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Digital Communication Engineering 

Example 

• The communication engineer must design a 
communication system that meets certain criteria 

– Data rate determined by SQNR (in ADC) 

– Bandwidth considerations 



Example 

• An analog signal, m(t), has the following properties: 
  

– -5V < m(t) < 5V 

– Bandwidth = 10 kHz 

– Power = 4W 

• We wish to convert this to a digital signal using PCM 
and then transmit using digital PAM.   

• Design constraints 

– SQNR > 70 dB 

– Bandwidth < 50 kHz 

– Raised cosine pulses with 30% excess bandwidth is 
used. 

– Sampling rate is 30% greater than Nyquist rate. 

 



What we need to solve 

• What is the minimum number of quantization levels 
required if we want SQNR > 70 dB? 

• If we represent each sample by N bits/sample, what 
should N be? 

• If we sample at a sample rate fs = 1.3fN, what is the 
data rate in bits/sec at the output of the PCM 
modulator? 

• What is minimum value of M for M-ary PAM to satisfy 
our bandwidth constraint? 

 



SQNR 

• SQNR = 12Pm/ 2 = 3PmL2/mp
2 > 107.  

• L2 > 10725/(3)(4) = 2.08×107. 

• L > 4564 

• L = 2N, therefore N = log2(L) > log2(4564) 

• N>12.2 bits/sample, which means we would select N = 
13 bits/sample. 



Bandwidth 

• fN = (2)(10 kHz) = 20 ksamples/sec 

• fs = 1.3fN = 26 ksamples/sec 

• Rb = fsN = 338 kbps 

• BW = Rs(1+ )/2 

• Rs < 45kHz×2/(1+ ) 

• Rs < 90/1.3 = 69.23 ksymbols/sec 

• Rs = Rb/k < 69.23 ksymbols/sec 

• k> Rb/69.23 = 4.88 

• We choose k = 5, M = 2k, therefore we should use 32-
level PAM 



Information theory 

• Information theory quantifies information content and 
determines the limits on the amount of information we 
can transmit 

• Claude Shannon quantified information in 1949. 

• Huffmann coding allows us to transmit data efficiently 

• Error Control coding allows us to use controlled 
redundancy to correct errors that occur in transmission. 



Amount of information contained in a 
message 

• We have a source that outputs messages from a set of 
possible messages{m1, m2, …, mN}. 

• Let’s assume that the source is memoryless which 
means that the transmission of future messages does 
not depend on which messages were transmitted in the 
past. (messages are transmitted independently) 

• Each message has a probability of being transmitted 
{p(m1), p(m2), … p(mN)}. 

• Messages with low probabilities of transmission have 
higher information content. 

– Example: m1 = it will be sunny, m2 = there will be a 
tornado. 



Amount of information 

• Here p(m1)>p(m2) but I(m1)<I(m2). 

• Suppose message m3 = m1m2.  Assuming independent 
messaging, p(m3) = p(m1)p(m2), but clearly I(m3) = 
I(m1)+I(m2).   

• Therefore I(mi) = logb(1/p(mi)) = -logb(p(mi)). 

• b = 2, I(mi) is measured in bits (or Shannons). 

• b = 3, I(mi) is measured in ternary symbols 

• b = e, I(mi) is measured in nats 

• b =10, I(mi) is measured in Hartleys 

 



Example 

• M = {m1, m2, m3, m4} with P = {0.35, 0.11, 0.45, 
0.09} 

• I(m1) = 1.51 bits 

• I(m2) = 3.18 bits 

• I(m3) = 1.15 bits 

• I(m4) = 3.47 bits 

 

• The probability that the source outputs m1 followed by 
message m2 is 0.35×0.11 = 0.0385.  The information in 

these two messages is –log2(0.0385) = 4.69 bits = 
1.51+3.18. 



Average information: Entropy of the 

source 

• At each signaling instant, the source outputs a 
message.   

• Assuming that the message output is mi, then the 
source has output I(mi) bits of information. 

• The expected amount of information to be output at 
each signaling instant is called the entropy of the 
source H(M). 
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Example 

• M = {m1, m2, m3, m4} et P = {0.35, 0.11, 0.45, 0.09} 

• I(m1) = 1.51 bits 

• I(m2) = 3.18 bits 

• I(m3) = 1.15 bits 

• I(m4) = 3.47 bits 

• H(M) = 0.35(1.51)+0.11(3.18)+0.45(1.15)+0.09(3.47) 
= 1.71 bits/message. 

 



Source coding 

• Consider the source of the previous example.   

• H(M) = 1.71 bits/message. 

• If we encode the 4 messages as follows, m1 = 00, m2 = 
01, m3 = 10 et m4 = 11, we get an average message 
length of 2 bits/message. L is the average message 
length. 

• We can show that H(M) ≤ L. 

• Suppose we encode the source as follows: 

• m1 = 01, m2 = 000, m3 = 1 and m4 = 001.  L = 
0.45(1)+0.35(2)+0.11(3)+0.09(3) = 1.75 
bits/message. 

• Example: 010101000010010010010011 = m1, m1, m1, 
m2, m1, m4, m4, m4, m4, m3 : it is uniquely decodable 



Source coding 

• Supose we encode the source as follows: 

• m1 = 10, m2 = 100, m3 = 1 and m4 = 010.  L = 
0.45(1)+0.35(2)+0.11(3)+0.09(3) = 1.75 
bits/message. 

• Example: 1010 = m1, m1, or m3, m4.  It is not uniquely 
decodable. 

• The first one is uniquely decodable because it is a prefix 
conditionned code.  This means that the prefix of any 
codeword is not another codeword. 
 



Huffmann codes 

• We can use Huffmann’s coding algorithm to design 
prefix conditionned codes. 
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m3 = 1, m1 = 01, m2 = 001 

m4 = 000. 


