ELG3175 Introduction to Communication Systems Digital Communication Example and Introduction to Information theory

www.uOttawa.ca

Digital Communication Engineering Example

- The communication engineer must design a communication system that meets certain criteria
 - Data rate determined by SQNR (in ADC)
 - Bandwidth considerations

Example

- An analog signal, m(t), has the following properties:
 - -5V < m(t) < 5V
 - Bandwidth = 10 kHz
 - Power = 4W
- We wish to convert this to a digital signal using PCM and then transmit using digital PAM.
- Design constraints
 - SQNR > 70 dB
 - Bandwidth < 50 kHz
 - Raised cosine pulses with 30% excess bandwidth is used.

- Sampling rate is 30% greater than Nyquist rate. uOttawa

What we need to solve

- What is the minimum number of quantization levels required if we want SQNR > 70 dB?
- If we represent each sample by *N* bits/sample, what should *N* be?
- If we sample at a sample rate $f_s = 1.3f_N$, what is the data rate in bits/sec at the output of the PCM modulator?
- What is minimum value of M for M-ary PAM to satisfy our bandwidth constraint?

SQNR

- SQNR = $12P_m/\Delta^2 = 3P_mL^2/m_p^2 > 10^7$.
- $L^2 > 10^7 25/(3)(4) = 2.08 \times 10^7$.
- L > 4564
- $L = 2^{N}$, therefore $N = \log_2(L) > \log_2(4564)$
- N>12.2 bits/sample, which means we would select N = 13 bits/sample.

Bandwidth

- $f_N = (2)(10 \text{ kHz}) = 20 \text{ ksamples/sec}$
- $f_s = 1.3f_N = 26$ ksamples/sec
- $R_b = f_s N = 338 \text{ kbps}$
- BW = $R_s(1+\alpha)/2$
- $R_s < 45 \text{kHz} \times 2/(1+\alpha)$
- R_s < 90/1.3 = 69.23 ksymbols/sec
- $R_s = R_b/k < 69.23$ ksymbols/sec
- k> R_b/69.23 = 4.88
- We choose k = 5, M = 2k, therefore we should use 32level PAM

Information theory

- Information theory quantifies information content and determines the limits on the amount of information we can transmit
- Claude Shannon quantified information in 1949.
- Huffmann coding allows us to transmit data efficiently
- Error Control coding allows us to use controlled redundancy to correct errors that occur in transmission.

Amount of information contained in a message

- We have a source that outputs messages from a set of possible messages {m₁, m₂, ..., m_N}.
- Let's assume that the source is memoryless which means that the transmission of future messages does not depend on which messages were transmitted in the past. (messages are transmitted independently)
- Each message has a probability of being transmitted $\{p(m_1), p(m_2), \dots p(m_N)\}$.
- Messages with low probabilities of transmission have higher information content.
 - Example: m_1 = it will be sunny, m_2 = there will be a tornado.

Amount of information

- Here $p(m_1) > p(m_2)$ but $I(m_1) < I(m_2)$.
- Suppose message $m_3 = m_1 m_2$. Assuming independent messaging, $p(m_3) = p(m_1)p(m_2)$, but clearly $I(m_3) = I(m_1)+I(m_2)$.
- Therefore $I(m_i) = \log_b(1/p(m_i)) = -\log_b(p(m_i))$.
- b = 2, $I(m_i)$ is measured in bits (or Shannons).
- b = 3, $I(m_i)$ is measured in ternary symbols
- $b = e, I(m_i)$ is measured in nats
- b = 10, $I(m_i)$ is measured in Hartleys

Example

- $M = \{m_1, m_2, m_3, m_4\}$ with $P = \{0.35, 0.11, 0.45, 0.09\}$
- $I(m_1) = 1.51$ bits
- $I(m_2) = 3.18$ bits
- $I(m_3) = 1.15$ bits
- $I(m_4) = 3.47$ bits
- The probability that the source outputs m₁ followed by message m₂ is 0.35×0.11 = 0.0385. The information in these two messages is -log₂(0.0385) = 4.69 bits = 1.51+3.18.

Average information: Entropy of the source

- At each signaling instant, the source outputs a message.
- Assuming that the message output is m_i , then the source has output $I(m_i)$ bits of information.
- The expected amount of information to be output at each signaling instant is called the entropy of the source *H*(*M*).

$$H(M) = -\sum_{i=1}^{N} p(m_i) \log_b p(m_i)$$

Example

- $M = \{m_1, m_2, m_3, m_4\}$ et $P = \{0.35, 0.11, 0.45, 0.09\}$
- $I(m_1) = 1.51$ bits
- $I(m_2) = 3.18$ bits
- $I(m_3) = 1.15$ bits
- $I(m_4) = 3.47$ bits
- H(M) = 0.35(1.51)+0.11(3.18)+0.45(1.15)+0.09(3.47)
 = 1.71 bits/message.

Source coding

- Consider the source of the previous example.
- H(M) = 1.71 bits/message.
- If we encode the 4 messages as follows, $m_1 = 00$, $m_2 = 01$, $m_3 = 10$ et $m_4 = 11$, we get an average message length of 2 bits/message. *L* is the average message length.
- We can show that $H(M) \leq L$.
- Suppose we encode the source as follows:
- m₁ = 01, m₂ = 000, m₃ = 1 and m₄ = 001. L = 0.45(1)+0.35(2)+0.11(3)+0.09(3) = 1.75 bits/message.
- Example: 010101000010010010010011 = m_1 , m_1 , m_1 , m_2 , m_1 , m_4 , m_4 , m_4 , m_4 , m_3 : it is uniquely decodable

Source coding

- Supose we encode the source as follows:
- $m_1 = 10, m_2 = 100, m_3 = 1$ and $m_4 = 010$. L = 0.45(1)+0.35(2)+0.11(3)+0.09(3) = 1.75 bits/message.
- Example: $1010 = m_1, m_1$, or m_3, m_4 . It is not uniquely decodable.
- The first one is uniquely decodable because it is a prefix conditionned code. This means that the prefix of any codeword is not another codeword.

• We can use Huffmann's coding algorithm to design prefix conditionned codes.





