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Digital Communication Engineering
Example

e The communication engineer must design a
communication system that meets certain criteria

- Data rate determined by SQNR (in ADC)
— Bandwidth considerations
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Example &

e An analog signal, m(t), has the following properties:

- -5V < m(t) < 5V
- Bandwidth = 10 kHz
— Power = 4W

e We wish to convert this to a digital signal using PCM
and then transmit using digital PAM.

Design constraints
- SQNR > 70 dB
— Bandwidth < 50 kHz

— Raised cosine pulses with 30% excess bandwidth is
used.

— Sampling rate is 30% greater than Nyquist rate.
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W

hat we need to solve &

What is the minimum number of quantization levels
required if we want SQNR > 70 dB?

If we represent each sample by N bits/sample, what
should N be?
If we sample at a sample rate f, = 1.3fy, what is the

data rate in bits/sec at the output of the PCM
modulator?

What is minimum value of M for M-ary PAM to satisfy
our bandwidth constraint?
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e SQNR = 12P.,/A%? = 3P L?/m,2 > 107,

e | 2> 10725/(3)(4) = 2.08x10".

o L > 4564

o L = 2N, thereforeN = log5(L) > log,(4564)

e N>12.2 bits/sample, which means we would select N =
13 bits/sample.
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Bandwidth

fy = (2)(10 kHz) = 20 ksamples/sec
fo = 1.3fy = 26 ksamples/sec

R, = f.N = 338 kbps

BW = R, (1+a)/2

R, < 45kHzx2/(1+a)

R, < 90/1.3 = 69.23 ksymbols/sec
R. = R,/k < 69.23 ksymbols/sec

k> R,/69.23 = 4.88

We choose k = 5, M = 2k, therefore we should use 32-
level PAM
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Information theory &

e Information theory quantifies information content and
determines the limits on the amount of information we
can transmit

e Claude Shannon quantified information in 1949.
e Huffmann coding allows us to transmit data efficiently

e Error Control coding allows us to use controlled
redundancy to correct errors that occur in transmission.
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Amount of information contained in a
message

We have a source that outputs messages from a set of
possible messages{my, m,, ..., my}.

Let’s assume that the source is memoryless which
means that the transmission of future messages does
not depend on which messages were transmitted in the
past. (messages are transmitted independently)

Each message has a probability of being transmitted

ip(my), p(my), ... p(My)}.
Messages with low probabilities of transmission have
higher information content.

- Example: m; = it will be sunny, m, = there will be a
tornado.
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Amount of information &

e Here p(m,)>p(m,) but I(m,)<I(m,).

e Suppose message m; = mym,. Assuming independent
messaging, p(ms) = p(my)p(m,), but clearly I(m5) =
I(my)+1(m,).

e Therefore I(m;) = log,(1/p(m;)) = -log,(p(m;)).

e b=2,I(m;) is measured in bits (or Shannons).

e b =3, I(m,) is measured in ternary symbols

e b =e¢, I(m,) is measured in nats

e b =10, I(m,) is measured in Hartleys

mI) yOttawa



Example &

e M={my, my,, ms, my} with P = {0.35, 0.11, 0.45,
0.09}

e I(my) = 1.51 bits

e I(m,) = 3.18 bits

e I(m3) = 1.15 bits

e I(m,) = 3.47 bits

e The probability that the source outputs m, followed by
message m- is 0.35x0.11 = 0.0385. The information in
these two messages is —-10g,(0.0385) = 4.69 bits =
1.51+3.18.
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Average information: Entropy of the
source

At each signaling instant, the source outputs a
message.

Assuming that the message output is m;, then the
source has output I(m;) bits of information.

e The expected amount of information to be output at

each signaling instant is called the entropy of the
source H(M).

N
H(M) = —Z p(m;)log, p(m;)

=1
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Example &

e M={my, my;,, m;, my} et P ={0.35, 0.11, 0.45, 0.09}
e I(my) = 1.51 bits
e I(m,) = 3.18 bits
e J(m3) = 1.15 bits
e I(m,) = 3.47 bits

e H(M) = 0.35(1.51)+0.11(3.18)+0.45(1.15)+0.09(3.47)
= 1.71 bits/message.
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Source coding ”

e Consider the source of the previous example.
e H(M) = 1.71 bits/message.

o If we encode the 4 messages as follows, m; = 00, m, =
01, m; = 10et m, = 11, we get an average message
length of 2 blts/message L is the average message
length.

e We can show that H(M) < L.
e Suppose we encode the source as follows:

0. 45(1)+0 35(2)+O 11(3)+0 09(3) = 1.75
bits/message.

e Example: 010101000010010010010011 = my, my, my,

m,, my, m,, m,, m,, m,, M5 :itis uniquely decodable

_
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Source coding &

e Supose we encode the source as follows:

e m =10, m;, = 100, m;=1and m, = 010. L =
0.45(1)+0.35(2)+0.11(3)+0.09(3) = 1.75
bits/message.

e Example: 1010 = my, my, or m5, m,. It is not uniquely
decodable.

e The first one is uniquely decodable because it is a prefix

conditionned code. This means that the prefix of any
codeword is not another codeword.
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Huffmann codes &

N\

e We can use Huffmann’s coding algorithm to design
prefix conditionned codes.
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