Cost-sensitive Classifier Evaluation using Cost Curves
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Abstract. The evaluation of classifier performance in a cost-sensitive setting is
straightforward if the operating conditions (misclassification costs and class dis-
tributions) are fixed and known. When this is not the case, evaluation requires
a method of visualizing classifier performance across the full range of possi-
ble operating conditions. This talk outlines the most important requirements for
cost-sensitive classifier evaluation for machine learning and KDD researchers and
practitioners, and introduces a recently developed technique for classifier perfor-
mance visualization — the cost curve — that meets all these requirements.

I ntroduction

Methods for creating accurate classifiers from data are of central interest to the data
mining community [2, 15, 16]. The focus of this talk is on binary classification, i.e.
classification tasks in which there are only two possible classes, which we will call pos-
itive and negative. In binary classification, there are just two types of error a classifier
can make: a false positiveis a negative example that is incorrectly classified as positive,
and a false negative is a positive example that is incorrectly classified as negative. In
general, the cost of making one type of misclassification will be different—possibly
very different—than the cost of making the other type.>

Methods for evaluating the performance of classifiers fall into two broad categories:
numerical and graphical. Numerical evaluations produce a single number summarizing
a classifier’s performance, whereas graphical methods depict performance in a plot that
typically has just two or three dimensions so that it can be easily inspected by humans.
Examples of numerical performance measures are accuracy, expected cost, precision,
recall, and area under a performance curve (AUC). Examples of graphical performance
evaluations are ROC curves [18, 19], precision-recall curves [6], DET curves [17], re-
gret graphs [13], loss difference plots [1], skill plots [4], prevalence-value-accuracy
plots [21], and the method presented in this talk, cost curves [7, 11].

Graphical methods are especially useful when there is uncertainty about the mis-
classification costs or the class distribution that will occur when the classifier is de-
ployed. In this setting, graphical measures can present a classifier’s actual performance

3 We assume the misclassification cost is the same for all instances of a given class; see [12] for
a discussion of performance evaluation when the cost can be different for each instance.



for a wide variety of different operating points (combinations of costs and class dis-
tributions), whereas the best a numerical measure can do is to represent the average
performance across a set of operating points.

Cost curves are perhaps the ideal graphical method in this setting because they di-
rectly show performance as a function of the misclassification costs and class distribu-
tion. In particular, the x-axis and y-axis of a cost curve plot are defined as follows.

The x-axis of a cost curve plot is defined by combining the two misclassification
costs and the class distribution—represented by p(+), the probability that a given in-
stance is positive—into a single value, PC(+), using the following formula:

p(H)C(=+)
p(+)C(=[+) + (1 = p(+))C(+|-)
where C( - | +) is the cost of a false negative and C( +| - ) is the cost of a false positive.
PC(+) ranges from 0 to 1.

Classifier performance, the y-axis of a cost curve plot, is “normalized expected cost”
(NEC), defined as follows:

PC(+) =

ey

NEC = F'N * PC(+) + FP* (1 — PC(+)) 2)

where F'N is a classifier’s false negative rate, and F'P is its false positive rate. NEC
ranges between 0 and 1.
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Fig. 1. Japanese credit - Cost curves for 1R (dashed line) and C4.5 (solid line)

To draw the cost curve for a classifier we draw two points,y = FPatz = 0andy =
FN atx = 1, and join them by a straight line. The cost curve represents the normalized
expected cost of the classifier over the full range of possible class distributions and
misclassification costs. For example, the dashed line in Figure 1 is the cost curve for
the decision stump produced by 1R [14] for the Japanese credit dataset from the UCI
repository and the solid line is the cost curve for the decision tree C4.5 [20] learns
from the same training data. In this plot we can instantly see the relation between 1R



and C4.5’s performance across the full range of deployment situations. The vertical
difference between the two lines is the difference between their normalized expected
costs at a specific operating point. The intersection point of the two lines is the operating
point where 1R’s stump and C4.5’s tree perform identically. This occurs at PC(+) =
0.445. For larger values of PC(+) 1R’s performance is better than C4.5’s, for smaller
values of PC(+) the opposite is true.

Mathematically, cost curves are intimately related to ROC curves: they are “point-
line duals” of one another. However, cost curves have the following advantages over
ROC curves (see [11] for details):

— Cost curves directly show performance on their y-axis, whereas ROC curves do
not explicitly depict performance. This means performance and performance dif-
ferences can be easily seen in cost curves but not in ROC curves.

— When applied to a set of cost curves the natural way of averaging two-dimensional
curves produces a cost curve that represents the average of the performances rep-
resented by the given curves. By contrast, there is no agreed upon way to average
ROC curves, and none of the proposed averaging methods produces an ROC curve
representing average performance.

— Cost curves allow confidence intervals to be estimated for a classifier’s perfor-
mance, and allow the statistical significance of performance differences to be as-
sessed. The confidence interval and statistical significance testing methods for ROC
curves do not relate directly to classifier performance.

For these reasons, we have gained insights into classifier performance using cost curves
that would likely not have been possible using other methods [8—10] and other data
mining researchers are using cost curves in their analyses [3, 5, 22,23].
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