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Les caractéristiques des signaux modulés 
en angle  

PM Signal FM Signal 

Instantaneous phase 

fi(t) 

Instantaneous 

frequency 

Maximum phase 

deviation Dfmax  

                           où  

Maximum frequency 

deviation Dfmax  

                      où  

Power  

)(tmk p 
t

f dmk

0

)(2 

dt

tdmk
f

p

c

)(

2
 )(tmkf fc 

max|)(| tmk p
max|)(|2 txk f





t

dmtx  )()(

max|)(|
2

tx
k p


dt

tdm
tx

)(
)(  max|)(| tmk f

2

2
cA

2

2
cA



Modulation index 

• Assume that m(t) = Amcos(2fmt).  The resulting FM and 
PM signals are : 

 

 

 

 

• For the PM signal, we define 

 

 

• For the FM signal 
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Modulation indices 

• For any m(t) which has bandwidth Bm, we define the 
modulation indices as : 
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Example 

• The signal m(t) = 5sinc2(10t).  Find the modulation 
index for 

1. PM modulation with kp = 0.3 rads/V. 

2. FM modulation with kf = 20 Hz/V. 

– SOLUTION 

• |m(t)|max = 5, therefore p = 0.3×5 = 1.5 rads. 

 

• Bm = 10Hz, therefore F = 20×5/10 = 10. 



Narrowband FM 

• Consider an FM signal : 

 

 

 

 

 

 

• We say that sFM(t) is a narrowband FM signal. 

• For example, consider when m(t) = Amcos(2fmt).  
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Narrowband FM 

• When F << 1, the FM signal is NBFM. 

• cos(A+B) = cos(A)cos(B)-sin(A)sin(B).  Therefore 
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(if A << 1, cos(A) ≈ 1 and sin(A) ≈ A.) 



NBFM Modulator 
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NBFM Spectrum 

• The spectrum of an NBFM signal is given by: 

 

 

 

 

 

• Assuming M(0) = 0, then M(f-fc) = 0 at f=fc and M(f+fc) 
= 0 at f=-fc.   

• The bandwidth of sNBFM(t) is therefore 2Bm where Bm is 
the bandwidth of m(t). 
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Wideband FM - WBFM 

• For an FM signal to be NBFM, F << 1. 

• Any signal that is not narrowband is therefore 
wideband. 

• However, typically F > 1 for an FM signal to be 
considered wideband.  

• The bandwidth of WBFM signals is larger than NBFM 
since Dfmax is increased.   



WBFM signal for m(t) = Amcos2fmt and 
its complex envelope.  

• Let us consider m(t) = Amcos2fmt.   

• The resulting FM signal is : 
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The Fourier series of the WBFM signal 
when m(t) = Amcos2fmt.  

• The preceeding complex envelope is periodic with 
fundamental frequency fm.  
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The Fourier series of the WBFM signal 
when m(t) = Amcos2fmt.  

• Replacing 2fmt by x,         becomes 

 

 

 

 

• The nth order Bessel function of the first kind, Jn() is 
given by: 

 

 

 

• Therefore 
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The Fourier series of the WBFM signal 
when m(t) = Amcos2fmt.  

• Therefore we can express the complex envelope of the 
WBFM signal as 

 

 

 

• And the WBFM signal itself becomes: 
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Spectrum of the WBFM signal when m(t) 
= Amcos2fmt. 

• The spectrum of this signal is: 

 

 

 

• This expression shows that the FM signal’s spectrum is 
made up of an infinite number of impulses at 
frequencies f = fc+nfm.   

• Therefore, theoretically, this WBFM signal has infinite 
bandwidth.   

• However, the properties of the Bessel function show 
that most of these impulses contribute little to the 
overall power of the signal and are negilgible.   

– We define the practical bandwidth as the range of 
frequencies which contains at least 99% of the total 
power of the WBFM signal. 
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The function Jn() 
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Properties of Jn() 

If n is an integer : 

  Jn() = J-n() for even n   

   and 

  Jn() =-J-n() for odd n   

 

when  << 1 

  J0() ≈ 1  

  J1() ≈ /2  

  and 

  Jn() ≈ 0, n > 1  
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Power of the FM signal  

• The power of an FM signal is: 

 

 

 

 

 

 

• The power of the above expression is: 

2

2
c

FM

A
P 







n

mcFncFM tnffJAts ))(2cos()()( 







n

Fn
c J

A
P )(

2

2
2





Filtering a WBFM signal to limit its 
bandwidth.  
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We want to choose B so that the power of x(t)  

Is at least 0.99× the power of sFM(t).  

 

 

where X is the greatest integer that satisfies : 
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• The power of x(t) is: 

 

 

 

• Therefore we must choose X so that:  

 

 

 

• We know that Jn
2(F) = J-n

2(F). Therefore  
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Values of Jn().  
n =0.1 =0.2 =0.5 =1 =2 =3 =5 =10 

0 0.997 0.99 0.938 0.765 0.224 -0.2601 -0.178 -0.246 

1 0.05 0.1 0.242 0.44 0.577 0.3391 -0.323 0.043 

2 0.001 0.005 0.031 0.115 0.353 0.4861 0.047 0.255 

3 2
 

10-5≈0 1.6
 

10-4 0.0026 0.02 0.129 0.3091 0.365 0.058 

4 0.002 0.034 0.1320 0.391 -0.220 

5 0.007 0.0430 0.261 -0.234 

6 0.001 0.0114 0.131 -0.014 

7 0.0025 0.053 0.217 

8 0.018 0.318 

9 0.006 0.292 

10 0.001 0.207 

11 0.123 

12 0.063 

13 0.029 



Example 

• The signal m(t) = Amcos(2fmt) is to be transmitted 
using FM techniques.  Find the practical bandwidth if 

 (a) Am = 5V, fm = 20 Hz  and kf = 4 Hz/V 

 (b) Am = 10V, fm = 400 Hz and kf = 200 Hz/V.  

• SOLUTION 

 (a) IN this example, F = (5)(4)/(20) = 1.  We need to 
find X so that S =                                    .   

• From the table, if X = 1, S = (0.7652+2×0.442) = 
0.9648.  If X = 2, S = 0.9648+2×0.1152 = 0.9912.  
Therefore X = 2 and B = 4fm. 

 (b) Here, F = (10)(200)/(400) = 5.  We can show that 
X = 6 yields S = 0.994.  Therefore B = 12fm. 
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Carson’s Rule 

• For m(t) = Amcos(2fmt), When  is an integer, we 
always find that X = +1.   

• Therefore we can estimate that the practical bandwidth 
of an FM signal is B = 2(F+1)fm.   

• For any random m(t) with maximum value Am and 
bandwidth Bm, the true bandwidth is difficult to find.   

• According to Carson, the worst case is when the 
spectrum of m(t) is concentrated around f = Bm (such 
as a sinusoid).   

• Based on experiments by Carson, the bandwidth of a 
WBFM signal, BFM, can be estimated by  
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