Université d'Ottawa | University of Ottawa

ELG3175 Introduction to Communication Systems Angle Modulation Continued

www.uOttawa.ca

Les caractéristiques des signaux modulés en angle

	PM Signal	FM Signal
Instantaneous phase $\phi_i(t)$	$k_p m(t)$	$2\pi k_f \int_0^t m(\tau) d\tau$
Instantaneous frequency	$f_c + \frac{k_p}{2\pi} \frac{dm(t)}{dt}$	$f_c + k_f m(t)$
Maximum phase deviation $\Delta \phi_{max}$	$k_p m(t) _{\max}$	$2\pi k_f x(t) _{\max} \text{où}$ $x(t) = \int_{t}^{t} m(\tau) d\tau$
Maximum frequency deviation Δf_{max}	$\frac{k_p}{2\pi} x(t) _{\max} \begin{array}{l} \text{Où} \\ x(t) = \frac{dm(t)}{dt} \end{array}$	$k_f m(t) _{\max}$
Power	$\frac{A_c^2}{2}$	$\frac{A_c^2}{2}$

Modulation index

• Assume that $m(t) = A_m \cos(2\pi f_m t)$. The resulting FM and PM signals are :

$$s_{PM}(t) = A_c \cos(2\pi f_c t + k_p A_m \cos(2\pi f_m t))$$

$$s_{FM}(t) = A_c \cos\left(2\pi f_c t + \frac{A_m k_f}{f_m} \sin(2\pi f_m t)\right)$$

• For the PM signal, we define

$$\beta_p = k_p A_m = \Delta \phi_{\max}$$

• For the FM signal

$$\beta_F = \frac{k_f A_m}{f_m} = \frac{\Delta f_{\max}}{f_m}$$

Modulation indices

• For any *m*(*t*) which has bandwidth *B_m*, we define the modulation indices as :

$$\beta_p = k_p |m(t)|_{\max} = \Delta \phi_{\max}$$
$$\beta_F = \frac{k_p |m(t)|_{\max}}{B_m} = \frac{\Delta f_{\max}}{B_m}$$

Example

- The signal $m(t) = 5 \text{sinc}^2(10t)$. Find the modulation index for
- 1. PM modulation with $k_p = 0.3\pi$ rads/V.
- 2. FM modulation with $k_f = 20$ Hz/V.
 - SOLUTION
- $|m(t)|_{max} = 5$, therefore $\beta_p = 0.3\pi \times 5 = 1.5\pi$ rads.
- $B_m = 10$ Hz, therefore $\beta_F = 20 \times 5/10 = 10$.

Narrowband FM

• Consider an FM signal :

$$s_{FM}(t) = A_c \cos \left[2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau \right]$$

where $\left| 2\pi k_f \int_{-\infty}^t m(\tau) d\tau \right| <<1$

- We say that $s_{FM}(t)$ is a narrowband FM signal.
- For example, consider when $m(t) = A_m \cos(2\pi f_m t)$.

$$s_{FM}(t) = A_c \cos\left(2\pi f_c t + \frac{A_m k_f}{f_m} \sin(2\pi f_m t)\right)$$

$$s_{FM}(t) = A_c \cos\left(2\pi f_c t + \beta_F \sin(2\pi f_m t)\right)$$

uOttawa

Narrowband FM

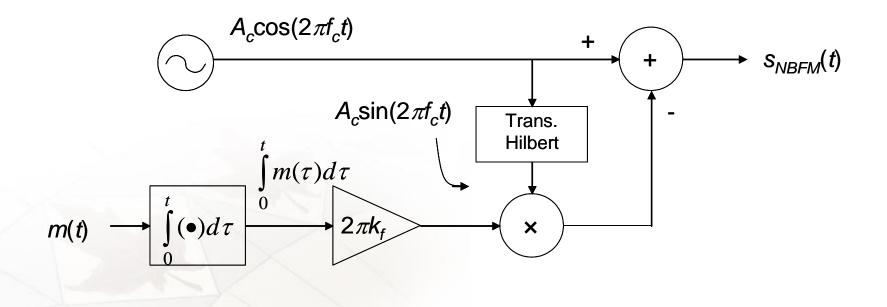
- When $\beta_F << 1$, the FM signal is NBFM.
- cos(A+B) = cos(A)cos(B)-sin(A)sin(B). Therefore

$$s_{FM}(t) = A_c \cos\left[2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau\right]$$

= $A_c \cos(2\pi f_c t) \cos\left(2\pi k_f \int_0^t m(\tau) d\tau\right) - A_c \sin(2\pi f_c t) \sin\left(2\pi k_f \int_0^t m(\tau) d\tau\right)$
 $\approx A_c \cos(2\pi f_c t) - A_c \left(2\pi k_f \int_0^t m(\tau) d\tau\right) \sin(2\pi f_c t)$

 $(\text{if } A \ll 1, \cos(A) \approx 1 \text{ and } \sin(A) \approx A.)$

NBFM Modulator



NBFM Spectrum

• The spectrum of an NBFM signal is given by:

$$S_{NBFM}(f) = \frac{A_c}{2} \delta(f - f_c) + \frac{A_c}{2} \delta(f + f_c) + \frac{A_c k_f}{f - f_c} M(f - f_c) - \frac{A_c k_f}{f + f_c} M(f + f_c)$$

- Assuming M(0) = 0, then $M(f-f_c) = 0$ at $f=f_c$ and $M(f+f_c) = 0$ at $f=-f_c$.
- The bandwidth of $s_{NBFM}(t)$ is therefore $2B_m$ where B_m is the bandwidth of m(t).

Wideband FM - WBFM

- For an FM signal to be NBFM, $\beta_F << 1$.
- Any signal that is not narrowband is therefore wideband.
- However, typically $\beta_F > 1$ for an FM signal to be considered wideband.
- The bandwidth of WBFM signals is larger than NBFM since Δf_{max} is increased.

WBFM signal for $m(t) = A_m \cos 2\pi f_m t$ and its complex envelope.

- Let us consider $m(t) = A_m \cos 2\pi f_m t$.
- The resulting FM signal is :

$$s_{FM}(t) = A_c \cos\left[2\pi f_c t + \frac{Ak_f}{f_m}\sin(2\pi f_m t)\right] = A_c \cos\left[2\pi f_c t + \beta_F \sin(2\pi f_m t)\right]$$

$$s_{FM}(t) = A_c \operatorname{Re} \left\{ e^{j(2\pi f_c t + \beta_F \sin(2\pi f_m t))} \right\}$$

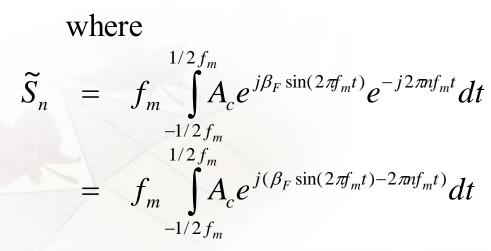
$$s_{FM}(t) = \operatorname{Re}\{\widetilde{s}_{FM}(t)e^{j2\pi f_c t}\}\$$

$$\widetilde{s}_{FM}(t) = A_c e^{j\beta_F \sin(2\pi f_m t)}$$

The Fourier series of the WBFM signal when $m(t) = A_m \cos 2\pi f_m t$.

• The preceeding complex envelope is periodic with fundamental frequency f_m .

$$\widetilde{s}_{FM}(t) = \sum_{n=-\infty}^{\infty} \widetilde{S}_n e^{j2\pi n f_m t}$$



The Fourier series of the WBFM signal when $m(t) = A_m \cos 2\pi f_m t$.

• Replacing $2\pi f_m t$ by x, \widetilde{S}_n becomes

$$\widetilde{S}_n = \frac{A_c}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta_F \sin x - nx)} dx$$

• The *n*th order Bessel function of the first kind, $J_n(\beta)$ is given by:

$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - nx)} dx$$

• Therefore $\tilde{S}_n = A_c J_n(\beta_F)$

The Fourier series of the WBFM signal when $m(t) = A_m \cos 2\pi f_m t$.

• Therefore we can express the complex envelope of the WBFM signal as

$$\widetilde{s}_{FM}(t) = \sum_{n=-\infty}^{\infty} A_c J_n(\beta_F) e^{j2\pi n f_m t}$$

• And the WBFM signal itself becomes:

$$s_{FM}(t) = \operatorname{Re}\{\widetilde{s}_{FM}(t)e^{j2\pi f_c t}\}\$$
$$= \operatorname{Re}\left\{\sum_{n=-\infty}^{\infty} A_c J_n(\beta_F)e^{j(2\pi f_c t + 2\pi n f_m t)}\right\}\$$
$$= \sum_{r=-\infty}^{\infty} A_c J_n(\beta_F)\cos(2\pi (f_c + n f_m)t))$$

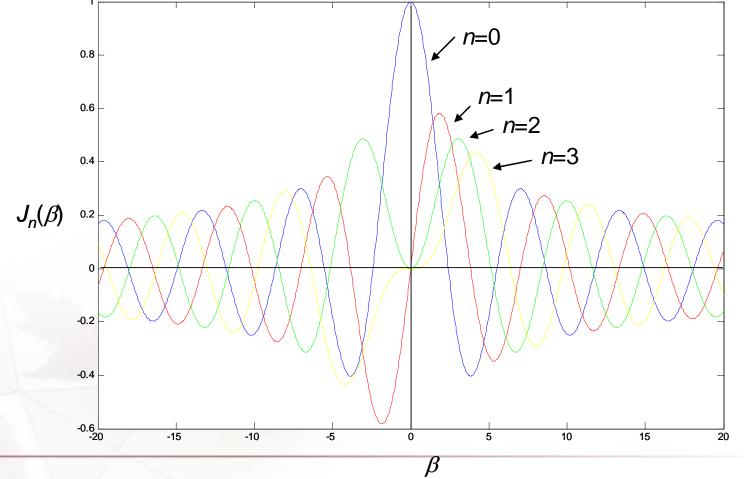
Spectrum of the WBFM signal when $m(t) = A_m \cos 2\pi f_m t$.

• The spectrum of this signal is:

$$S_{FM}(f) = \frac{A_c}{2} \sum_{n=-\infty}^{\infty} J_n(\beta_F) \left[\delta(f - f_c - nf_m) + \delta(f + f_c + nf_m) \right]$$

- This expression shows that the FM signal's spectrum is made up of an infinite number of impulses at frequencies $f = f_c + nf_m$.
- Therefore, theoretically, this WBFM signal has infinite bandwidth.
- However, the properties of the Bessel function show that most of these impulses contribute little to the overall power of the signal and are negilgible.
 - We define the practical bandwidth as the range of frequencies which contains at least 99% of the total power of the WBFM signal.

The function $J_n(\beta)$



Properties of $J_n(\beta)$

1) If n is an integer : $J_{n}(\beta) = J_{-n}(\beta) \text{ for even } n$ and $J_{n}(\beta) = -J_{-n}(\beta) \text{ for odd } n$ 2) when $\beta << 1$ $J_{0}(\beta) \approx 1$ $J_{1}(\beta) \approx \beta/2$ and

and

$$J_n(\beta) \approx 0, n >$$

3) $\sum_{n=1}^{\infty} J_n^2(\beta) = 1$

Power of the FM signal

• The power of an FM signal is:

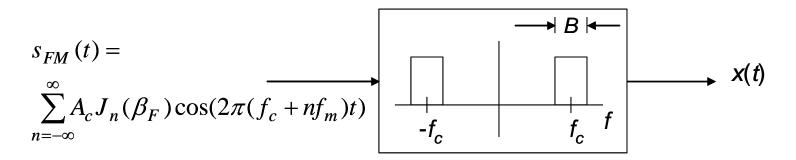
$$P_{FM} = \frac{A_c^2}{2}$$

$$s_{FM}(t) = \sum_{n=-\infty}^{\infty} A_c J_n(\beta_F) \cos(2\pi (f_c + nf_m)t))$$

• The power of the above expression is:

$$P = \frac{A_c^2}{2} \sum_{n=-\infty}^{\infty} J_n^2(\beta_F)$$

Filtering a WBFM signal to limit its bandwidth.



We want to choose *B* so that the power of x(t)Is at least 0.99× the power of $s_{FM}(t)$.

$$x(t) = \sum_{n=-X}^{X} A_{c} J_{n}(\beta_{F}) \cos(2\pi (f_{c} + nf_{m})t)$$

where X is the greatest integer that satisfies :

$$f_c + Xf_m \le f_c + \frac{B}{2}$$
 and $f_c - Xf_m \ge f_c - \frac{B}{2}$

• The power of x(t) is:

$$P_x = \frac{A_c^2}{2} \sum_{n=-X}^X J_n^2(\beta_F)$$

• Therefore we must choose X so that:

$$\sum_{n=-X}^{X} J_n^2(\beta_F) \ge 0.99$$

• We know that $J_n^2(\beta_F) = J_{-n}^2(\beta_F)$. Therefore

$$J_0^2(\beta_F) + 2\sum_{n=1}^X J_n^2(\beta_F) \ge 0.99$$

Values of $J_n(\beta)$.

								the second se
п	<i>β</i> =0.1	β=0.2	<i>β</i> =0.5	<i>β</i> =1	<i>β</i> =2	<i>β</i> =3	<i>β</i> =5	<i>β</i> =10
0	0.997	0.99	0.938	0.765	0.224	-0.2601	-0.178	-0.246
1	0.05	0.1	0.242	0.44	0.577	0.3391	-0.323	0.043
2	0.001	0.005	0.031	0.115	0.353	0.4861	0.047	0.255
3	2 10-5≈0	1.6 10-4	0.0026	0.02	0.129	0.3091	0.365	0.058
4				0.002	0.034	0.1320	0.391	-0.220
5					0.007	0.0430	0.261	-0.234
6					0.001	0.0114	0.131	-0.014
7						0.0025	0.053	0.217
8							0.018	0.318
9							0.006	0.292
10		X					0.001	0.207
11			1					0.123
12								0.063
13								0.029

Example

- The signal m(t) = A_mcos(2πf_mt) is to be transmitted using FM techniques. Find the practical bandwidth if
 (a) A_m = 5V, f_m = 20 Hz and k_f = 4 Hz/V
 (b) A_m = 10V, f_m = 400 Hz and k_f = 200 Hz/V.
- SOLUTION

(a) IN this example, $\beta_F = (5)(4)/(20) = 1$. We need to find X so that $S = J_0^2(\beta_F) + 2\sum J_n^2(\beta_F) \ge 0.99$.

• From the table, if X = 1, $S \stackrel{n=1}{=} (0.765^2 + 2 \times 0.44^2) = 0.9648$. If X = 2, $S = 0.9648 + 2 \times 0.115^2 = 0.9912$. Therefore X = 2 and $B = 4f_m$.

(b) Here, $\beta_F = (10)(200)/(400) = 5$. We can show that X = 6 yields S = 0.994. Therefore $B = 12f_m$.

Carson's Rule

- For $m(t) = A_m \cos(2\pi f_m t)$, When β is an integer, we always find that $X = \beta + 1$.
- Therefore we can estimate that the practical bandwidth of an FM signal is $B = 2(\beta_F + 1)f_m$.
- For any random m(t) with maximum value A_m and bandwidth B_m , the true bandwidth is difficult to find.
- According to Carson, the worst case is when the spectrum of m(t) is concentrated around f = B_m (such as a sinusoid).
- Based on experiments by Carson, the bandwidth of a WBFM signal, B_{FM} , can be estimated by

$$B_{FM} = 2(\beta_F + 1)B_m$$
 (*****)

