ELG3175 Introduction to Communication Systems Hilbert Transform, Preenvelope and Quadrature Representation of Bandpass Signals

www.uOttawa.ca

Phase shifting systems and the Hilbert Transform

- Let x(t) be the input to a phse transformer system.
- Let y(t) be the output. Then y(t) is a phase-shifted version of x(t) where all frequency components are shifted by θ.
- Let $x_0(t) = A\cos(2\pi f_0 t)$ be the input.
- Then $y_0(t) = A\cos(2\pi f_0 t + \theta)$.
- Let's change the inpuit frequency. In other words, let $x_1(t) = A\cos(2\pi f_1 t)$.
- Its corresponding output is $y_1(t) = A\cos(2\pi f_1 t + \theta)$.
- The amount of phase shift is independent of input frequency.

Frequency response of phase shifting systems

- For $x_0(t) = A\cos(2\pi f_0 t), X_0(f) =$
- The output $y_0(t) = A\cos(2\pi f_0 t + \theta)$ has Fourier transform $Y_0(f) = \frac{A}{2}e^{j\theta}\delta(f - f_0) + \frac{A}{2}e^{-j\theta}\delta(f + f_0)$
- Also $X_1(f) = \frac{A}{2}\delta(f f_1) + \frac{A}{2}\delta(f + f_1)$
- While $Y_1(f) = \frac{A}{2}e^{j\theta}\delta(f-f_1) + \frac{A}{2}e^{-j\theta}\delta(f+f_1)$
- Since the same is true for all input frequencies it is obvious that the frequency response of the phase shifting system is :

$$H(f) = \begin{cases} e^{j\theta}, f > 0\\ e^{-j\theta}, f < 0 \end{cases}$$

Hilbert Transform

- The Hilbert Transform introduces a phase shift of $\theta = -90^{\circ}$.
- For x(t), its Hilbert transform $x_h(t)$ is a -90° phase shifted version of x(t) (- $\pi/2$ radians).
- The Fourier transform of x_h(t) is X_h(f) which is given by :

$$X_{h}(f) = \begin{cases} e^{-j\pi/2} X(f), f > 0\\ e^{j\pi/2} X(f), f < 0 \end{cases}$$

= $-j \operatorname{sgn}(f) X(f)$

Hilbert Transform

• The Hilbert transform is also given by :

•
$$x_h(t) = \mathcal{F}^1\{-j \operatorname{sgn}(f) X(f)\} = x(t) * 1/\pi t$$

$$= \int_{-\infty}^{\infty} \frac{x(\lambda)}{\pi(t-\lambda)} d\lambda = \int_{-\infty}^{\infty} \frac{x(t-\lambda)}{\pi\lambda} d\lambda$$

Examples

• Find the Hilbert Transforms of

$$- x(t) = A\cos(2\pi f_o t) \text{ et}$$

- $y(t) = \operatorname{sinc}(t)$

• SOLUTION (a)

$$X(f) = \frac{A}{2} \delta(f - f_o) + \frac{A}{2} \delta(f + f_o) \text{ therefore}$$

$$X_h(f) = \frac{-jA}{2} \delta(f - f_o) + \frac{jA}{2} \delta(f + f_o)$$
The Hilbert transform of $x(t)$ is $x_h(t) = \mathcal{F}^1\{X_h(f)\}$

$$= A \sin(2\pi f_o t).$$

Exemples

- SOLUTION (b)
 - $Y(f) = \Pi(f)$. The Fourier Transform of the Hilbert transform of y(t) is $Y_h(f) = -j \operatorname{sgn}(f) \Pi(f)$.

Positive Pre-enveloppe

- Let x(t) be a real signal with Fourier Transform X(f).
- Let us define $x_+(t)$ as the positive pre-envelope of x(t).
- The spectrum of x₊(t) is 0 for negative frequencies and proportional to the spectrum of x(t) for positive frequencies.
- The spectrum of the positive pre-envelope is:

$$X_{+}(f) = \begin{cases} 2X(f), & f > 0\\ X(0), & f = 0\\ 0, & f < 0 \end{cases}$$

Positive Pre-envelope

- We can show that $X_+(f) = X(f) + \operatorname{sgn}(f)X(f) = X(f) + j(-j\operatorname{sgn}(f)X(f)) = X(f) + jX_h(f)$ where $X_h(f) = \mathcal{F}\{x_h(t)\}$.
- Therefore

$$x_+(t) = x(t) + jx_h(t)$$

Examples

- Find the positive pre-envelope of $x(t) = \cos(2\pi f_c t)$.
- Find te pre-envelope of $y(t) = \operatorname{sinc}(t)$.
 - SOLUTION
- We know that $x_h(t) = \sin(2\pi f_c t)$, therefore $x_+(t) = \cos(2\pi f_c t) + j\sin(2\pi f_c t)$.
- Therefore $x_+(t) = e^{j2\pi fct}$.
- For $y_+(t)$ we should find $Y_+(f)$.
- $Y(f) = \Pi(f)$, therefore $Y_+(f) = 2\Pi(2(f-1/4))$. Therefore $y_+(t) = \mathcal{F}^{-1}\{Y_+(f)\} = \operatorname{sinc}(t/2)e^{j(\pi/2)t}$.

Negative pre-envelope

• The negative pre-envelope of x(t) is a signal that has only the negative spectrum of x(t).

$$X_{-}(f) = \begin{cases} 2X(f), & f < 0\\ X(0), & f = 0\\ 0, & f > 0 \end{cases}$$

- We see that $X_+(f) + X_-(f) = 2X(f)$, therefore $x_+(t) + x_-(t) = 2x(t)$.
- Therefore $x_{-}(t) = x(t)-jx_{h}(t)$.

Bandpass Signals

• The signal x(t) is a bandpass signal if its spectrum is non zero in a range of frequencies $f_c - (B/2) \le |f| \le f_c$ + B/2, and 0 elsewhere where B is its bandwidth and B< f_c .

Pre-envelope of a bandpass signal

- Let's find the pre-envelope of a bandpass signal, x(t).
- $|X_+(f)|$ is shown below.
- The pre-envelope is $x_+(t) = x(t)+jx_h(t)$.

Complex envelope (lowpass equivalent)

- The complex envelope of x(t), $\tilde{x}(t)$, is its lowpass equivalent
- The spectrum of $\tilde{x}(t)$ has the same form as $x_+(t)$, but it is centred at f = 0.

- Alors, nous définissons $\tilde{x}(t) = x_+(t)e^{-j2\pi f_c t}$ comme l'enveloppe complexe du signal en bande passante x(t).
- Nous voyons du spectre de x(t) que la largeur de bande de l'enveloppe complexe est B/2 pour un signal en bande passante avec largeur de bande B.

Quadrature representation of bandpass signals

- If $\widetilde{x}(t) = x_+(t)e^{-j2\pi f_c t}$
- Then $x_+(t) = \widetilde{x}(t)e^{j2\pi f_c t}$
- Also $x(t) = \operatorname{Re}\{x_{+}(t)\}$
- Then

 $x(t) = \operatorname{Re}\{\widetilde{x}(t)e^{j2\pi f_c t}\} = \operatorname{Re}\{\widetilde{x}(t)\}\cos 2\pi f_c t - \operatorname{Im}\{\widetilde{x}(t)\}\sin 2\pi f_c t$

• All bandpass signals can be written in the form

$$x(t) = x_I(t)\cos 2\pi f_c t - x_Q(t)\sin 2\pi f_c t$$

• where $x_I(t) = \operatorname{Re}\{\widetilde{x}(t)\}$ and $x_Q(t) = \operatorname{Im}\{\widetilde{x}(t)\}$

Example 1

- $x(t) = A\cos(2\pi f_c t + \phi)$.
- Find it's complex envelope and its quadrature representation.
 - SOLUTION
- $X(f) = (1/2)e^{j\phi}\delta(f-f_c) + (1/2)e^{-j\phi}\delta(f+f_c)$
- $X_+(f) = e^{j\phi} \delta(f f_c)$

$$\widetilde{X}(f) = X_+(f + f_c) = e^{j\phi}\delta(f)$$

 $\widetilde{x}(t) = e^{j\phi} = \cos(\phi) + j\sin(\phi)$

• Therefore $x(t) = x_I(t)\cos(2\pi f_c t) - x_Q(t)\sin(2\pi f_c t) = \cos(\phi)\cos(2\pi f_c t) - \sin(\phi)\sin(2\pi f_c t)$.

Example 2

- $y(t) = 100 \sin(2\pi (f_c f_1)t) + 500 \cos 2\pi f_c t + 100 \sin(2\pi (f_c + f_1)t).$
- $Y(f) = -j50 \delta(f f_c + f_1) + j50 \delta(f + f_c f_1) + 250 \delta(f f_c) + 250 \delta(f + f_c) j50 \delta(f f_c f_1) + j50 \delta(f + f_c + f_1).$
- $Y_{+}(f) = -j100\delta(f-f_{c}+f_{1}) + 500\delta(f-f_{c}) j100\delta(f-f_{c}-f_{1})$

 $\widetilde{Y}(f) = Y_{+}(f + f_{c}) = -j100\delta(f + f_{1}) + 500\delta(f) - j100\delta(f - f_{1})$ $\widetilde{y}(t) = 500 - j200\cos(2\pi f_{1}t)$

• $y(t) = 500\cos(2\pi f_c t) + 200\cos(2\pi f_1 t)\sin(2\pi f_c t)$

