its maximum open-circuit value and
zero. The open-circuit output voltage is indicated by the
meter on the front panel, which must be read on the scale
appropriate to the setting of the output attenuator (the
METER FULL SCALE control).

5.3 METER FULL SCALE CONTROL.

The METER FULL SCALE control is the output attenuator
and permits reduction of the output-voltage level by 80 dB
from its maximum, in 10 dB steps. The voltage indicated is
the open-circuit output voltage; when the output is loaded
by 50 Q, the output voltage is reduced by half. Decibel
readings on the dial of the METER FULL SCALE control
can be added to the decibel indication of the meter to
obtain the open-circuit output voltage in decibels below 1 V.

5.4 OUTPUT CONNECTIONS.

The output connector on the front panel is a GR874,
locking-type, coaxial connector. Generally, the output

should be taken by means of a mating GR874 connector
into a closed coaxial system. Adaptors to other types of
high-frequency connectors are available. The output
connector can be moved to the rear panel if more
convenient, as when the instrument is mounted in a relay
rack (refer to paragraph 2.4 and Figure 8-2)

5.5 OUTPUT IMPEDANCE.

The output impedance of the 1383 is 50 ohms, +2%. The
output can be short circuited without causing distortion of
the output current. The maximum output current into a short
circuit is 20 mA rms, with occasional peaks that may
exceed four times that value.

5.6 MODIFYING THE OUTPUT
5.6.1 Producing Lower Levels.

GR874G fixed coaxial attenuators in reducing the output
level beyond the range of the 1383 output attenuator (the
METER FULL SCALE control). These units are available
with attenuations of 3, 6, 10, 14, and 20 dB. They are
designed for insertion in a 50-ohm line.

5.6.2 Generating Bands of Noise

It may be necessary to restrict the bandwidth of the noise
output of the 1383. For inserting a tuned circuit or filter in
series with the 50-ohm output, it may be convenient to use
the GR874-X insertion unit, which permits totally-shielded
connection of any circuit that will fit in its 2-inch long, 9/16
inch-diameter space.

5.6.3 Generating Higher Levels

The noise generated by the 1383 Random-Noise Generator
can be amplified by any amplifier whose frequency range is
adequate. The high crest factor of Gaussian noise must be

II-4

ELG 4176/4576 COMMUNICATION SYSTEMS Fall 2016

kept in mind in choosing the power rating of the amplifier so

that the noise will not be clipped. In order that peaks of 3¢
be passed without clipping, the amplifier must be capable of
amplifying a sine wave without distortion to a power level
4.5 times greater than the average noise power desired.

5.6.4 Generating Noise at Higher Frequencies.

Noise at higher frequencies can be generated by using a
double-balanced mixer to modulate a high-frequency carrier
from an oscillator or signal generator. The result will be a
band of noise 40 MHz wide, centered on the carrier
frequency. (There will be a notch 40 Hz wide at the carrier

frequencyl) The degree of discrimination against the carrier
and the upper carrier frequency that can be used will
depend upon the characteristics of the mixer used. Many

such mixer units are commercially available.2

1P(-Jrhaps wider, depending upon the characteristics of the mixer
2Relcom E. G., Mountain View, Cal.

II-5

ELG 4176/4576

COMMUNICATION SYSTEMS

Fall 2016

Wavetek 132 VCG/ Noise Generator (extracts from Operating Manual)

SECTION 1
SPECIFICATIONS
VERSATILITY 0.5 dB from 0.2 Hz to 2 MHz
Waveforms PURITY
Sine, square, trianale waveforms and analog noise 4 Wk Sine Wave Distortion
or digital noise Less than:

Frequency Range of Signal
0.2 Hz to 2 MHz in 6 decade ranges

Ranges

x10 0.2 Hzto 20 Hz
x100 2 Hz to 200 Hz
x1K 20 Hz to 2 kHz
x10K 200 Hz to 20 kHz
x100K 2 kHz to 200 kHz

x1M 20 kHz to 2 MHz
Function Outputs

Sine, square and triangle selectable, with 60 dB step
attenuator in 10dB steps and overlapping calibrated
vernier, 50 Q output impedance, 20 V peak-to-peak into
open circuit and 10 V p-p into 50 Q load from 50 Q source
impedance.

Sync Output

Greater than 1 V p-p square wave into open circuit at 600 Q
output impedance.

DC Offset

+5V offset (x2.5V offset into 50Q load) controlled from
rear panel; peak amplitude limited by the dynamic range of
the amplifier output.

VCG—Voltage Controlled Generator

Frequency of the generator may be DC-programmed, or
AC-modulated by external 0 to +5 V signal. Voltage control
circuitry is capable of 1000:1 deviation. The VCG amplifier
has a 100 kHz bandwidth and a slew rate of 0.1 V/ms. The
instantaneous frequency is the result of the sum of the dial
setting and the externally applied voltage.

Stability
Short term +0.05% for 10 minutes
Long term +0.25% for 24 hours

Percentages apply to amplitude, frequency, and DC offset.
HORIZONTAL PRECISION

Dial Accuracy

+2% of full scale, 1 Hz to 2 MHz

Frequency Vernier

One turn equals 1% of full scale.

Time Symmetry

+1% through x100K range

VERTICAL PRECISION

Sine Wave Frequency Response

Amplitude change with frequency less than:
0.1 dB from 0.2 Hz to 200 kHz

JIE)

0.5% on x10, x100, x1K, x10K ranges

1.0% on x100K range

All harmonics 30 dB down on x1 MHz range
Square Wave Rise and Fall Time

Less than 50 ns terminated into 50Q
NOISE
Outputs

Pseudo-random analog or digital noise with a maximum of
20 V p-p excursion (open circuit) with 60 dB step attenuator
in 10 dB steps and overlapping calibrated vernier.
Sequence Lengths

Push buttons on the front panel provide a sequence length
of 2101, 2151 or 2201

Noise Clock Frequency

Switch selectable noise frequencies are listed below.

Clock Frequency Analog Noise Bandwidth

160 Hz 10 Hz
1.6 kHz 100 Hz
16 kHz 1 kHz
160 kHz 10 kHz
1.6 MHz 100 kHz

NOISE

FUNC Function Mode—Provides the selected waveform at
the main output.

S/N Signal-to-Noise operation adds noise to a selected
signal of constant amplitude. The signal-to-noise ratio is
variable from 0 to +60 dB.

N/S Noise-to-Signal operation adds a selected signal to a
constant amplitude noise. The noise-to-signal ratio is
variable from 0 to +60 dB.

FM Frequency Modulation—Provides random modulation of
the frequency of the generator. The S/N-N/S (dB) ratio
control also controls the amount of frequency deviation.
NOTE

When noise is added to the signal output, specifications
apply up to 200 kHz and the square wave rise time is
derated by a factor of 10. In the clock range of 1. 6 MHz,
the maximum calibrated signal-to-noise ratio is 30 dB.

ELG 4176/4576

ENVIRONMENTAL
Temperature

All specifications listed, except stability, are for 25°C +5°C.
For operation from 0°C to 55°C, derate all specifications by
factor of 2.

MECHANICAL

Dimensions

8.5 inches wide, 5.25 inches high, 11.5 inches deep
Weight

8 Ibs net, 12 Ibs shipping

COMMUNICATION SYSTEMS

Fall 2016

Power

105V to 125V or 200 V to 250 V, 50 Hz to 400 Hz. Less
than 15 watts.

NOTE
All specifications apply for frequencies obtained when dial
is between 0.1 and 20 and at 10 V p-p into a 50 ohm load
It is possible to stop the generator from oscillating by
applying a negative VCG voltage when the dial is already
set at minimum frequency VCG inputs up to 30 V will not
permanently damage the instrument

SECTION 2

OPERATION

| |
w X0}~

Figure 2-1 Operating Controls, Front panel

OPERATING CONTROLS

The operating controls and electrical connections for the
Model 132 are shown in Figures 2-1 and 2-2. Each of the
following paragraph numbers corresponds to a number
appearing in Figure 2-1, front panel, or Figure 2-2, rear
panel. The listing below discusses each control and its
function.

FRONT PANEL

1. FREQ HZ/PWR OFF—Selects one of six decade
ranges from x10 to x1M for generator frequency. This
value multiplied by the frequency dial setting (3) gives
the output frequency of the generator. Extreme
counterclockwise rotation will place the switch in the
PWR OFF position, turning off all power to the
function and noise generators. This control has no
affect on the noise frequency.

2. FREQ VERNIER—AIllows precision electronic control
of the signal output frequency. A full turn of the control
is approximately equal to 1% of full scale. When
turned to the full clockwise position (CAL), settings on
the main dial will be calibrated.

3. Frequency Dial —Allows coarse control of the signal
output frequency.

4. Frequency Index—Indicates the frequency dial
setting (3) by reading the dial position opposite the
scribe line on the frequency index. The index is
illuminated when power to the unit is on.

5. Function Selector—Selects the desired function or
noise output.To select sine. trianaular. or square-
wave waveforms, or I LITL or fu noise, the
FUNC push button (7) must be depressed.

6. OUTPUT VERNIER (dB)—Provides vernier control of
0 through —20 dB from the OUTPUT ATTEN (dB)

I1-7

ELG 4176/4576

setting (12). This is the fine adjustment for the output
signal and will attenuate signal and noise.

MODE

7.

10.

11.

12.

FUNC—When depressed, this control allows the
selected waveform or noise, as determined by the
position of the function selector (5), to be present at
the 50 Q OUT connector (11). This push button must
also be in the depressed position for the frequency
modulation mode (10).

S/N—Depressing this push button allows a calibrated
amount of analog noise to be added to the selected
signal, either either sinusoid, triangular or square
wave. The signal-to-noise ratio (S/N) is determined by
the S/N — N/S (dB) attenuator control (13). When in
this mode, the peak to peak signal amplitude is
reduced internally, since adding noise to the signal
would overdrive the output amplifier.

N/S—Depressing this push button allows a calibrated
amount of the selected signal, either sinusoidal,
triangular. or square wave, to be added to the analog
noise. The noise-to-signal ratio (N/S) is determined by
the S/IN — N/S (dB) attenuator control (13). When in
this mode, the peak to peak signal amplitude is
reduced internally, since adding the signal to the
noise would overdrive the output amplifier.
FM—Depressing this push button along with the
FUNC push button (7) allows the selected signal,
either sinusoidal, triangular. or square wave, to be
pseudo-randomly frequency modulated, or jittered.
The modulating signal is provided by pseudo-random
analog noise, and the S/N_N/S (dB) controls
frequency deviation. The bandwidth of the modulating
signal is controlled by the NOISE FREQ Hz selector
(15) and vernier (16).

50 @ OUT—Provides the selected generator output
function. The generator may operate into an open
circuit providing 20 V peak to peak maximum, or into
a 50 Q load providing a 10 V peak to peak output.
OUTPUT ATTEN (dB)—Attenuates the output (both
signal and noise, from 0 dB to —60 dB in six calibrated
10 dB steps according to the following table:

Step Output peak to peak into 50Q Load

Attenuator

*

13.

Minimum
Vernier*

Maximum Vernier
fully clockwise
0V

3V
\"

Position

0dB
-10dB
-20dB
-30dB 3V
—40 dB 1V
-50 dB 03V
—60 dB o1V
The values in this table are approximate. The OUTPUT
VERNIER (dB) (6) will reduce the output approximately

20 dB in all cases, as shown.

S/N-N/S (dB)—In the S/N mode, this control
attenuates the analog noise from 0 to —50 dB in five
calibrated 10dB steps. The selectable signal
amplitude remains constant, thus giving calibrated 0

]
0.
0.
0.
0.

COMMUNICATION SYSTEMS

14.

15.

16.

17.

Fall 2016

to =50 dB signal-to-noise ratios. In the N/S mode, the
signal is attenuated with the noise remaining
unchanged, thus giving noise—to-signal ratios from 0
to —50 dB. The steps for this control are indicated in
black numerals on the front panel.

S/N-N/S (dB) Vernier—Allows a calibrated fine
adjustment of the S/N-N/S (dB) step attenuator (13) .
This control is continuously variable over at least a
10 dB range. When added to the coarse control (13),
this amount equals the total S/N or N/S ratio.
Approximate values of attenuation are indicated in red
numerals on the front panel.

NOISE FREQ HZ—This range control selects the
clock frequency, or bandwidth for the digital, or analog
noise, respectively. When using the digital noise
function, clock frequencies from 160 Hz through 1.6
MHz (indicated in black numerals and letters on the
front panel) are available. When using analog noise or
the S/N, N/S modes, the bandwidth of the analog
noise may be selected from 10Hz to 100 kHz
(indicated in red numerals and letters on the front
panel). In the FM mode, this control establishes the
bandwidth of the analog noise used for frequency
modulation. There are four detent positions with an
overlapping vernier control (16). With the vernier in
the full clockwise position, the clock frequency, or
bandwidth, is equal to the value printed to the right of
the detent mark.

NOISE FREQ HZ Vernier As mentioned in number
15, this control provides a continuous, fine control
between the detent positions of the coarse control.
When in the full clockwise position, the clock
frequency, or bandwidth, is equal to the value
appearing at the right of the detent mark. As the knob
is rotated counterclockwise, the clock frequency, or
bandwidth, is decreased. In the full counterclockwise
position, the actual value will be at least 10:1 (and as
much as 100:1) lower than the value to the right of the
detent mark.

VCG IN—This connector allows external voltage
control of function generator frequency. Up to 1000:1
frequency change may be obtained. A positive voltage
increases frequency and a negative voltage
decreases frequency. Refer to "Operation as a
Voltage Controlled Generator."

SEQUENCE LENGTH

18.

19.

II-8

210-1—Depressing this push button will provide 1,023
counts of the selected clock frequency, or bandwidth,
determined by the NOISE FREQ HZ controls (15 and
16), for generation of a digital, or analog noise
pattern. At the end of each sequence, the pattern is
automatically repeated.

215-1—Depressing this push button will provide
32,767 counts of the selected clock frequency, or
bandwidth, determined by the NOISE FREQ HZ
controls (15 and 16), for generation of a digital, or
analog noise pattern. At the end of each sequence,
the pattern is automatically repeated.

ELG 4176/4576

20.

220-1—Depressing this push button will provide
1,048,575 counts of the selected clock frequency, or
bandwidth, determined by the NOISE FREQ HZ

COMMUNICATION SYSTEMS

Fall 2016

controls (15 and 16), for generation of a digital, or
analog noise pattern. At the end of each sequence,
the pattern is automatically repeated.

@i

22

S U NV s SRR

2% 1 e

)

e T I

i o —————r

Figure 2-2 Operating Controls, Rear Panel

REAR PANEL

21.

22,

23.

24

DC OFFSET—This control adjusts the +5 V base line
above or below ground (+2.5 V offset into 50Q load).
The OFF position gives normal vertical symmetry.
Peak amplitude is limited by the dynamic range of the
amplifier output.

FUNCTION SYNC—This connector provides a
synchronizing signal output at the same frequency of
the main generator; that is, at the same frequency as
the sine, triangle or square wave. The amplitude is
greater than 1V peak to peak square wave into open
circuit at 600 Q output impedance.

NOISE SYNC—This connector provides a
synchronizing output signal for monitoring the digital
or analog noise. A sync signal is generated at the
beginning of each repetitive cycle for the selected
sequence length of digital or analog noise.

NOISE CLOCK—This connector provides an external
output of the basic clock frequency used to generate
the digital sequence and analog noise.

OPERATION

No preparation for operation is required beyond completion
of the initial installation previously stated in this section. It is
recommended that a one-half hour warm-up period be
allowed for the associated equipment to reach a stabilized
operating temperature and for the Model 132 to attain
stated accuracies.

Operation as a Calibrated Signal-to-Noise Source

1.

Select the desired signal waveform by setting function
selector to sinusoidal, triangular, or square wave.

Set frequency dial and FREQ HZ range multiplier for
desired signal output frequency.

Depress MODE—S/N push button.

Select noise bandwidth by setting NOISE FREQ HZ
control to desired range and fine adjusting bandwidth
by turning the noise frequency Hz vernier control.
Select desired SEQUENCE LENGTH by depressing
appropriate push button.

Select signal-to-noise ratio by setting S/N-N/S (dB)
control to appropriate attenuation position and fine
adjusting attenuation to desired value with S/N-N/S
vernier control.

Select total output amplitude by setting OUTPUT
ATTEN (dB) control to appropriate attenuation
position and fine adjusting signal to desired amplitude
with OUTPUT VERNIER (dB) control .

Operation as a Calibrated Noise-to-Signal Source

1.

I1-9

Select the desired signal waveform by setting function
selector to sinusoidal, triangular, or square wave.

Set frequency dial and FREQ HZ range multiplier for
desired signal output frequency.

Depress MODE—S/N push button.

Select noise bandwidth by setting NOISE FREQ HZ
control to desired range and fine adjusting bandwidth
by turning the noise frequency Hz vernier control.
Select desired SEQUENCE LENGTH by depressing
appropriate push button.

Select noise-to-signal ratio by setting S/N-N/S (dB)
control to appropriate attenuation position and fine
adjusting attenuation to desired value with S/N-N/S
vernier control.

Select total output amplitude by setting OUTPUT
ATTEN (dB) control to appropriate attenuation

ELG 4176/4576

position and fine adjusting signal to desired amplitude
with OUTPUT VERNIER (dB) control .

Operation as a Random FM Source
Before using the generator as a random FM source, please
note the following.
The frequency of the generator is being varied or
modulated by a changing voltage in the same way as
described in "Operation as a Voltage Controlled
Generator." However, instead of using a DC ramp, or AC
signal, a random analog voltage is used. When the FM
push button is depressed, the analog noise is injected
internally into the VCG circuit; therefore, the modulation is
created by random noise. The S/N-N/S (dB) knob controls
the maximum amount of frequency deviation, since it
controls the amplitude of the noise. Bandwidth of the FM
signal is controlled by the NOISE FREQ HZ control. Using
the generator in the FM mode may be accomplished as
follows:

1. Select the desired signal waveform by setting function
selector to sinusoidal, triangular or square-wave
waveform.

2. Set frequency dial and FREQ HZ range multiplier for
desired centre output frequency.

3. Depress MODE — FUNC and FM push buttons.

4. Select the bandwidth by setting NOISE FREQ HZ
control to desired range and fine adjusting frequency
by turning the noise frequency Hz vernier control.

COMMUNICATION SYSTEMS

Fall 2016

5. Select desired SEQUENCE LENGTH by depressing
appropriate push button.

6. Select signal frequency deviation by setting S/N — N/S
(dB) control to appropriate attenuation position and
fine adjusting attenuation to desired deviation with
S/N-N/S vernier control.

7. Select output signal amplitude by setting OUTPUT
ATTEN (dB) control to appropriate attenuation
position and fine adjusting signal to desired amplitude
with OUTPUT VERNIER (dB) control.

Operation as a Digital or Analog Noise Source

1. Set function selector to digital or analog noise
position.

2. Depress MODE—FUNC push button.

3. Select clock frequency for digital or bandwidth for
analog noise by setting NOISE FREQ HZ control to
desired range and fine adjusting frequency by turning
the noise frequency Hz vernier control.

4. Select desired SEQUENCE LENGTH by depressing
appropriate push button.

5. Select noise amplitude by setting OUTPUT ATTEN
(dB) control to appropriate attenuation position and
fine adjusting noise to desired amplitude with
OUTPUT VERNIER (dB) control.

II-10

Université d'Ottawa = University of Ottawa
Faculté de génie Im[Faculty of Engineering

Ecole de science informatique School of Electrical Engineering

et de génie électrique u Ottawa and Computer Science

L’Université canadienne
Canada’s university

ELG 4176 COMMUNICATION SYSTEMS Fall 2016

Simulating a Communication System
Part 1: Introduction

Very often in practice, a proposed communication system is sufficiently complicated that its per-
formance may not easily be found analytically. We may try to determine the performance in such cases
by using performance bounds or estimates that can more easily be found, but these may not be suf-
ficiently accurate for our needs. Since predicting a system’s performance under anticipated operating
conditions is a necessary part of the proper design of any system, this inability to determine a system’s
behaviour with acceptable accuracy cannot be tolerated. In such circumstances, an engineer usually
resorts to performing a Monte Carlo experiment in the form of a computer simulation of the signals and
components of the system to estimate how the real system would perform should it be built. In this
computer laboratory problem, we will try to find the performance of a relatively simple system through
such a simulation to illustrate this approach and to identify some of the factors to be concerned about
in attempting to determine performance in this manner.

The computer simulation of any analogue signal processing system is fundamentally founded on
the ability to represent any analogue signal through its samples taken at uniformly spaced instants in
time at a sufficiently fast rate [as stated in the Sampling Theorem], and to represent the action of a
subsystem on a continuous-time signal through some hopefully equivalent action on the samples of the
signals. To be totally accurate, such a signal and system representation using signal samples is only
possible exactly when the signals involved are all strictly bandlimited to some specific bandwidth or
are otherwise suitably restricted in character. Unfortunately, the signals we must deal with in actual
systems are seldom strictly bandlimited, with the result that we may only approzimately represent a
real communication system using discrete-time signals and systems. Done with appropriate care and
understanding of the pitfalls, we can, however, sufficiently accurately approximate the behaviour of a
communications system using appropriate sampling of the signals and random processes and appropriate
processing of those sample. This approximation usually becomes increasingly accurate as we use larger
and larger sampling rates on the signals. Larger sampling rates, however, require processing many more
samples in the computer programs performing the simulation, which requires increased computing power
or more time to complete the computations involved.

In this computer laboratory, we shall estimate through such a simulation the performance of a
simple baseband binary digital communication system employing antipodal nonreturn-to-zero (NRZ)
pulse amplitude modulation for the transmission of binary data over an additive white Gaussian noise
channel, where the detector consists of passing the received signal through a first order lowpass filter
(i.e., a RC lowpass filter), sampling the result at appropriate times and observing the sample’s polarity.
The system is shown in Fig. 1:

PAM NRZ O lowpass _ [sample & decisions
Modulator filter | detect —

1
n(t) = T)

Fig. 1. The binary antipodal NRZ PAM transmission system to be simulated. The signal n(t) is
white Gaussian noise with a power spectral density Ny/2.

ELG 4176 Simulating a Communication System Fall 2016

We shall attempt to determine the probability of a transmission error for this system versus the noise
level. While this system is quite primitive by the standards of modern PAM systems, the issues we will
have to deal with will be quite illustrative of the problems we can face in using simulation to determine
the performance. To simulate this system, we begin by generating samples of the signal that would
appear at the output of the modulator (samples of a randomly chosen realization of the signal since the
actual signal depends of the data stream which is a random quantity), and then we model the actions of
the blocks in the system by transforming the stream of signal samples to match as much as possible the
actions of the blocks within the system. Due to the intersymbol interference produced by the lowpass
filter, a precise expression we could evaluate for the probability of error even of this simple system cannot
be given (although we can give very good approximations as we discuss a bit later). Throughout the
discussion that follows, you should keep in mind that determining this performance is our ultimate aim:
we seek to produce a curve of the probability of bit error versus Ey/Ny that would provide a very close
approximation of the performance of the system if it was physically built and operated.

Such a curve, based on the lab results, must be provided at the end of the report you
will write. You will need to produce these curves to get a respectable grade on the
lab. (See the discussion for Task 8 and Task 9 for more specific instructions.)

Part 2: Generating Random Numbers

Since many of the signals that appear in any communication system are random, in order to simulate
the samples of such a process, we must be able to generate random values in a computer program. In
particular, we find that we need to be able to generate a sequence of randomly chosen numbers, where
the numbers are selected according to statistics of some known distribution. We begin by considering
how this can be accomplished in a digital computer. Our aim in this discussion is to make you appreciate
some of the limitations of such generators, including those that packages such as MATLAB employ, by
creating your own such generator.

It must be recognized from the outset that any properly operating digital computer is a finite-
state digital machine or automaton which has deterministic rules for all of its actions. To the extent
that this is true, no digital computer can ever compute, or otherwise produce on its own a sequence of
numbers that could be truly said to represent random sampling of the values of a random variable; to
do so would require some ‘truly random’ input to the computer to influence the computation. Hence
the very best one can hope for when we write a program to produce a sequence of so-called random
numbers is to produce a sequence of numbers which appears (for the purposes to which these numbers
are to be put) to be randomly chosen. We call such a sequence a pseudo-random sequence of numbers
(and such sequences are used in many communication systems for other reasons, particularly in mobile
communications). Several methods have been proposed and investigated for the production of sequences
that appear sufficiently random for most applications, with significant new algorithms appearing in
recent years. The issues involved in choosing a method are mainly ‘how random’ the generated numbers
appear to be, and how computationally expensive it is to generate each number (since usually we must
generate huge quantities of such random numbers). For many years, the most commonly used method

was the so-called multiplicative congruential method which we will discuss and use here. T

The aim of basic methods for generating a pseudo-random number sequence including the multi-
plicative congruential method is to produce a ‘random’ choice of an integer in some range which is ideally
the set of all possible integers the computer can naturally represent. For the multiplicative congruential

T Another more complex [but efficient to implement] algorithm to generate pseudo-random numbers
was proposed by George Marsaglia several years ago and adopted in MATLAB. A short article discussing
it is provided as Appendix B. Prior to MATLAB 5, the standard algorithm for generating random
numbers was the multiplicative congruential method. With MATLAB 5, MATLAB switched to using
Marsaglia’s algorithm, but then with MATLAB 7.4, the standard algorithm was changed again to yet
another algorithm—the Mersenne Twister algorithm. This new algorithm will probably become the
standard algorithm employed in most applications for generating pseudo-random numbers from the
uniform distribution.

ELG 4176 Simulating a Communication System Fall 2016

method, the range is the interval from 1 to some fixed number M — 1. In the method, we begin with
some initial number z(in the 1 to M — 1 interval (the so-called ‘seed’), then multiply it by another
number a and reduce the result modulo M.} The result is the first pseudo-random number x;. This
first pseudo-random number x; is then used as a new ‘seed’ for producing the next pseudo-random
number xy: x5 is 7 multiplied by a and then reduced modulo M producing x5. If we let m denote the
residue reduction of a quantity m modulo M, then repeatedly applying this procedure, we generate a
sequence or pseudo-random numbers {x1, 2,23, ..., }, where z; = az;_;. (In a modified version of this
procedure, after we multiply by a we also added a constant ¢ before the residue redg:_ti\on. This modified

version is termed the mized multiplicative congruential scheme, where: x; = [az;—1 + ¢|.) Because in
any arithmetic operation whose result will be reduced modulo M ,we need not differentiate between two
integers with the same residue reduction modulo M ,§ we have the property that

z; = zoa’ (mod M),

where a = b (mod n) denotes the congruency modulo n relationship [from which is derived the name
of this method; in the branch of mathematics known as number theory, two numbers are said to be
congruent modulo n if they both have the same modulo n residue reduction]. Thus z; = xga® modulo M.
As an example, if xg = 1, a = 3 and M = 10, the multiplicative congruential method would generate
{1,3,9,7,1,3,9,7,1,3,9,7,1,3,...}.

It has been found that proceeding in this simple way, we can generate numbers x1, T2, T3, ... which
appear to the casual observer to be randomly selected. But in order for the resulting sequence to
appear ‘sufficiently random,’ the parameters a and zy must be carefully selected to avoid two possible
difficulties. To illustrate these difficulties, consider the following three selections of parameters and the
resulting sequences:

() wo=1a=2 M=38 — {1,2,4,0,0,0,...}
() zo=1a=2 M=12 — {1,2,4,8,4,8,4,...}
(i) 2o=7 a=2 M=17 — {7,14,11,5,10,3,6,12,7,14,11,...}

These three situations are examples of the three possible forms these sequences may take. The first,
where the resulting sequence degenerates to zero is clearly to be avoided in a pseudo-random number
generator. It occurs whenever the parameters allow zero to be generated, i.e., when for some 4, zga’
is a multiple of M. The second and third cases, where following (perhaps) a few transient terms, the
sequence repeats itself are the best sorts of sequence one can expect and thus include the desirable
sequences. Obviously, if the period of this repetition was short, we would be hard pressed to see the
sequence as random for almost any purpose. One objective, then, if we hope to be able to regard the
sequence produced as a stand-in for a truly random sequence, is to select the parameters so the period
of these repetitions is as large as possible.* The values for the parameters xy and a that yield the
maximum period depend on the form of M. It turns out that if we insist on the longest possible period,
then the resulting sequence of numbers will have only the form of the third example—that is to say,

t To reduce a number p modulo M means to replace the number by another number from the integers
0,1,2,..., M — 1 by repeatedly subtracting or adding M until a value in the range is obtained; this new
number is termed “the residue reduction of p modulo M”. Thus, for example, the residue reduction or
5 modulo 4, is 1, of —1 modulo 6 is 5, of 27 modulo 5 is 2, etc. Another loose way to describe the residue
reduction is that it is the remainder one gets after dividing by M.

§ For example, modulo 5, 2 x I and 7 x (I —5) have the same residue reduction for any integer I, while
3+ 1 and 8 + (I 4 10) have the same residue reduction.

* Any implementable algorithm for generating pseudo-random numbers has to be periodic due to the
finite memory of any computer, and making the period as long as possible is one of the most basic goals
in designing an algorithm. In the common implementations of the Mersenne Twister algorithm such
as that used in the latest version of MATLAB (‘MT19937 for 32 bit word length), the algorithm has a
period of 219937 — 1 ~ 4.3 x 106001}

ELG 4176 Simulating a Communication System Fall 2016

there will be no initial transient terms so that eventually xy recurs in the sequence at which point the
sequence repeats itself. This result can be demonstrated using some standard results from the branch
of mathematics known as number theory.

At this point, to understand the following material properly and undertake Task 1 and Task 2, it is
very strongly recommended you go back to your earlier courses and review (in detail) how computers
represent numbers, how fixed point computer arithmetic is handled, how we are able to deal with
negative integer numbers, the difference between a signed and unsigned integer, etc. Without this
knowledge, you cannot follow the next discussion nor undertake Task 1 and Task 2.

An important practical consideration in simulations is the computational cost of using the algo-
rithm since simulations often require very many calls to the routines producing the numbers. In the
multiplicative congruential method we must thus also be concerned with choosing parameters to make
the computation of the modulo reduction of a number efficient to calculate. Now almost any digital
computer which we could choose for a simulation uses what is in essence a binary representation for
numbers and we can easily see that the residue reductions modulo a power or two of a number in bi-
nary form are particularly simple: the modulo 2% reduction of a positive integer t is just the number
corresponding to the least significant « bits in the binary representation of the number ¢. For example,
the modulo reduction of 27=11011, modulo 8 = 23 has the binary representation consisting of the three
least significant bits: 011, = 3. If the computer stores its integers as « bit numbers in its arithmetic
registers and memory, then residue reduction of the product ax;_1 needed in the implementation of the
multiplicative congruential method is particularly easily and efficiently accomplished—just multiply a
and z;_1 as two « bit integers and ignore the overflow that may develop in the multiplication process.
If o was smaller than the bit length of integers on the computer, we would need to mask the results
register to leave just the « least significant bits after doing the product (an extra step we should avoid
for computational efficiency’s sake). For these reasons, we will restrict ourselves to only the special case
where M = 2% (for a an integer greater than 2). It can be shown that the largest possible period for such
a sequence when M = 2% is always 2°~2. In order to achieve this period, when o > 3, the requirement
is exactly that the following two conditions hold:

1. the initial seed xg and M = 2% must be relatively prime (i.e., xo be odd, since all of M’s factors
here are 2), and
2. that a = 3 or 5 modulo 8.

Even if we require that we satisfy these two conditions, a great deal of latitude in the choice of the
parameters remains. There are more considerations than simply the sequence period and computational
efficiency that help narrow the choices. Another major factor influencing the choice of a arises from
that fact that the numbers produced in succession by a random number generator should appear to be
described by independent random variables and thus be uncorrelated. To obtain this apparent behaviour
from the multiplicative congruential method no simple condition on xy, a and M can be given, but it
has been found that a good ‘rule or thumb’ for choosing a is to satisfy the additional restriction:

3. select an a to be of the same order of magnitude** same v M.

Below is an example of a subroutine program in FORTRAN which was used to generate random
numbers on a computer using 32 bit two’s complement representation of integers such as the old IBM
style mainframes (its essentially the program that was part of the standard set of subroutines provided
with the FORTRAN compiler):***

** Two numbers are of the same order of magnitude if the scientific notation of the numbers involves
the same exponent, or more simply, if the magnitude of their ratio is in the range of 1—10 to 10.
*** The choice of parameters in this routine is now known to have some significant deficiencies sta-
tistically (e.g., the linear relationship a9 = 651 — 975 modulo 23!) but it was adequate for many
purposes in spite of the problems. This generator is now regarded by experts to be a ‘horrible’ generator
with many flaws and to get good generators using the multiple congruential method, values for M that
are not a power of 2 are needed—but that complicates the implementation.

4

ELG 4176 Simulating a Communication System Fall 2016

SUBROUTINE PRAND (SEED)
C Program to generate pseudo-random numbers
INTEGER SEED
SEED = SEED * 65539
C Reduce results modulo 23!
IF (SEED) 5, 6, 6
5 SEED = SEED + 2147483647 + 1
6 RETURN
END

(For those unfamiliar with old style FORTRAN, the IF statement in the above simply represents the
instruction to branch to statement labelled 5 if SEED is negative, and to branch to the statement labelled
6 if SEED is zero or positive.)

To understand how this routine works we must first recall how integer numbers are stored, and how
stored bit patterns are interpreted. When we store a value as a pattern of « bits, we have 2% possible
values which we might naturally interpret as representing values 0 through to 2% — 1 (as per an unsigned
integer). Alternatively, to allow for positive and negative integers to be represented (as per a signed
integer), we may use the two’s complement form of representation where the values 0,1,2,...,29 1 —1 are
stored naturally (as a bit pattern where the most-significant-bit is 0), and values —1, -2, =3, ..., —(2%71)
are stored as the two’s complement of the corresponding positive number, corresponding to a bit pattern
whose natural value is 2% — 1,2% —2,...,2% — [2% — 2~ 1] regpectively (each of which has a bit pattern
where the most-significant-bit is 1). In this way, arithmetic operations can be performed without regard
to whether values are signed or unsigned. What value a stored bit pattern represents is merely a matter
of interpretation—do we regard the stored value as a signed or an unsigned integer; the hardware that
performs addition and multiplication does not know or care which interpretation will be taken. In
FORTRAN, all values were integer variable treated as signed integers. The computers for which this
program was written used 32 bit patterns to store all integers.

The subroutrine above is based on the desire to genrate a sequence which appears to be a succession
of random selections of a positive integer from the set of those from 1 through 23! — 1 = 2147483647. It
first simply multiplies the seed by 65539, ignoring the overflow and storing the least significant 32 bits
of the result in the SEED variable (thereby computing the product modulo 232). The result is then
reduced modulo 23! (which corresponds to keeping the least significant 31 bits and zeroing the most
significant bit) as follows: since any of these stored numbers with the most significant bit a 1 would be
interpreted as a negative number, the most significant bit of the result is checked and if found to be a 1
(i.e., the computer believes SEED is negative), it is set to 0 by adding 23! to it (it would be more efficient
just to mask the bits, but FORTRAN had no mask instruction); since 23! is not a legitimate integer on
these computers (it is out of bounds), adding 23! is accomplished by adding first 23! — 1 = 2147483647
and then adding 1. Note that it would NOT have been correct to get zero the most significant bit by
replacing SEED with -SEED—this zeros the most significant bit but also changes the other bit which is
not what we want to happen (that would not yield the product modulo 23!).

Task 1. Examine the above subroutine and in your own words, provide a line by line explanation of
how the subroutine implements the multiplicative congruential method, verifying whether the above
explanation and comments in the program are indeed correct. What is the value of @ and M in the
subroutine’s implementation of the method (explain how you know what these values are based on the
code, not the comments in the code!)? Is the value of a implemented by this routine consistent with
the above three requirements for generating desired maximum length sequences? Stated as simply as
possible, what property would the initial value of the seed have to have for this subroutine to generate
a maximal length sequence of seemingly independently selected numbers. What is the length of these
longest possible sequences? If a computer generated numbers at the rate of 10° per second, how long
would it take before repetition set in? What would happen if the initial seed chosen did not meet
these requirements (be concrete and quantitative; carefully rewrite this code in your favorite language
and experiment a bit with the choice of zg to see the effect)? In MATLAB, there is a corresponding

5

ELG 4176 Simulating a Communication System Fall 2016

basic function rand to generates pseudo-random numbers. The period of the current version of rand is
219937 _ 1. If numbers were produced using rand at the rate of 10° per second, how long (in years) would
it take before repetition set in?

In your write-up of Task 1, you must clearly explain in your own words how the routine manages to
perform the multiplication and modulo reduction required in the multiplicative congruential method.
For example, in the context of this explanation, it would NOT be correct to state that in the fourth
line above, “SEED is multiplied by 65539 and the result put back in SEED”; more than that happens,
which is particularly significant for our purposes. Also, please note that the theory given above does
NOT state that there are three conditions that must be satisfied for a maximal length sequence to be
produced. Finally, if you think about the binary representations of the numbers when the initial seed
is not even (but is an odd number multiplied by some power of 2), you should be able to determine
theoretically the period when an initial seed violating condition 1 above is used (Hint: if the initial
seed is even, then it is some odd number times the even number 2° for some 3 > 1, and any product
of an odd number a with the seed produces an odd number times 27, which is just the odd number in
binary form shifted left by 3 places).

Task 2—Part A (The Code): When you have reviewed computer number representation and how
computer arithmetic works, write your own subroutine similar to the one above to generate random
numbers of a maximal length sequence that according to the above discussion would appear to be
random. (Since we only discussed what happens for M = 2% stick to such a choice of M.) Write the
subroutine in a language such as C or Pascal (NOT in an interpreted language such as used in MATLAB).
It should be a routine which has no parameters but returns a real number between 0 and 1. You should
write the best possible generator for your programming system to first create uniformly distributed
positive integers using the multiplicative congruential method, which are then scaled by dividing by the
maximum possible integer [23! for the above example [it is true that the maximum possible number
for the Fortran program above is actually 23* — 1, but dividing by 23! is a minor difference] so that it
produces a sequence of random choices of a real number between 0 and 1—don’t just translate the above
program verbatim or use any built-in random number generation routine. Think about how best to
implement the multiplicative congruential method. Speed of execution is very important for a random
number generator as the generator will be called many many times in a real simulation. This subroutine
is to be the basis of the subsequent generation of random numbers—it is to be called whenever a random
value between 0 and 1 is to be generated.

To make sure you don’t just copy the above parameters or those in Appendix B for the former
MATLAB generator, you are forbidden to write a generator which uses an a of 65539 or 16807. You
can experiment with different choices of parameters if you like, but in the write-up of this task, you
must supply the program listing of a generator that is capable of generating at least several millions
of numbers before repetition sets in. Because of the need for your generator to be used many tens of
millions of times, you must give a good deal of attention to the efficiency of the implementation, so
think how to minimize the number of machine language instructions that must be executed to generate
a single random number. Don’t be afraid to examine the assembly language code that your compiler
generates for your subroutine to see how the routine is translated to machine code.

Your write-up to this part of Task 2 should begin with an explanation of your consideration of how to
efficiently implement a multiplicative congruential generator on your computer when the modulus is a
power of two, and how then this influences your choice of the specific values for the parameters a and
M. You must state exactly how you chose the values you picked and not merely give their values! Your
thought process must be evident. You absolutely MUST then give the code for your subroutine in the
Task 2 write-up (not merely as an appendix) and fully explain why it is a good pseudo-random sequence
generator on your computer (with an appropriately chosen initial seed) and efficient in execution on
your system. A program without a full explanation of how it was designed (especially how you sought
to make the program execute as quickly as possible) is not acceptable, nor is code that is not in the
form of a subroutine.

ELG 4176 Simulating a Communication System Fall 2016

Task 2—Part B (Checking it Works): We would like to verify that a sequence so generated by your
routine is effectively random with the desired uniform distribution. For this, we will simply examine
the generator output for a significant number of successive values and test these numbers statistically in
various ways against the model that the generator selects values randomly (with a uniform distribution)
and independently each time. We know that all such generators produce a periodic sequence of numbers,
and so to test the generator without bias, we should pick an arbitrary place in the sequence from which
to start. To do this, we should start by picking an initial seed at random from those that could generate a
maximal length sequence if used (e.g., if you wanted an odd 31 bit number as needed for the FORTRAN
routine above, you could pick one at random by tossing a coin 30 times for the 30 highest order bits
of the number [the lowest order bit must be 1]). Make such a random choice of an appropriate seed
for your generator and then use your subroutine to generate 10,000 numbers starting from your seed,
storing the results for analysis.

(a) Plot a histogram of the result using intervals 0 to .05, .05 to .10, etc. to see whether the numbers
generated do appear to fit a uniform distribution on [0, 1]. Give the data for the histogram in table form
as well. Find the average value of the numbers produced and see whether this is as one would expect
if the numbers were drawn from a population that is uniformly distributed between 0 and 1 by viewing
the histogram. (Caution: Do not simply use the MATLAB hist function applied to the data with a
specification to use 20 bins [as in hist(data,20)] as this does NOT give the required histogram—this
way, the hist function would NOT use the bins 0 to .05, .05 to .10, etc.)

(b) Simply staring at a histogram is not an objective way of confirming whether the frequency of different
ranges of values is consistent with a particular distribution. More objective methods require employing
statistical tests on the data. The usual statistical test that is applied to confirm the validity of a
distribution as describing observed data is the so-called x2?-goodness-of-fit-test. It is discussed at length
in virtually any statistics textbook (go back to your probability and statistics text and read up on the
x2-test; don’t forget that in applying a x2-test, you should choose bins so that at least 5 samples are
in each bin to make the x2-test statistic reasonably well approximated by a x? random variable [see
the example in Appendix A]). Apply the test to the histogram results you have above and determine
whether, at a 5% level of significance, the results are consistent with the uniform distribution. Give a
table for the calculation of the y2-test statistic similar to that given in Appendix A. (Remember that
at a 5% level of significance, there is a 5% chance that even if the distribution of the the numbers was
uniform in the large, the test would conclude the observed results are not consistent with a uniform
distribution hypothesis.) Comment.

(c) Determine how efficiently your routine generates these apparently uniformly distributed random
numbers by timing how long it takes to make one hundred million calls of the subroutine to generate
uniformly distributed random numbers. Time the generation twice: once where you do nothing with
the numbers, and another time where you just compute their average (which requires generating the
numbers and doing one addition per generated number). (To speed things along, it might help to tell
your system to make the uniform numbers subroutine and ‘in line’ subroutine without any arguments
[a global or static variable can hold the one parameter you should need], thereby avoiding the overhead
normally associated with subroutine calls. The overhead of calling a subroutine is part of the time
to generate the number, but may be reduced if the subroutine is made to be an ‘in-line’ subroutine
[assuming your compiler has the option to produce in-line routines].) To make time results meaningful,
your must document fully the system from which the values are derived, which includes specifying the
hardware, the operating system, the compilers used to generate execution code, etc.—everything that
affects how fast your code might execute on that computer. (Caution: Time just the actual generation
of numbers and not the overhead needed to manage the generation. Take into account that in doing a
loop where a subroutine is called once each loop, a program has to do things behind the scene besides
calling the subroutine. The time to do these other things are not part of the time it takes to generate
the random numbers. For example, if we write a loop that calls the subroutine we wrote once each loop
pass and loops one million times, the time to execute this loop would be longer than a loop that calls the
subroutine 10 times per loop pass and loops 100,000 times, yet both situations correspond to calling the
subroutine 1,000,000 times. The difference is due to the different amount of time the loop management
code gets executed. The time for loop management should be removed from the time spent executing

7

ELG 4176 Simulating a Communication System Fall 2016

the subroutine call!)

(d) Apart from checking how uniformly distributed the values being generated seem to be, we would also
like to verify that the numbers generated in sequence appear to be independently chosen each time. To do
this would best be done by considering multidimensional histograms of the values produced to determine
the joint distribution of successive values. This however is a bit unwieldy under the circumstances, so
instead of doing this, we shall just check that the successive numbers generated appear to be uncorrelated
by checking some of the sample covariances of the 10,000 generated numbers in the form of estimates of
the autocovariance function.

Form =0,1,2,...,100, check to see whether the successive numbers r1, 73,3, . .. appear to be correlated
by computing the estimates of the autocovariance function C[m] £ E{(r, — E{rn})(Cnim — E{rnim})}
given by

) L Nl

Clml = =1 Y (i = B)(ripm —),

=1

where N is the number of values selected (which is 10,000 here), and Z is the sample average given by

1 X
Tr=— T
N

We note that for a sequence of independent identically distributed random variables Ry, Ro, Rs3, ... each
uniformly distributed on [0, 1], the autocovariance function is

o]:{S{mi—s{m}ﬁ}, if m = 0, :{_ if m = 0,

E{[R; — E{R}]|[Ritm — E{Ritm}]}, otherwise; 0, otherwise.

We also note that £{C[m]} = C[m)]. Plot the computed estimates C[m] versus m (starting with m = 0,
not m = 1). Is there any significant correlation or not?

Your write-up to this part of Task 2 should begin with an explanation of how you chose your initial
seed and what value it was (consistent with the instructions), and then it should give the particular
plots and tables from each subtask (including a table showing the calculation of any x2-goodness-of-
fit-test statistics) and the conclusions from each specific test individually about your implementation
of a pseudo-random number generator. But then you must also consider the whole of Task 2, where
we have sought to write a pseudo-random number generator subroutine based on the multiplicative
congruential algorithm that executes very quickly, seems to produce numbers according to the uniform
distribution on (0,1), and produces a value with each call that is statistically independent of the results
of any other call. You have run some statistical tests on your generator to see whether your generator
seems to function in this way. Your discussion of the task must include a final overall evaluation
as to whether you have succeeded: what conclusion can you make overall about your generator
subroutine from all the test results? Assuming your uniform number generator subroutine has been
shown to be satisfactory, it must be used unchanged for the balance of this simulation. In the event
that the tests lead you to the conclusion that your generator is not a good one, you must report that
and then either do additional testing to verify further where your test results were merely statistical
flukes, or your must make modifications to the generator and then all the testing above will have
to be repeated to validate that the modified generator produces what appear to be independent and
uniformly distributed selected numbers.

Now that we supposedly know how to generate on a digital computer seemingly uncorrelated pseudo-
random numbers described by a uniform distribution (or rather we have programmed a generator and
tested to some extent that it appears to produce a sequence of uncorrelated uniformly distributed random
numbers on (0, 1)), we shall turn to the problem of how to generate what would appear to be numbers
described by random variables with other sorts of distributions. We require this since the randomness in

8

ELG 4176 Simulating a Communication System Fall 2016

a communication signal is usually not described by uniformly distributed random variables. For example,
noise is most often modelled as having a zero mean Gaussian distribution so to simulate noise we would
need to generate random numbers described by Gaussian random variables.

The usual way in which to accomplish this involves the use of numbers described by uniformly
distributed random variables. As an example, if we wished to produce a random sequence of numbers
{a1,as,as, ...} corresponding to independent random variables whose values may be +1 with probability
p and —1 with probability ¢ = 1 — p, we could simply generate a sequence of numbers {ry,rs, 73, ...} for
the uniform [0, 1] distribution and map each r; to the +1 or —1 value according to whether the random
number r; was less that p or not respectively; such an approach could be used to describe the stream
of data values output by some binary digital source. More generally, we can easily show that if X is a
random variable uniformly distributed on the interval [0, 1] and Fy (y) is the distribution function of some
other random variable Y whose inverse function exists and is Fy,' (y) (for y € (0,1)), then the distribution
function of the random variable Fy,'(X) will be Fy(-). Thus, if we sought to generate a sequence of
pseudo-random numbers supposedly described by random variables with a distribution function F(z),
we could do so by simply producing the sequence of numbers {F~1(ry), F~(r2), F~1(r3),...}. (We
could equally well replace the inverse of the distribution function by the inverse of the complementary
distribution function and obtain the same effect.)

As an example of this, suppose we sought to generate a sequence of numbers described by indepen-
dent identically distributed random variables with the basic Rayleigh distribution, i.e., governed by the
density function

fx(x) = xe‘”Z/Qu(x).

The corresponding distribution function is
Fx(2) = (1 - " ?)u(a)

whose inverse function [defined only on [0,1)] is

F~Y(z)=+/—2In(1 — z).

If {r1,ro,rs3,...} is a sequence of random variables uniformly distributed on (0, 1), then {4/—21In(1 — ry),
V—2In(1 —r3), v/—2In(1 —r3),...} will be a sequence of numbers described by the Rayleigh density
function above.

This approach can have its difficulties as it may be difficult to compute the inverse of the distribution
function we would like to simulate. For example, if we sought to generate zero mean unit variance
Gaussian random numbers, we would need to find the inverse function of 1 — Q(z) or of Q(x), where

Qz) = /00 \/%e_tzﬂ dt

The inverse of such a function is difficult to obtain. T Fortunately, simpler alternatives exist, one of
which we shall now consider.

The alternative we wish to use is based on the Central Limit Theorem and the knowledge that the
mean of a random variable uniformly distributed on (0,1) is %, while its variance is % The Central
Limit Theorem predicts that if we were to add a number of independent random variables together, the
distribution of the sum would approach a Gaussian distribution, and we observe that the distribution
would very rapidly do so indeed in the central region. If we add together N independent random variables
uniformly distributed on (0,1), the mean of the sum would be N/2 and the variance would be N/12

T The inverse of the Q(z) function can be approximated quite well numerically, but adequate such
approximations are computationally expensive to evaluate and thus not used for this application.

i1 MATLAB uses another method to generate numbers described by the Gaussian distribution based
on the ziggurat algorithm. It is better and more efficient than the method we will use.

9

ELG 4176 Simulating a Communication System Fall 2016

(remember that the variance of a sum of independent random variables is the sum of the variances of
those random variables), while the distribution would be close to being Gaussian. If we took N = 12,
then the sum of the twelve random variables less 6 should for many purposes be an adequate simulation
of zero mean unit variance Gaussian random numbers. (This approach fails to adequately simulate
the distribution near its extreme possible values: the simulated Gaussian numbers here can range only
between —6 and 6 while a truly zero mean unit variance Gaussian random variable has a probability of
about 2 x 1079 of being outside [—6,6].) Scaling the resulting (nearly) Gaussian numbers by o and then
adding p will produce (nearly) Gaussian numbers with mean p and variance o2.

Task 3. Write a subroutine to generate a sequence of numbers that are described by independent zero
mean unit variance Gaussian random variables using the above approach of adding twelve independent
uniformly distributed random numbers (generated as per your tested program from Task 2). Computa-
tional efficiency is again important. The subroutine code and a discussion of the design considerations
for the subroutine’s implementation must be given as a central part in the write-up of this task. Use
the subroutine to generate 20,000 Gaussian numbers using a single randomly selected appropriate initial
seed integer, and plot a histogram of the results. Does the set seem to be well-described by a Gaussian
distribution with zero mean and unit variance. What are the sample mean and variance? Are they
consistent with the belief that we have a zero mean unit variance distributed set of numbers? Check
with the x2-test whether the obtained histogram is consistent with a zero-mean unit-variance Gaussian
distribution hypothesis at the 5% level of significance. (Remember that in applying the x2-test, the
data should be separated into bins selected so that each bin contains at least five observed values. Also,
to give the test some reasonable resolving power, use at least 10 to 15 subintervals (after any needed
grouping) in determining the test statistic—more subintervals is better, fewer is not.) Give a table for
the calculation of the x2-test statistic similar to that given in Appendix A, and show how the expected
values for the hypothetical distribution were determined so the reader can determine whether or not the
test statistic was correctly computed.

Your write-up to Task 3 should begin with a presentation of the subroutine you have written to generate
Gaussian pseudo-random numbers using the above described method, discussing your considerations
for efficient execution. It then must fully present the test results (including a table showing exactly
how the y2-goodness-of-fit-test statistic was calculated (especially how the expected values in each
selected bin was found). But then you must also consider the whole of Task 3, where that executes
very quickly, seems to produce numbers according to the Gaussian distribution N (0, 1), and produces
a value with each call that is statistically independent of the results of any other call. You have run
some statistical tests on your generator to see whether your generator seems to function in this way.
Your discussion of the tasks must show how you attempted to accomplish all of the objectives and
it must include an overall evaluation as to whether you have succeeded. Assuming your
Gaussian number generator subroutine has been shown to be satisfactory, it must be used unchanged
for the balance of this simulation; otherwise all the testing above will have to be repeated to validate
that any modified generator produces what appear to be independent and N (0, 1) selected numbers.

|
Part 3: Generating Random Signals

The above technique of generating independent Gaussian random variables can be used to generate
a simulation of white Gaussian noise. Suppose we wished to run a simulation of a communication
signal corrupted by additive white Gaussian noise with a power spectral density of Ny/2. One would
probably proceed by generating samples of the signal component, and similarly simulate sampling the
noise process. However there are a couple of difficulties that we face when we attempt to generate
samples of a white noise process. Since the autocorrelation of such a process is %Noé(t) each random
variable of this process is an independent zero-mean Gaussian random variable (they are uncorrelated
and since they are all jointly Gaussian they are thus independent) with variance that of the signal’s
power. But the mean power of a white noise process is infinite, and how can we possibly generate
infinite variance Gaussian random numbers? Secondly, we know from the Sampling Theorem that if we
want to represent a signal with bandwidth B Hz through samples, the samples must be taken at a rate
of at least 2B samples per second. The bandwidth of white noise is infinite, so this would seem to imply

10

ELG 4176 Simulating a Communication System Fall 2016

we must generate samples at an infinite rate in order to represent the noise through its samples. Both
of these problems demonstrate that we cannot possibly truly represent white noise through sampling.

Fortunately, we don’t have to simulate all the components of white noise in the simulation of a
communication signal. The part of the signal we must simulate can be found by considering the problem
of representing the component of the communication signal other than the noise. These signals are much
better behaved signals which although not strictly bandlimited, do have their power confined to some
limited region of the spectrum. For example, for a binary NRZ PAM signal where the symbol values
may be +1 or —1 with equal probability, the power spectrum of the transmitted signal

l‘PAM(t) = Z Anp(t — nT),

where
(t) = 1, 0<t<T;
Pt = 0, otherwise;
is given by
P 2
S.(f) = | (1]:” = Tsinc? fT.

Thus for most purposes one can consider the signal to have negligible components beyond a few multiples
of the symbol rate 1/7. Thus to simulate this signal, we could simply generate samples of the signal
taken at some rate N/T for N some value of about 6 to 10 or greater. For the N samples taken in the
interval [nT, (n + 1)T), this is just N samples of A,,, so we just need to ‘randomly’ pick a value for A,
and then repeat it N times.

Assuming this is done, we see by sampling that we can describe any signal in the frequency range
—iN/T < f < IN/T (the value $N/T is termed the simulation bandwidth). If this includes all the
frequency components of the transmitted signal and any other frequency of importance in the system,
we know that limiting the spectral components of the additive noise considered to just the components
within this band will not affect the final system performance since the extraneous components would be
removed ultimately. Thus rather than try to simulate a true white noise process through sampling—
which the above discussion shows is really impossible—we should rather try to simulate a lowpass white
noise process. Any bandwidth large enough to encompass all frequencies of any significance in the system
should suffice. But therein lies another difficulty.

If a stationary Gaussian random process n(t) is a white lowpass noise process with power spectrum
No/2 and bandwidth B, any samples of the random process will be described by zero-mean Gaussian
random variables with variance NoB, which could be simulated as we have discussed. However, such a
process has an autocorrelation/autocovariance function

Ri (1) = NoBsinc(2BrT).

and thus the successive samples of noise are likely correlated [(mAT) and n(nAT) have a covariance
of Ry((m —n)AT)] and thus not governed by independent identically distributed random variables; the
techniques discussed above, only applies to generating independent Gaussian random variables and thus
could not easily handle directly generating a sequence of random numbers with the correlation required.
But we may observe that if we use a sampling rate N/T and let B = %N /T, the covariance between
Aa(mT/N) and n(nT/N) is (NoN/2T)sinc[2 - (N/T)(n — m)(T/N)] = (NoN/2T)sinc(n — m) which is
zero unless n = m. Thus for this bandwidth (which is the band represented by a sampling rate of
N/T, the samples of the lowpass Gaussian white noise process are all described by independent zero-
mean variance NoN/2T Gaussian random variables, which we may easily simulate with the techniques
of generating pseudo-random numbers discussed above.

Task 4. Write code to generate a sequence of random numbers that corresponding to sampling a binary
NRZ PAM signal, where the data symbols are described by independent identically distributed random
variables which may equally likely be +1 or —1. The code should generate N samples per symbol
period, and cover M symbol periods, yielding in the end K = NM samples. Use this code to generate

11

ELG 4176 Simulating a Communication System Fall 2016

a possible sequence of signal samples and then plot the eye diagram of binary antipodal NRZ PAM on
a simulation basis (one way to do this you may find easiest would be to just through the samples into
a file in such a way that your favourite graphics program can read the file and make the needed plot;
the Communications Systems Toolbox of MATLAB has a routine commscope.eyediagram (or the soon-
to-be-obsolete eyediagram) to draw eye diagrams from such files, for example). A good eye diagram
plot will usually draw more than one symbol interval (two would suffice). Make sure your eye diagram
program deals correctly with the waveforms at the ends of the symbol intervals so that a full two or more
symbol periods are drawn and the very last part of the eye in the final symbol period is not left out.
Make sure all axis are properly labelled with the horizontal axis denoting continuous time (remember we
are using this simulation to determine the behaviour of the continuous time system, and everything must
be interpreted to that end—time is not measured as sample indices!). Plot the simulation approximated
eye diagrams using at least two different choices of the sampling rate (expressed as samples per symbol
period, N).

Remark: In this Task, we know what the samples of a signal are, and then to plot the signal, you most
probably filled in between these samples by drawing a straight line between sample points. This is quite
natural to do as it is easy to do, but we should recognize it NOT necessarily the most proper thing to do.
Some problems we might identify with such a plot from samples may stem from this arbitrary means of
interpolation between sample points. This is not the means of reconstructing a signal from samples that
the Sampling Theorem provides. |

Task 5. Write code to generate random numbers that could be used as samples of noise for a simulation
of Gaussian white noise with a power spectral density of Ny/2 where samples are to be generated at a
rate of N per symbol period. Write a program to use this code and the code from the above Task to
generate the eye diagram for the sum of a bandlimited white Gaussian noise process and the NRZ PAM
signal in the instances where the variance of the noise samples is 10% of the PAM signal’s average power,
and where it is 25%. What is the relationship between the variance of the noise samples and Ny; what
values of Ny does 10% and 25% of the PAM signal’s average power correspond to. What is the value of
E, /Ny in each case, and explain why this depends on N. |

Part 4: Simulating Linear Time-Invariant Systems

The last aspect of the simulation of the system that we need to be concerned with is the simulation
of the actions of a linear-time invariant system on signals (such as the first order lowpass filter in our
system), given by the convolution integral

y(t) = /_00 h(r)z(t — 7)dr.

The basis of such a simulation is largely the ability to approximate well an integral such as
T N-1 T
1= [faase jim 3 ST/

with the finite Riemann sum N

> o FnlT/N))

when we select N sufficiently large.
Suppose we wish to determine y(¢;). This is given by

y(t) = / h(r)z(ty — 7) dr,
— 00
which we assume may be well approximated (by choosing N large enough as

> %h(n[T/N])w(tl — n[T/N]).

n=—oo

12

ELG 4176 Simulating a Communication System Fall 2016

If we assume the t; = k[T/N], then we find that the approximation to y(kT/N) becomes

oo

S L/ Na((k - m(T/N))

n—=—oo

If we define h,, £ [T/N]h(n[T/N)), z,, = x(n[T/N]) and y,, £ y(n[T/N]), we see that this approximation
becomes

Y = Z hnxk—na (*)

n=—oo

which is just the discrete-time convolution of two sequences. Simulation of the actions of a linear time
invariant system often is accomplished by treating this equation as true with equality, and attempting
to implement this relationship exactly or approximately. This view however can lead to some significant
errors if we are not careful or don’t make the appropriate interpretation of results based on it. We may
be able to alter the values h; a bit to have the sum of terms better approximate the continuous time
convolution integral. In this we are concerned with the problem of how to build a discrete-time system
to approximate the actions of a continuous-time system. This is a basic problem in the field of digital
signal processing and has a number of different solutions you may learn about in ELG 4177/4577.

It should be noted that usually, the systems we seek to simulate are realizable systems and so must
be causal, in which case we may simplify (*) by noting h, = 0 when n < 0, leading to

oo
Yk = Z hnzk—nn
n=0

The fact that this is still an infinite sum can sometimes be bothersome, but often is not a difficulty.
Take for example the system whose actions we wish to include in our system. This is a system with

frequency response
1

H(f) = L+5(f/faaB)

The impulse response that this corresponds to is
h(t) = ae™“u(t),

where o = 27 f3qp. The scaled samples of this impulse response taken at intervals T/N are given by

b — Xe ™ n>0 :{)\ﬁ" n>0
" 0 otherwise 0 otherwise
where A = oT'/N and 3 = e~*. In terms of implementing a discrete-time LTI system with this infinite
impulse response, we note that such a system can be implemented most simply in a recursive form by
noting that

Yn = ﬂyn—l + Azp.

This is almost the simplest possible form of a discrete-time LTT system input-output relationship.

If we were to simply use this equation, we might note that if we applied the equivalent of w(t) to
the system, we would find an immediate reaction to the input: yo would be A, when y(0) would be zero.
This is an artifact of how we chose to deal with the time-zero sample of the impulse response (where
the impulse response has a discontinuity). To make the discrete system more like a real system would
be expected to behave, we could incorporate a one sample delay in the previous system leading to an
input output relationship of

Yn+1 = Byn + Az,

We must remember that the discrete convolution equivalence has been arrived at by approximating
an integral with the sum of the areas of rectangles. We expect that when the length of the rectangles

13

ELG 4176 Simulating a Communication System Fall 2016

is sufficiently small, the approximation will be very good, but just how small must we make it, or
equivalently, how fast we must sample the impulse response to get a good approximation. In the
example we have here, we can get some idea of the effect of the sampling rate needs if we imagine what
happens to a white noise process passing through the continuous-time system, and what happens to the
simulated version of white noise passing through the discrete-time system.

If a Gaussian white noise process with power spectral density function Ny/2 is applied to a system
with frequency response H(f) as given above, the output will consist of a Gaussian random process with
mean power

P. = $ No7 f3an

and autocorrelation function

R.(1) = 3 Nom faage "1,

Conversely, if a sequence of independent identically distributed random variables of variance NoN/2T
is applied to a discrete-time system with impulse response AS"u[n], the result is a Gaussian random
sequence with average power

Py =X NNoN/[2T(1 — 8%)] = t Nomfsap - [v/(L —e™)] for v = dn fsasT/N,

and autocorrelation function
Raln] = PyfI™ = PyemIMT/N = [y/(1 = e77)] - § Nom fsape™ "1 T/N.

This exactly matches the continuous-time result except for a scale factor: Rg[n] is larger tha R.(n[T/N])
by the factor [y/(1 — e~7)], which is close to 1 whenever 7 is much less than 1, i.e., whenever N/T is an
order of magnitude or more larger than fsgp. Unfortunately, it may be too computationally expensive
to use sufficiently large N to ignore this source of possible error.

The fact that this factor may be significantly more than unity is a potential cause for concern since
it means that if the PAM signal’s values after the filter in the simulation were to match the values of the
continuous-time version, then for the same Ej, /Ny the error rate in the simulation would be larger than
would actually occur in the real system we are trying to simulate. This would defeat the whole purpose
of simulation which we must remember is to determine the performance of the physically real system.
In fact, both signal and noise components may be scaled in the simulation relative to the real system
and this must be considered and compensated for in some manner. For example, if for a given choice
of simulation parameters, the signal levels of the simulated signal was twice its actual value (making F
in the simulation four times larger than it would be in reality), and the value of the noise variance was
double what it should be to match reality, then the ‘simulation Fj /Ny’ is 3 dB higher than it should be;
this would mean that if we used the simulation to determine what Ep/Ny it takes to obtain a given P,,
the simulation would indicate values which are 3 dB lower than it would actually require. The scaling of
signal and noise would not be a problem if the simulated PAM signal’s sample values at the output of the
discrete time filter were larger by the same factor (making the simulation produce simply an amplified
form of signal and noise in comparison to the continuous-time system we are attempting to model). Is
this the case (or nearly so)? The following task should be completed with this issue in mind:

Task 6. Compute the factor v/(1 —e~7) in the case where fsqp = 1/T and N = 10 (corresponding to a
simulation with 10 samples/symbol-period). Work out the continuous-time response of the lowpass filter
to u(t), and compare this to the response of the ‘equivalent’ discrete-time filter to u[n]. Compare these
results in the light of the comments in the above paragraph. Scale the responses so that the responses
tend to the same value as t — oo and n — oo and plot these two curves on the same graph to see if
their shapes accurately match. (Caution: Make sure that you are using matching time scales for for the
discrete time and continuous time plots; remember there are N samples per symbol period T', not 1, so
the discrete signal are samples every T//N seconds.) With such a scaling factor, would the computed eye
diagram samples match what they should be in this simulation where the filter input is an NRZ signal?
Would the same conclusion follow if the filter input was not an NRZ signal, but used, say, a triangular
pulse? Is the discrete filter’s response to simulated noise the same as the continuous time filter’s response

14

ELG 4176 Simulating a Communication System Fall 2016

to noise? Considering both signal and noise, is 10 samples/symbol period then adequate for an accurate
simulation (in the NRZ case)? Based on these results, what accuracy (in dB) could be expected in the
value of E} /Ny required to achieve a given P,? Can you predict what the minimum value N should
have if you which the accuracy to be better than 0.05 dB?[Answering this is a very important part of
this laboratory, and is needed to understand the results you obtain in Part 5.]

Hint: Suppose the simulation of the filter was such that at the sampling instants, with an NRZ input,
the signal component was exactly 110% of the signal the actual RC filter would produce, but the noise
component was a Gaussian process whose mean power was 125% of the noise power in the actual RC
filter’s output. The higher signal levels in the simulation could be corrected by introducing an additional
attentuation in the simulation filter of 1/1.1 = 0.90909 (power gain 1/1.12 = 0.82645), but that would
change the noise power to 1.25/1.1%2 = 125/121 ~ 1.03306 times its correct value. The effect of this
is to make the simulation appear to have more noise by 10log;,(125/121) ~ 0.141 dB than the actual
system experiences. The performance curve for the simulation then would be the real world performance
curve shifted by 0.141 dB. If we used the simulation to determine the value of E} /Ny required to obtain
some certain P., we would produce a value that was 0.141 dB higher that what was actually needed—a
0.141 dB error or inaccuracy so-to-speak (assuming we can neglect the experimental error in measuring
the simulation P, discussed in Part 5). |

Task 7. Write a program which will generate the samples of a NRZ PAM signal corrupted by noise
as discussed above, and act upon these to simulate a first order lowpass filter according to our approx-
imation. Pass the simulation of the NRZ PAM signal through the filter for fsqp = 1/T and plot the
eye diagram of the output. Use N = 10 (i.e., 10 samples per symbol period). (To get the proper eye
diagram, the samples out of the filter from the first several symbol periods should be discarded as they
are not typical due to the transient effect of the beginning of the NRZ PAM signal). Compare the results
with the eye diagram you should be able to predict for the continuous-time system. With the same noise
levels added at the the filter input as in Task 5, plot the eye diagrams again. Does the filter seem to
have a beneficial effect on the signal? Plot the eye diagram at the filter output for two different choices
of N (e.g., N =10 and N = 20) with the variance of the input noise adjusted to produce an E,/Ny of
50 (17 dB) which in the case of N = 10 means a noise variance at the filter input equal to 10% of the
signal power. |

Part 5: Determining Performance

Once a simulation is available for all the system components and signals, we are able to use the
simulation to determine many aspects of the system, such as the power spectrum of different signals,
the dynamic range of signals, the probability of an error, etc.

In this simulation, we would simply like to determine the probability of a transmission error. To do
this, we simply need to observe the filter output at the sampling instants we designate (which we take
here to be the point where the eye diagram was found to be open the most), convert this to an estimate
of the symbol value transmitted, and note how often in a simulation of the transmission of many bits we
find the converted value differs from the symbol values to be sent. (Here we do this conversion simply
by examining the polarity of the sample value.) This may require simulation of the the transmission of
thousands, millions, billions, or even more symbols. Obviously we do not want to waste a computer’s
time by sending huge numbers of symbols in a simulation, but we must send enough to be able to make
reliable estimates of the error rate. How many are enough then? Clearly, if a communication system had
an error rate of one in a million, we could not easily tell this by sending even 10,000 bits through the
system (in a simulation or in real life) since they would all very likely be received without error—just
as would happen if the error rate was 1 in 10° rather than 1 in 10.

To see how many might be required for a reliable estimate, let us assume that the communication
system is such that it is well-modelled as a binary symmetric channel (that is, the occurrence of an
error for one transmitted bit does not depend on the value of the bit, nor is it related to the occurrence
of an error in transmitting another bit). If L bits are sent through such a ‘channel’; the probability
that [transmission errors occur is governed by a binomial distribution: the fraction of bits observed in
error (defined to be the number of errors observed divided by the total number of bits transmitted) is a
random variable with mean P, (P. is the actual probability of error) and variance 0% = P.(1 — P.)/L.

15

ELG 4176 Simulating a Communication System Fall 2016

For a reliable estimate, the variance of the fraction should be a small fraction of P2, which requires that
LP, be significantly larger than 1. To be more concrete, we can determine the confidence interval of the
estimate. Appealing to the central limit theorem, we can approximate the distribution of the fraction
of bits in error as a Gaussian random variable with mean mean P, and variance P.(1 — P.)/L ~ P./L
(for P, < 1). The 95% confidence interval of this random variable is from P, — 1.960 to P. + 1.960, so
to obtain an accuracy no less than 20%, we would want

1.960 ~ \/P./L < 0.2P,.

This is true when P.L > 1.962/(0.2)? ~ 100. Since LP,. is the mean number of observed errors in total,
we can formulate a rule of thumb for how long to observe errors: to obtain an estimate within about
20% of the actual value 95% of the time, you should set L so that at least 100 errors would occur. In
practice, this means keep running blocks of symbols through the system until at least 100 errors have
been found. For better accuracy (or to be more precise, for more reliable estimates), we should wait for
even more errors to occur before terminating a simulation.

Task 8. Write a program to simulate the communications system to determine its error rate. Using
10 samples/symbol, fsqg = 1/T and various different noise levels, run simulations to allow you to plot
the P, versus E},/Ny for error rates of 1071 to 107° (and 1079 if you can manage it). Obtain at least five
data points from which to determine a probability of error curve similar to Figure 8.26 in the text (the
curve should not just be a piecewise linear connection of the five or more points at which the error rate
was estimated but the expected sort of curve that you then fit to the available data points!). Run all
simulations to obtain at least 100 errors. What is the 95% confidence interval we obtain for P, based on
observing 100 errors (assuming a binary symmetric channel model)? Give a table of the results for each
data point showing the program settings for each point, the corresponding Ej, /Ny, and the 95confidence
interval to add error bars to your plotted data. Along with the plot of your data plot the performance
of P, [log scale] versus E,/Ny (in decibels) for the best possible demodulator of the received signal (i.e.,
the integrate and dump receiver) for which

Pe = Q(v/2Ew/No).

From the simulation data, find an estimate of the value of E,/Ny for which the continuous-time system
that we wanted to simulate would have P, = 10~* and determine the penalty that using this suboptimum
receiver has relative to the optimum receiver. Rerun the simulations for N = 5 and N = 20 to see if this
changes the results significantly. Show the results from all three values of N on the same plot. From
these results for different simulation bandwidths, how large would it appear that N has to be for the
simulation results to accurately reflect the performance of the real system (i.e., is N = 10 sufficient, or
perhaps N = 5 suffices)? To examine this question more thoroughly (without having to run many many
long simulations), the analysis from Task 6 should help to predict how large N would have to be to
keep the results to, say, within 0.05 dB of the true E,/Ny needed to obtain a given P, by determining
what values of N keep the computed signal and noise components at the filter output within 0.05 dB
relatively to what they would be in the analogue system. Do the predictions from Task 6 match the
results you get from your simulation runs?

We began this simulation project stating that we had to use simulation due to the complexity of the
situation here where precise analytical analysis is to difficult. In fact for the system we have analyzed
here, you have probably found that at the sampling instants, the PAM signal’s value is very nearly 1 or —1
while the noise component is a zero-mean Gaussian random variable with variance %Nmr f3aB = %Nmr /T.

Since Ey, = T, the probability of error of the system is easily found to be very well approxilrnatedJHLJr by

P. ~Q(1/\/3Nor/T) = Q(\/2E}/mNy).

T 16 is easy to show that in fact ~ Q(y/2Ep/7mNo) < Pe < Q(+/1.992537E, /7 Np).

The value 1.992537 is (approximately) twice the square of the one-sided eye opening at the filter output:
2(1—e72™)% ~ 1.992537204. The upper and lower bounds are obviously very close as they are separated
by less than 0.01624 dB, a practically insignificant amount.

16

ELG 4176 Simulating a Communication System Fall 2016

How close were your results to this? Make a single plot of performance you obtain from your
simulation data (what you feel your data says about the actual system’s performance), the above analytic
approximate performance and the performance of the optimal integrate and dump receiver given above.

Your write-up to Task 8 must give the raw data of your simulation (the setting of the noise variance,
the number of bits processed to encounter the 100 errors (or whatever value is chosen), the calculated
Ey /Ny, the estimated P. with the confidence interval) for each data point; this is in addition to the
plots. The final plot is the most important part of this whole simulation where you produce the
performance curve determined from simulation and compare it to the calculated bounds and the ideal
receiver performance (five smooth curves: one of the ideal receiver performance, one of the analytic
performance approximation given immediately above, and then the three smooth curves through data
points for each of the N =10, N =5 and N = 20 simulation results). Plotting smooth curves requires
appropriate curve fitting of the data (check out MATLAB’s nonlinear-curve-fitting tools). 25% of the
lab grade is devoted to being able to generate a valid such plot.

|
If we reduce the filter’s bandwidth to say fsqp = 0.215/T in an effort to reduce the noise corrupting
the signal, it is much more difficult to analytically predict the system’s performance, and simulation is
neede to accurately predict the performance.
Task 9. Rerun the eye diagram generating code in Task 7 for the case of f3qp = 0.215/T. Can you
predict the system’s performance from this easily? Rerun the simulations in Task 8 for fsqg = 0.215/T
(one choice of N will be enough, but you can rerun the three choices from Task 8 if you have the time).
Does this lower bandwidth improve the error rate? From the simulation data, find an estimate of the
value of Ej,/Ny for which the continuous-time system that we wanted to simulate would have P, = 10~4
and determine the penalty that using this suboptimum receiver has relative to the optimum receiver and
that of the case of fsqg = 1/T. Make a single plot of performance you obtain from your simulation data
(what you feel your data says about the actual system’s performance), the results for the fsqg = 1/T
case, and the performance of the optimal integrate and dump receiver given above.

Your write-up to Task 9 should be quite similar to the write-up of Task 8 in what is given. The final
plot now has three smooth curves. 15% of the lab grade is devoted to being able to generate a valid
such plot.

The Preliminary Report

By Oct. 21, each group must submit a preliminary version of the report on Tasks 1 to 3, to demonstrate
they have a properly working version of the required routines, and thus have started significant work
on the lab. Feedback on these submissions will be given, but there are no marks involved, though
there may be a penalty if a brief report on this preliminary work is not submitted on time. The
purpose is to ensure you have started the lab and understand the amount of effort that is needed to
properly complete the lab.

The Final Report to be Submitted

Each group shall submit one joint report, with all the members of the group sharing the same
mark (all members are responsible for each section of the lab, even though the work for different tasks
may largely be done by particular members). This is based on all members contributing approximately
equally to the work. The report cover must list the members of the group. Groups may NOT collaborate
in completing tasks; discussion of problems encountered amongst the class members is encouraged, but
after computations are attempted, not before. No collaboration between groups is allowed in writing
the report. At the time of submission, all the program code for each part of the simulation must be
sent via e-mail to Dr. Galko with a description of the system on which the code runs. The subject of
the e-mail must be “Group XX Submission”, where “XX” is replaced by your group number. Sufficient

17

ELG 4176 Simulating a Communication System Fall 2016

information must be provided so that the programs can be rerun exactly as submitted to generate the
data given in the report. The submission of the program code should take the form of a single ‘zip’
or ‘tar’ archive file containing the compressed version of each program. This archive must be named
GroupXX.16.zip or GroupXX.16.tar, where XX is your group number (e.g., Group03.16.zip). In the
archive, include subarchives/subdirectories of ALL the programs or spreadsheets associated with each
task so the programs can be run to reproduce ALL your stated results precisely. The subdirectories
must be labelled by task number. The precise version of code that generates the data must be supplied
for each task for which code is written. This includes the code for generating plots (do NOT give long
lists of the raw signal data that may be read by code that does plotting). Do NOT just indicate that
code was modified in some way to produce the results, but give the modified program. Indicate what
each file is for in some clear manner. Send the archive at the same time you submit your report. Your
programs may be run to verify the results are correct.

In preparing the report for this computer laboratory, do not include a repetition of the discussion in
these lab sheets or restate the Tasks. Rather, just report your results, including a detailed explanation
of how they were obtained (so that it is clear that the task results were valid, giving the programs used
where appropriate), the answers to the questions and and discussion on the significance and conclusions
you can draw at each step (relevant to the task of predicting the real system’s performance from the
simulation). When Tasks require that you write a program to achieve a result (as for example in Task
2), the program MUST be part of the answer to the task; programs that are not central to the issues
raised in the tasks (e.g., a program you write to plot a graphical representation of an answer) should
not be in the core of the report but MUST be given in an appendix. ALL PROGRAMS MUST BE
PROPERLY COMMENTED, INCLUDING THE PROGRAMS JUST GENERATING PLOTS. Marks
will be based on properly carrying out the tasks, the understanding of the issues demonstrated in the
discussion, the quality of the presentation of the results (e.g., how well and properly graphical results
were presented, etc.)—ultimately you are expected to produce a plot similar to Figure 8.26 in the text
which gives the performances of the different system configurations as you estimate them from the
simulation results; obviously the performance curve of a real system will be a smooth curve, so yours
should be too. 40% of the grade for the report comes from validly generating these plots in Task 8 and
Task 9! No marks are awarded for typing the report as opposed to neatly writing the report by hand
(plots should be computer generated, not hand drawn). Grammatical, ‘typographical errors’ and similar
mistakes however do count!

You may add more discussion of related matters than is demanded in the lab if you wish, but it has
to be relevant to the aim of the laboratory. Be concise!

Finally, results must be reported honestly! There is a possibility in every statistical test that even
when hypotheses are valid, a test for that validity will seem to require a conclusion that the hypothesis
is invalid. Looking for a test to obtain the ‘correct’ outcome (or repeating a test over again with new
data until the ‘proper’ conclusion is drawn) is invalid and nothing less than intellectual fraud (in this
case, ‘cooking the numbers’ or ‘lying with statistics’). If you obtain results which seem aberrant and you
verify that you correctly conducted the test, have the courage to report the results obtained and what
conclusion you logically ought to draw. With a high probability, if there were 20 groups in the class,
at the 95% level of significance, for any particular statistical test, about one group in the class should
be expected to report a negative result when the hypothesis is valid. When everyone gets only ‘correct’
results, we have to conclude that it is likely that some have been dishonest. It has been very easy to
discover this dishonesty in past years, and marks of zero will be the minimum penalty for such reports.
With a smaller class size, it is easier to spot problems. Done correctly, the results of the simulation
will match results that correct analysis will indicate, and many have been able to produce the correct
results and analysis when due diligence was applied. Getting the wrong results has always been the
result of programming errors beyond some basics such as assuming a value of N is fixed in calculating
filter coefficients, using hist and other MATLAB routines incorrectly to generate histogram and other
data, failing to correctly match discrete- and continuous-time, etc.

18

ELG 4176 Simulating a Communication System Fall 2016

APPENDIX A

An Example of the y? Goodness of Fit Test

In telephone system engineering, knowledge of the distribution of the load of telephone calls being
placed is important when deciding how much capacity for handling calls is to be installed. It is believed
that the number of telephone calls placed in a given time interval is accurately described by the Poisson
distribution. In this description, the probability that k calls are placed in a given interval is

k
'uiefu

k! ’

where 1 is a parameter of the distribution (which is the average number of telephone calls that could
be expected in the interval). In an experiment, the number of calls placed in a two minute interval in
a certain telephone office was monitored for 100 such nonoverlapping intervals with the results reported
below. The telephone engineers would like to validate the Poisson model they use for the frequency of
telephone calls, and so would like to test the above distribution against the observed data. No assumption
is being made about the value of p.

No. of Observed No. of
Calls Placed 2 min. Intervals
0 1
1 5
2 16
3 17
4 26
5 11
6 9
7 9
8 2
9 1
10 2
11 1
100

The parameter p of the model is not known, so it must be estimated. Given the interpretation of u as
the mean, a good estimator of y would be provided by the sample mean. From the data in the above
table, the average number of calls per interval is found to be 4.20 which is our estimate of p. With
this choice of u, we have then that the model predicts that the probability that there would be k calls
initiated in an interval is given by

4.2)k
- k:!)

Thus for 100 intervals, we would expect 100p; two minute intervals would be found in which k calls were
placed on average (for k = 0,1,2,...). The table below lists the observed frequency and the predicted

19

ELG 4176 Simulating a Communication System Fall 2016

frequency of k calls in a two minute interval.

No. of Observed No. of Expected No. of
Calls Made 2 min. Intervals 2 min. Intervals
0 1 1.5
1 5 6.3
2 16 13.2
3 17 18.5
4 26 19.4
5 11 16.3
6 9 11.4
7 9 6.9
8 2 3.6
9 1 1.7
10 2 0.7
11 1 0.3
100 99.8

In order to use the y2-goodness of fit test we cannot simply compute the y2-statistic and compare
it to a threshold determined from the distribution function tables for the y2-distribution, since the x2-
statistic is closely described by the y2-distribution only when at least 5 observations are expected in each
cell and the cells account for all possible values the theretical model predicts. To achieve this we simply
group observations into cells (lumping the case of k = 0 and k = 1 together as well as the cases of k = 8,
k=9, k=10, k = 11 and k-values for which there were no observed values (i.e., a group for k > 8;
the expected number greater than 11 is just 0.1). [Which cells are grouped with which is somewhat
arbitrary.] This produces the table below from which we see that the y2-statistic for our grouping into
8 classes has the value 6.257.

Observed No. of Expected No. of

2
Samples, f; Samples, np; (fi — npi)? %

6 7.8 3.24 0.415

16 13.2 7.84 0.594

17 18.5 2.25 0.122

26 19.4 43.56 2.245

11 16.3 28.09 1.723

9 114 5.76 0.505

9 6.9 4.41 0.639

6 6.3 0.09 0.014

100 99.9 6.257

Since one of the parameters of the model was estimated, the y2-statistic we have is supposedly
well described by a y2-distribution with 8 — 1 — 1 = 6 degrees of freedom. If we test at the 5% level
of significance, the threshold for the test is found from tables to be given by 12.59. Hence we find
that we find that the observed data is consistent with a Poisson distribution hypothesis for the number
of telephone calls placed in the chosen interval in the particular telephone office at the 5% level of
significance. We have also estimated the appropriate parameter for the Poisson distribution to apply is
w=4.2.

Note that this test is NOT the same as having tested for the observation being described as a Poisson
distribution with mean 4.20 (the value 4.20 is assumed fixed before the observations were made and is
only exactly the sample mean by a lucky coincidence). If we were making this test, the computation
of the x2-statistic would be exactly as above, but this statistic would be described by a x?2-distribution
with 7 degrees of freedom, for which the threshold increases to 14.07 at the 5% level of significance..

20

ELG 4176 Simulating a Communication System Fall 2016

This test is also passed, from which we would be able to state that the observed data is consistent with
a Poisson-distribution-with-mean-4.2 hypothesis for the number of telephone calls placed in the chosen
interval in the particular telephone office at the 5% level of significance. (The difference here between
the two tests is that we are testing the value of the mean as well as the distribution shape, while in the
first test we are only testing for the shape of the distribution; had the sample mean not been 4.20, the
computations of the y2-statistic would be different for the two tests.)

P. Galko Winter 1992.
last modified Sept. 2016.

21

ELG 4176

“Nothing in nature is
random. .. A thing appears
random only through the
incompleteness of our
knowledge."—Spinozn

12 Fall, 1995

Simulating a Communication System

APPENDIX B

Fall 2016

Extract from MATLAB News & Notes, Fall 1995 (with permission)
©1995 The MathWorks, Inc., All Rights Reserved.

Random thoughts

10** years is a very long time

by Cleve Moler

Do you recognize this number?
0.21895918632809

If you're an avid MATLAB user, you've probably seen this
number before, but don’t remember it. It's the first number
produced by the MATLAB random number generator with its
default settings. Start up a fresh MATLAB session, set format
long, type rand, and that’s the number you get.

50, if all MATLAB users, all around the world, on all
different computers, keep getting this same number, is it
really “random”? No, it isn’t. Computers are (in principle)
deterministic machines and should not exhibit random
behavior. If your computer doesn’t access some external
device, such as a ggmma ray counter or a clock, then it must
really be computing pseudorandom numbers. My favorite
definition was given in 1951 by Berkeley Professor D, H.,
Lehmer, a pioneer in computing and, especially,
computational number theory:

A random sequence is a vague notion...in which each
term is unpredictable to the uninitiated and whose
digits pass a certain number of tests traditional with
statisticians. ..

Lehmer also invented the wmultiplicative congruential
algorithm, which is the basis for many of the random number
generators in use today. Lehmer's generators involve three
integer parameters, a, ¢, and m, and an initial value, x;, called
the seed. A sequence of integers is defined by

Xpyy = (@ xp + ¢)mod m

(The operation “mod m” means take the remainder after
division by m.) For example, with a= 13, ¢= 0, m= 31, and
x; = 1, the sequence begins with

1 13 14 27 10 6 16 22 7 29 5 3

‘What's the next value? Well, it looks pretty unpredictable,
but you've been initiated. So you can compute 13-3 mod 31,
which is 8. The first 30 terms in the sequence are a
permutation of the integers from 1 to 30 and then the
sequence repeats itself. It has a period equal to m-1.

A pseudorandom integer sequence with values between 0
and m can be scaled by dividing by m to give floating-point

MATLAB News & Notes

22

numbers uniformly distributed in the interval [0, 1]. Qur
simple example begins with

0.0323 0.4194 04516 0.8710 03226 0.1935 0.5161...

The histogram of this sequence is:

There are only a finite number of values—30 in this case. The
smallest value is 1/31; the largest is 30/31. Each number is
equally probable in a long run of the sequence.

The uniform random number function, rand, in the
current release of MATLAB, has similar behavior. It is a
multiplicative congruential generator with parameters

a=7 = 16807
c=10
m=2"11 = 2147483647

These values were recommended in a 1988 paper by S. K. Park
and K. W, Miller, “Random number generators: Good ones
are hard to find” (Comm ACM, vol. 32). Here is a histogram
of 50,000 values produced by rand.

ELG 4176

Each of the 25 bins contains roughly 2,000 numbers. We
would see a similar picture for any other reasonable number
of bins. Our generator satisfactorily passes this histogram test,
which is the admission exam for uniform generators.

Like our toy generator, rand generates all real numbers of
the form k/m for k= 1...m-1. The smallest and largest are
0.00000000046566 and 0.99999999953434, It repeats itself after
generating m-1 values, which is a little over two billion
numbers. A few years ago that was regarded as plenty. It
probably still is today, but it's getting a little skimpy. On a
75 MHz Pentium laptop, we can exhaust the period in fewer
than four hours. Of course, to do anything useful with two
billion numbers takes more time, but we would still like to have
a longer period.

We've developed a replacement for our current rand. It
will be part of MATLAB version 5. The new algorithm is based
on advice from George Marsaglia, a professor at Florida State
University, and author of the classic analysis of random
number generators, “Random numbers fall mainly in the
planes,” {Proc. Nat. Acad. Sci., vol 61, 1968).

Marsaglia’s new generator does not use Lehmer’s
multiplicative congruential scheme. In fact, there are no
multiplications or divisions at all. It is specifically designed to
produce floating-point values, The results are not just scaled
integers. And, it is fast. We get close to a “megarand”™—a
million random numbers per second—on our laptop.

In place of a single seed, the new generator has 35 words of
internal memory or state. Thirty two of these words form a
cache of floating-point numbers, z, between 0 and 1. The
remaining three words contain an integer index {, which
varies between 1 and 32, a single random integer j, and a
“borrow” flag b. This entire state vector is built up abitata
time during an initialization phase, Different initial states can
be triggered by specifying different values of j.

The generation of the i-th floating-point number in the
sequence involves a “subtract with borrow™ step, where one
number in the cache is replaced by the difference of two others.

%= Zian - Zs- b

The three indices, i, i+20, and i+5 are all interpreted mod 32
(by using just their last five bits). The quantity b is left over
from the previous step; it is either zero or a small positive
value. If the computed z is positive, b is set to zero for the next
step. But if the computed z; would be negative, it is made
positive by adding 1.0 before it is saved and b is set to 2% for
the next step. The quantity 25, which is half of MATLAR's
built-in constant eps, is called one ulp because it is one unit in
the last place for floating-point numbers slightly less than 1.
By itself, this generator would be almost completely
satisfactory. Marsaglia has shown that it has a huge period—
almost 2'** values would be generated before it would repeat
itself. But it has one slight defect. All the numbers are the result

Simulating a Communication System

of floating-point additions and subtractions of numbers in the
initial cache, so they are all integer multiples of 2%
Consequently, many of the floating-point numbers in [0,1] are
not represented.

The floating-point numbers between 1/2 and 1 are equally
spaced with a spacing of one ulp, and our subtract-with-
borrow generator will eventually generate all of them. But
numbers less than 1/2 are more closely spaced and the
generator would miss most of them. It would generate only
half of the possible numbers in the interval [1/4,1/2], only a
quarter of the numbers in [1/8,1/4], and so on. This is where
the quantity j in the state vector comes in. It is the result ofa
separate, independent, random number generator based on
bitwise logical operations. The floating-point fraction of each
z; is xored with j to produce the result returned by the
generator. This breaks up the even spacing of the numbers less
than 1/2. Tt is now theoretically possible to generate all of the
floating-point numbers between 2™ and 1-2™, We're not sure
whether all of them are actually generated, but we don't know
of any that can't be.

This graph illustrates what we're trying to accomplish,
with one ulp equal to 24 instead of 2™,

=
L

=

=

T

Wi 1A W

The graph depicts the relative frequency of each of the
floating-point numbers, A total of 32 floating-point numbers
are shown. Eight of them are between 1/2 and 1 and they are
all equally likely to occur. There are also eight numbers
between 1/4 and 1/2, but since this interval is only half as
wide, each of them should occur only half as often. As we
move to the left, each subinterval is half as wide as the
previous one, but it still contains the same number of
floating-point numbers, so their relative frequencies must be
cut in half. Imagine this picture with 2°* numbers in each of
2% successively smaller intervals and you will see what our
new random number generator is doing.

With this additional bit fiddling, the period becomes
something like 2'*"2, Maybe we should call it the Christopher
Columbus generator. In any case, it will be a very long time
before it repeats itself. At one million per second, it will take
more than 10" years. W

MATLAB News & Notes

23

Fall 2016

Cleve Moler is Chair-
man and co-founder
of The MathWorks.
His e-mail address is
moler@mathworks.com.

Fall, 1995

13

