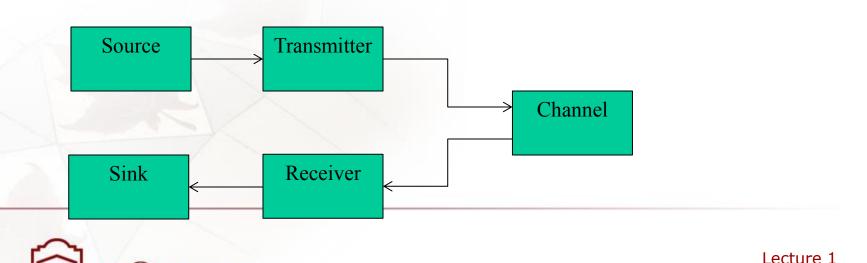
ELG3175 Introduction to Communication Systems Introduction and Review of LTI Systems and Convolution

www.uOttawa.ca

Introduction

awa

- Communications in EE refers to the transmission of information from one point to another using electrical systems.
- Organization of a communication system is shown below:



Elements of a Communication System

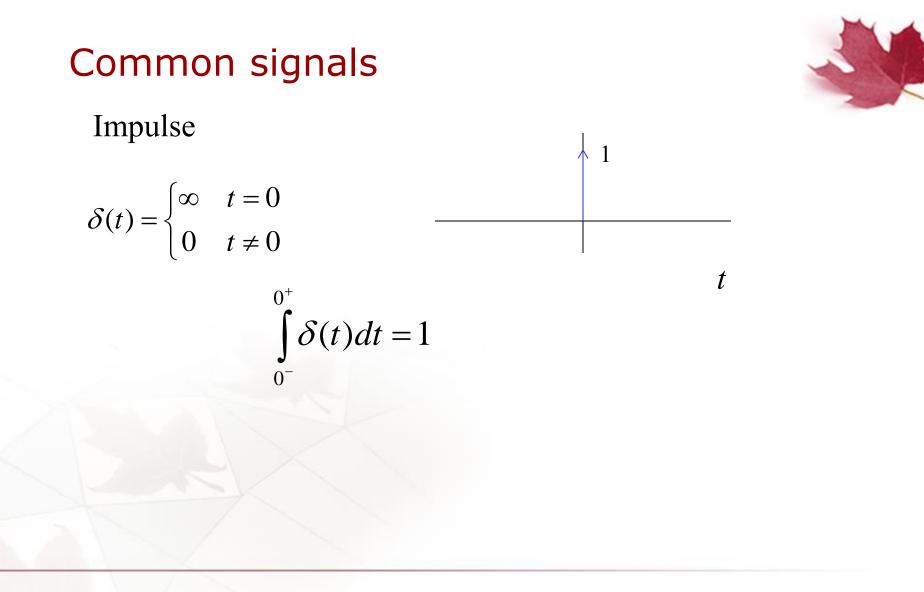
- Source
 - Produces a message signal
- Sink
 - Intended recipient of the message signal
- Channel
 - The medium over which the information will be transmitted from the source to the sink
- Transmitter
 - Message signal may not be in a suitable form for transmission over the channel. Transmitter converts message to a suitable form

Elements of a Communication System

- Receiver
 - The receiver converts the output of the channel into a form that is suitable for use by the sink. The receiver must do this without sacrificing the content or quality of the message.

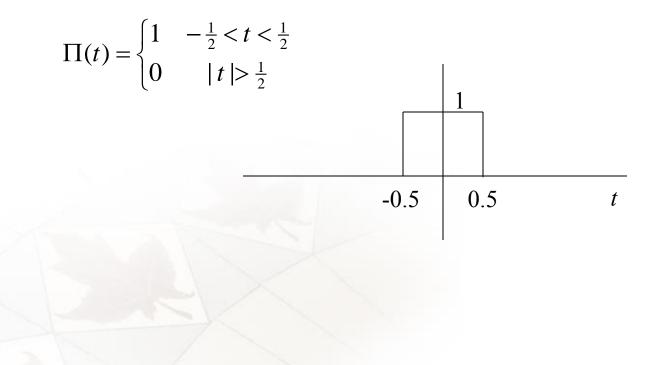
Goal of Communications Engineer

- To design transmitters and receivers that are
 - Cost efficient
 - Bandwidth efficient
 - Maximize information transfer (message at sink is a faithful representation of the source message).
 - Power efficient (uses as little power as necessary)
- Many of the above goals are contrary to one another
 - For example, one way to improve message fidelity at the receiver is to increase transmit power.
 - Therefore tradeoffs are required.



Common signals

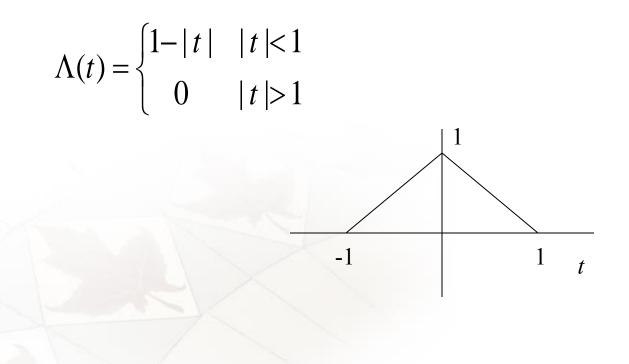
• Square pulse



lecture 1

Common Signals

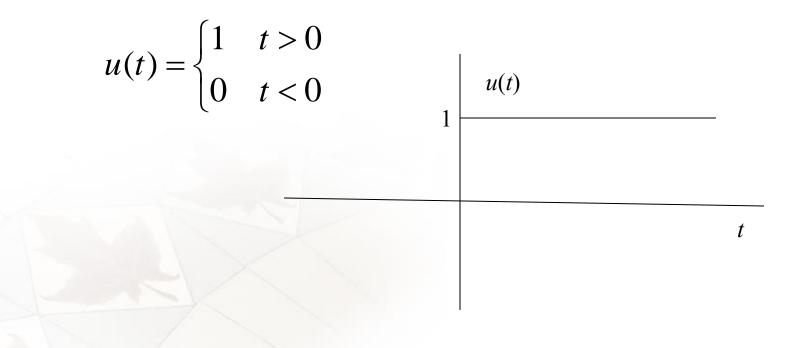
• Triangle pulse

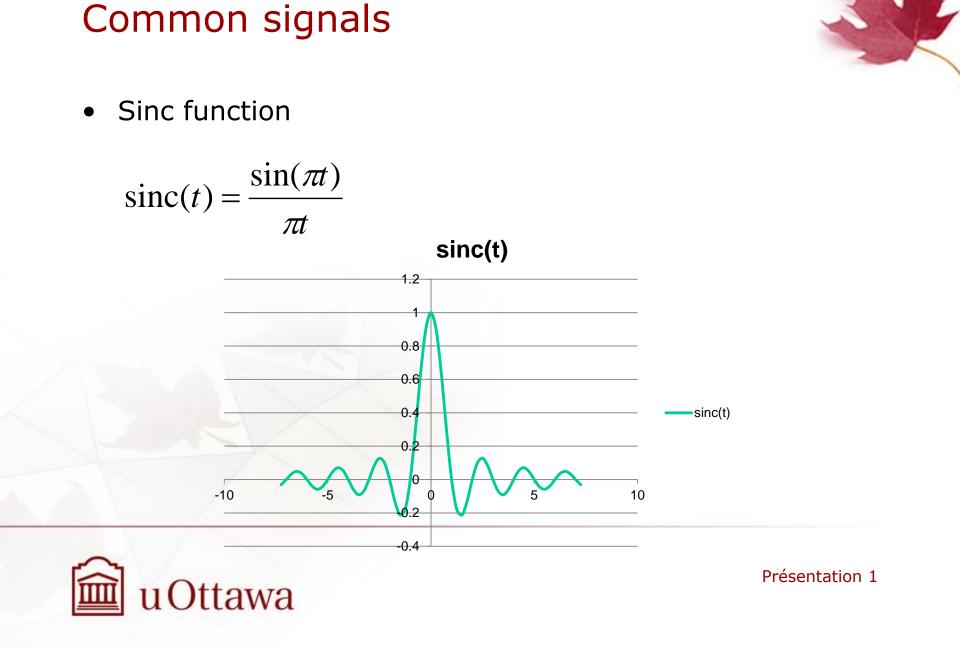


lecture 1

Common signals

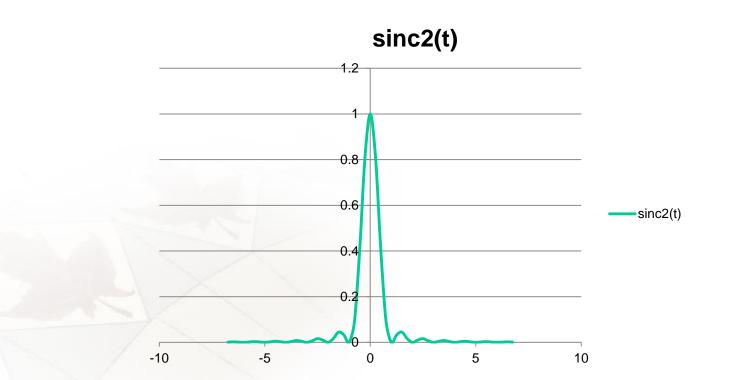
• Step function





Common signals

• Sinc squared function



Présentation 1

Review of Linear Time Invariant Systems

 A system performs a transformation on an input x(t) to produce an output y(t).

$$x(t) \longrightarrow H(\bullet) \longrightarrow y(t) = H(x(t))$$

Linear Systems

- A linear system is a system for which the superposition property applies.
 - Consider a system that produces output y₁(t) for input x₁(t) and output y₂(t) for input x₂(t) then we write

•
$$y_1(t) = H(x_1(t))$$
 and

•
$$y_2(t) = H(x_2(t))$$

- Then the system H is linear if for $x_3(t) =$ ax₁(t)+bx₂(t), y₃(t)=H(x₃(t)) = aH(x₁(t))+bH(x₂(t)) = ay₁(t)+by₂(t).

- Consider the following system: $y(t) = x^2(t)$.
- For input $x_1(t)$, the output is $y_1(t) = x_1^2(t)$ and for input $x_2(t)$, the output is $y_2(t) = x_2^2(t)$.
- For input $x_3(t) = \alpha x_1(t) + \beta x_2(t)$, the output is $y_3(t) = x_3^2(t) = (\alpha x_1(t) + \beta x_2(t))^2 = \alpha^2 x_1^2(t) + 2\alpha \beta x_1(t) x_2(t) + \beta^2 x_2^2(t)$.
- If the system is linear, $y_3(t)$ should be $\alpha y_1(t) + \beta y_2(t) = \alpha x_1^2(t) + \beta x_2^2(t) \neq y_3(t)$; therefore the system is not linear.

- A system has input-output relationship y(t) = tx(t).
- For input $x_3(t) = \alpha x_1(t) + \beta x_2(t)$, the output is $y_3(t) = t(\alpha x_1(t) + \beta x_2(t)) = \alpha(tx_1(t)) + \beta(tx_2(t)) = \alpha y_1(t) + \beta y_2(t)$.
- Therefore the system is linear.

Time Invariant Systems

- A system is time invariant if a time shift to the input results in no changes other than the same time shift being applied to the output.
- If $y_1(t)$ is the output of the system when $x_1(t)$ is the input let $x_2(t) = x_1(t-\tau)$ be the input that produces output $y_2(t)$.
- The system is time invariant if $y_2(t) = y_1(t-\tau)$.

- Consider again the system whose input-output relationship is y(t) = tx(t), therefore $y_1(t) = tx_1(t)$.
- Let $x_2(t) = x_1(t-\tau)$. The corresponding output is $y_2(t) = tx_2(t) = tx_1(t-\tau)$.
- However, $y_1(t-\tau) = (t-\tau)x_1(t-\tau)$, therefore this system is not time invariant.

- Consider the following system: $y(t) = 3+4x^2(t)$, therefore $y_1(t) = 3+4x_1^2(t)$.
- Let $x_2(t) = x_1(t-\tau)$, therefore $y_2(t) = 3+4x_2^2(t) = 3+4x_1^2(t-\tau) = y_1(t-\tau)$.
- This system is time invariant.

Linear time invariant systems

- A system is LTI if it is both linear and time invariant.
- An LTI system is described by its impulse response.
- The system's impulse response is h(t) and it is the output of the system when the input is $x(t) = \delta(t)$.
- Properties of $\delta(t)$.

$$- \qquad \delta(t) = \begin{cases} \infty, & t = 0\\ 0, & \text{otherwise} \end{cases}$$

$$- \int_{-\infty}^{\infty} \delta(t) dt = 1$$
$$- \int_{-\infty}^{\infty} x(t) \delta(t - \tau) dt = x(\tau)$$

Output of LTI system

For any input x(t), the output of an LTI system is y(t) = x(t)*h(t), where * denotes convolution.

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\lambda)h(t-\lambda)d\lambda = \int_{-\infty}^{\infty} h(\lambda)x(t-\lambda)d\lambda$$

Properties

• We can show that $x(t)^*(y_1(t) + y_2(t)) = x(t)^*y_1(t) + x(t)^*y_2(t)$. Let $z(t) = y_1(t) + y_2(t)$.

$$x(t)^*(y_1(t) + y_2(t)) = x(t)^* z(t)$$

= $\int_{-\infty}^{\infty} x(\lambda) z(t-\lambda) d\lambda$
= $\int_{-\infty}^{\infty} x(\lambda) [y_1(t-\lambda) + y_2(t-\lambda)] d\lambda$
= $\int_{-\infty}^{\infty} x(\lambda) y_1(t-\lambda) d\lambda + \int_{-\infty}^{\infty} x(\lambda) y_2(t-\lambda) d\lambda$
= $x(t)^* y_1(t) + x(t)^* y_2(t)$

Convolution with impulse function

$$x(t) * \delta(t) = \int_{-\infty}^{\infty} x(\lambda)\delta(t-\lambda)d\lambda$$

=
$$\int_{-\infty}^{\infty} \delta(\lambda)x(t-\lambda)d\lambda$$

=
$$x(t)$$

$$x(t) * \delta(t-\tau) = \int_{-\infty}^{\infty} x(\lambda)\delta(t-\tau-\lambda)d\lambda$$

=
$$\int_{-\infty}^{\infty} \delta(\lambda-\tau)x(t-\lambda)d\lambda$$

=
$$x(t-\tau)$$

- $y(t) = \Pi(t) * \Pi(t)$
 - Use drawings to help find the limits of integration.
 - Function mappings to map $\Pi(t)$ onto $\Pi(t-\lambda)$ on λ scale.

Causality

- A system is causal if it's output depends only on past and present values of the input (it does not depend on future values of the input).
- For LTI system:

$$y(t) = \int_{-\infty}^{\infty} h(\lambda) x(t-\lambda) d\lambda$$

• When $\lambda < 0$, $\underline{y}(t)$ depends on future values of the input. Therefore an LTI system is causal if $h(\lambda)=0$ for all $\lambda < 0$.

Stability

- A system is stable if for any bounded input, it's output is also bounded.
- For LTI system, this implies that

 $\int |h(\lambda)| \, d\lambda \leq \infty$

