ELG3175 Introduction to Communication Systems Digital Communications: Analog to Digital Conversion, PAM, PWM and PCM

www.uOttawa.ca

Analog to Digital Conversion

- MP3, CDs, 2nd, 3rd and 4th generation cellular, satellite radio, Bell Expressvu etc.
 - Technologies that transmit audio and video signals digitally.
 - Digital signals are more robust in the presence of noise and interference compared to analog signals.
 - The first step in ADC is sampling.

Sampling theory

- Let us start with an analog signal m(t) that has bandwidth B_m .
 - We wish to sample this signal so as to produce a digital signal.
 - We represent the sampled signal $m_s(t)$ by:

$$m_s(t) = \sum_{n=-\infty}^{\infty} m(nT_s)\delta(t - nT_s) = m(t) \times \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

• where $T_s = 1/f_s$ is the sampling interval and f_s is the sampling rate. The spectum of $m_s(t)$ is:

$$M_{s}(f) = M(f) * \mathcal{F}\left\{\sum_{n=-\infty}^{\infty} \delta(t - nT_{s})\right\}$$

Spectrum of a sampled signal

• The signal $\sum_{n=-\infty}^{\infty} \delta(t-nT_s)$ is periodic with period T_s . - We can represent it by a Fourier series.

$$\sum_{n=-\infty}^{\infty} \delta(t - nT_s) = \sum_{n=-\infty}^{\infty} X_n e^{j2\pi nf_s t} = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} e^{j2\pi nf_s t}$$

where
$$X_n = \frac{1}{T_s} \int_{-T_s/2}^{T_s/2} \delta(t) e^{-j2\pi n f_s t} dt = \frac{1}{T_s}$$

therefore $\mathcal{F}\left\{\sum_{n=-\infty}^{\infty} \delta(t-nT_s)\right\} = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} \delta(f-nf_s)$ and...

Reconstruction of m(t) from $m_s(t)$

- $M_s(f)$ is given in the previous figure for $f_s < 2B_m$ (b) and $f_s > 2B_m$ (c).
- We can get M(f) from $M_s(f)$ by using a LPF in (c).
- Therefore, to be able to recover m(t) from $m_s(t)$, we need $f_s > 2B_m$. The Nyquist rate is $f_s = 2B_m$.

Periodic impulse train

- The impulse train $x(t) = \sum_{s=1}^{\infty} \delta(t nT_s)$ is not a practical signal.
- In reality a practical sampling signal is given by:

- The signal p(t) is $p(t) = \sum_{n=-\infty}^{\infty} g(t nT_s) = g(t) * \sum_{n=-\infty}^{\infty} \delta(t nT_s)$
- and $P(f) = \frac{G(f)}{B_{q}} \sum_{n=-\infty}^{\infty} \delta(f - nf_{s})$ • Therefore $B_{p} = B_{q}^{T_{s}}$.

Exemple

- In the previous example, $g(t) = \prod[(t-\tau/2)/\tau]$, therefore $G(f) = \tau \operatorname{sinc}(f\tau)e^{-j\pi f\tau}$.
- Therefore

$$P(f) = \frac{\tau}{T_s} \operatorname{sinc} \P \tau \, \underline{e}^{-j\pi f\tau} \sum_{n=-\infty}^{\infty} \delta(f - nf_s)$$
$$= \frac{\tau}{T_s} \sum_{n=-\infty}^{\infty} \operatorname{sinc} \P f_s \tau \, \underline{e}^{-j\pi nf_s \tau} \delta(f - nf_s)$$

Pulse modulation

• We can transmit samples of a signal using impulses.

Pulse coded modulation (PCM)

- We want to convert each sample of m_s(t) into a codeword of length N bits.
- Assuming that -m_p < m(t) <+m_p any sample ms(nTs) can take on an infinite number of values between the maximum and minimum value of m(t).
- But a codeword of length N can only represent 2^N different values.
- We need to quantize (round) the samples prior to encoding.

Input-output relationship of a uniform quantizer

 $0101010000011 = (7/2)\Delta, -(3/2)\Delta, (3/2)\Delta, \Delta, (5/2)\Delta.$

Quantization noise

- $m_Q(nT_s) = m_s(nT_s) + e_Q(nT_s)$.
- $e_Q(nT_s) = m_Q(nT_s) m_s(nT_s)$
- $-\Delta/2 < e_Q(nT_s) < \Delta/2$
- When there are many quantizer levels, we can assume that the error is uniformly distributed between $-\Delta/2$ et $\Delta/2$.
- $f_e(x) = 1/\Delta$ for $-\Delta/2 < x < \Delta/2$. (and 0 otherwise).
- The power of a random signal is $E[e_Q^2(nT_s)] = \Delta^2/12$.
- $L\Delta = 2m_p$. $(L = 2^N)$. Therefore $\Delta = 2m_p/L$. Therefore the quantization noise is $\Delta^2/12 = m_p^2/3L^2$.
- Signal to quantization noise ratio SQNR = $3L^2P_m/m_p^2$.

SQNR

- SQNR is proportional to P_m .
- Power depends on amplitude (volume) (exemple: some people speak louder than others). Large variation between samples, 40dB.
- Most samples are closer to 0 than to peak values.

Power of the quantization error

Example

 Uniform vs nonuniform quantization for a random voice signal

$\Delta = \frac{1}{4}$. $E[e_Q^2(T_s)] = \frac{1}{16 \times 12} = \frac{1}{192}$. SQNR = 128 = 21 dB.

- P(0<m<0.2) = 0.095, ∆ = 0.2 (same for P(-0.2<m<0))
- P(0.2 < m < 0.41) = 0.089, $\Delta = 0.21$
- P(0.41<m<0.63)=0.081, ∆ = 0.22
- P(0.63 < m < 0.86) = 0.07, $\Delta = 0.23$
- P(0.86 < m < 1.1) = 0.61, $\Delta = 0.24$
- P(1.1 < m < 1.35) = 0.048, $\Delta = 0.25$
- P(1.35<m<1.62)=0.035, ∆ = 0.27
- P(1.62 < m < 2) = 0.018, $\Delta = 0.28$

 $E[e_Q^2(T_s)] = 2 \times [0.095 \times 0.2^2/12 + 0.089 \times 0.21^2/12 + 0.081 \times 0.22^2/12 + ... \\ = 1/232.3. \text{ SQNR} = 154.8 = 21.9 \text{ dB}$

Compression/Expander: Compandered

• "Compresser – Expander" = "compander"

Produces non-uniform quantization.

