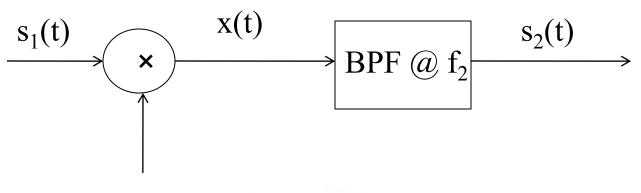
ELG3175 Introduction to **Communication Systems** Frequency Translation, **Frequency Division** Multiplexing and Superheterodyne **Receivers**

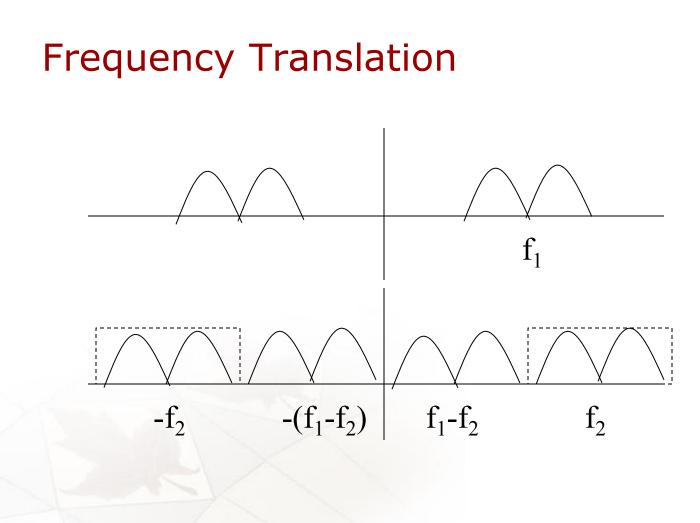
www.uOttawa.ca

Frequency Translation



- Suppose we have a modulated wave s₁(t) whose spectrum is centered around frequency f₁ and we wish to move it upward in frequency, so that its spectrum is centered around f₂.
- This can be accomplished by multiplying $s_1(t)$ by $cos2\pi(f_2-f_1)t$ and passing it through a BPF.

Frequency Translation

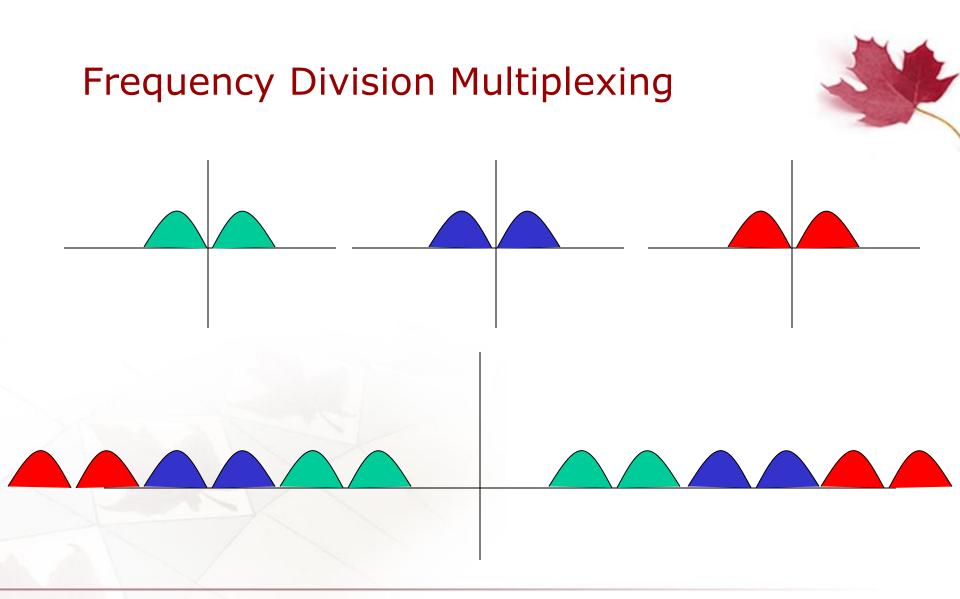


 $\cos 2\pi (f_2 - f_1)t$

 $X(f) = 0.5S_1(f-f_2+f_1)+0.5S_1(f+f_2-f_1)$

Downward Frequency Translation (Downconversion)

 We can also decrease the frequency of a modulated signal by multiplying by cos2π(f₁-f₂)t



Frequency Division Multiplexing

- When multiple signals are to be transmitted they can be multiplexed in frequency by assigning different carrier frequencies that are sufficiently spaced.
- For example, in a DSB-SC system the messages $m_1(t)$, $m_2(t)$ and $m_3(t)$ can be multiplexed by assigning carriers $A_{c1}cos2\pi f_1t$, $A_{c2}cos2\pi f_2t$ and $A_{c3}cos2\pi f_3t$.
- The signal that is transmitted on the common channel is
- $s(t) = A_{c1}m_1(t) \cos 2\pi f_1 t + A_{c2}m_2(t) \cos 2\pi f_2 t + A_{c3}m_3(t) \cos 2\pi f_3 t$.
- The spectrum of the signals are:

Signal Separation

- In the previous example, we can demodulate m₁(t), for example, by multiplying by cos2pf1t and using an LPF.
- But in conventional AM or FM demodulation, the detector requires 1 AM or 1 FM signal at its input.
- Filtering is required.
 - Multiple RF filters?
 - Tunable RF filters?
 - Downconversion?

Superheterodyne Receiver

- Combines tunable RF filters with downconversion to produce a unique AM or FM signal at the input to the detector
- RF filter must be able to remove the image frequencies.

