
Exploiting the Cost (In)sensitivity of Decision Tree Splitting CriteriaChris Drummond cdrummon@site.uottawa.caRobert C. Holte holte@site.uottawa.caSchool of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5AbstractThis paper investigates how the splitting cri-teria and pruning methods of decision treelearning algorithms are in
uenced by misclas-si�cation costs or changes to the class distri-bution. Splitting criteria that are relativelyinsensitive to costs (class distributions) arefound to perform as well as or better than,in terms of expected misclassi�cation cost,splitting criteria that are cost sensitive. Con-sequently there are two opposite ways of deal-ing with imbalance. One is to combine a cost-insensitive splitting criterion with a cost in-sensitive pruning method to produce a deci-sion tree algorithm little a�ected by cost orprior class distribution. The other is to growa cost-independent tree which is then prunedin a cost-sensitive manner.1. IntroductionWhen applying machine learning to real world classi�-cation problems two complications that often arise areimbalanced classes (one class occurs much more oftenthan the other (Kubat et al., 1998; Ezawa et al., 1996;Fawcett & Provost, 1996)) and asymmetric misclassi-�cation costs (the cost of misclassifying an examplefrom one class is much larger than the cost of misclas-sifying an example from the other class (Domingos,1999; Pazzani et al., 1997)). Traditional learning al-gorithms, which aim to maximize accuracy, treat pos-itive and negative examples as equally important andtherefore do not always produce a satisfactory clas-si�er under these conditions. Furthermore, in thesecircumstances accuracy is not an appropriate measureof classi�er performance (Provost et al., 1998). Classimbalance and asymmetric misclassi�cation costs arerelated to one another. One way to counteract imbal-ance is to raise the cost of misclassifying the minorityclass. Conversely one way to make an algorithm costsensitive is to intentionally imbalance the training set.In this paper we investigate how the splitting crite-ria of decision tree learning algorithms are in
uencedby changes to misclassi�cation costs or class distribu-tion. We show that splitting criteria in common use

are relatively insensitive to costs and class distribution;costs and class distribution primarily a�ect pruning(Breiman et al., 1984, p.94). One criterion, which werefer to as DKM (Kearns & Mansour, 1996; Dietterichet al., 1996) is completely insensitive to costs and classdistributions but in our experiments its performanceequals or exceeds that of other splitting criteria.This suggests two di�erent ways of dealing with im-balance and costs. First, instead of arti�cially ad-justing balance by duplicating or discarding exam-ples, a cost-insensitive splitting criterion can be com-bined with a cost insensitive pruning method to pro-duce a decision tree algorithm little a�ected by costor prior class distribution. All the data available canbe used to produce the tree, thus throwing away noinformation, and learning speed is not degraded dueto duplicate instances. Alternatively one can grow acost-independent tree which is then pruned in a cost-sensitive manner. Thus the tree need only be grownonce, an advantage as growing trees is computationallymore expensive than pruning.2. Measuring Cost SensitivityWe restrict ourselves to two class problems in whichthe cost of a misclassi�cation depends only on the classnot on the individual example. Following Provost andFawcett (1998) we use ROC methods to analyze andcompare the performance of classi�ers.One point in an ROC diagram dominates another if itis above and to the left, i.e. has a higher true positiverate (TP) and a lower false positive rate (FP). If pointA dominates point B, A will outperform B for all pos-sible misclassi�cation costs and class distributions. By\outperforms" we typically mean \has lower expectedcost", but Provost and Fawcett (1998) have shown thatdominance in ROC space implies superior performancefor a variety of commonly-used performance measures.The slope of the line connecting two ROC points(FP1; TP1) and (FP2; TP2) is given by equation 1(Provost et al., 1998; Provost & Fawcett, 1997)TP1 � TP2FP1� FP2 = p(�)C(+j�)p(+)C(�j+) (1)



where p(x) is the probability of a given example beingin class x, and C(xjy) is the cost incurred if an examplein class y is misclassi�ed as being in class x. Equation 1shows that, for the purpose of evaluating performancein 2-class problems, class probabilities (\priors") andmisclassi�cation costs are interchangeable. Doublingp(+) has the same e�ect on performance as doublingthe cost C(�j+) or halving the cost C(+j�). In therest of the paper we will freely interchange the two,speaking of costs sometimes and priors other times.A classi�er is a single point in ROC space. Point (0,0)represents classifying all examples as negative, (1,1)represents classifying all examples as positive. We callthese the trivial classi�ers. The slopes of the linesconnecting a non-trivial classi�er to (0,0) and to (1,1)de�ne the range of cost ratios for which the classi�er ispotentially useful. For cost ratios outside this range,the classi�er will be outperformed by a trivial classi-�er. It is important in comparing two classi�ers notto use a cost ratio outside the operating range of oneof them. A classi�er's operating range may be muchnarrower than one intuitively expects. Consider thesolid lines in Figure 1. These connect (0,0) and (1,1)to a classi�er which is approximately 70% correct oneach class. The slopes, shown below the lines, are 0.45and 2.2. If the cost ratio is outside this range this clas-si�er is outperformed by a trivial classi�er. Operatingrange increases as one moves towards the ideal classi-�er, (0,1). Therefore if classi�er A dominates classi�erB, A's operating range will be larger than B's.
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Figure 1. ROC hulls showing line segment slopesSome classi�ers have parameters for which di�erentsettings produce di�erent ROC points. For example,a classi�er that produces probabilities of an examplebeing in each class, such as a Naive Bayes classi�er,can have a threshold parameter biasing the �nal classselection (Domingos, 1999; Pazzani et al., 1997). Theupper convex hull (Provost & Fawcett, 1997) of all the

ROC points produced by varying these parameters isthe ROC hull for the classi�er. The ROC hull is adiscrete set of points, including (0,0) and (1,1), con-nected by line segments. The dashed line in Figure 1 isa typical ROC hull. The operating range of any pointon an ROC hull is de�ned by the slopes of the twoline segments connected to it. The �gure shows theslope below each dashed line segment. The operatingrange of a parameterized classi�er is the range de�nedby the two extreme line segments, the ones involving(0,0) and (1,1). The operating range of the dashedROC hull in the �gure is about 1:14 to 14:1.The cost-sensitivity of a classi�er can be de�ned interms of its ROC hull, for example, as the length ofthe ROC hull not counting the lines to (0,0) and (1,1).This measures the amount of variation in performancethat can be achieved by varying the classi�er's pa-rameters. An unparameterized classi�er is not cost-sensitive at all according to this de�nition. Alterna-tively cost-sensitivity could be de�ned as the size ofthe classi�er's operating range. This de�nition mea-sures the range of cost ratios for which the classi�eris useful. Both de�nitions give important informationabout a classi�er when costs or priors are not known inadvance, but they can give opposite conclusions aboutwhich of two classi�ers is more cost-sensitive because itis possible for classi�er A to have a much shorter ROChull than B but to have a larger operating range. Thishappens, for example, if A dominates B. The moststriking example is when A is an unparameterized clas-si�er whose performance is su�ciently good that itsROC hull completely dominates B's ROC hull. Forexample, the ROC hull of an unparameterized classi-�er that was 94% correct on each class would dominatethe dashed ROC hull in Figure 1.A learning algorithm may produce di�erent classi�erswhen its parameters' values are changed or when theclass distribution in the training set is changed whilekeeping all the conditional probabilities within eachclass the same. For example, the ROC hull in Figure 1was generated by applying the same learning algorithmto training sets in which the class ratio was arti�ciallyvaried. The stipulation that the within-class condi-tional probabilities must not change is important. Itcan be achieved exactly by duplicating all the examplesin one of the classes the same number of times (\over-sampling"), and it can be approximately achieved bychoosing a random subset of the examples in one class(\undersampling"). The cost-sensitivity of a learningalgorithm can be measured in several ways. It couldbe de�ned in terms of the responsiveness of the learn-ing algorithm to changes in the class distribution asmeasured, for example, by the length of the ROC hullproduced when the class ratio in the training set isvaried between two extremes (e.g. 1:10 to 10:1). Al-ternatively, it could be de�ned \structurally", as thedegree to which the classi�ers produced di�er from oneanother when costs or priors are varied.



None of these de�nitions of cost-sensitivity is directlyrelated to performance. System A can be more cost-sensitive than system B according to any of the de�-nitions and yet be outperformed by B on almost theirentire operating range. Performance is our ultimatecriterion for preferring one system over another. Cost-sensitivity is only desirable if it produces improved per-formance, it is not a goal in itself.To directly compare performance we transform anROC hull into a cost curve (see Drummond and Holte(2000) for a detailed discussion of cost curves). Fig-ure 2 shows three cost curves. The x-axis is p(+),the prior probability of the positive class. The y-axisis expected cost normalized with respect to the costincurred when every example is incorrectly classi�ed.The classi�er that classi�es everything as belonging tothe majority class has an expected normalized cost of0.5 when p(+) = 0:5 and its expected cost decreaseslinearly towards 0 as the probability of the majorityclass increases. Its cost curve is the dotted line in Fig-ure 2. The dashed and solid cost curves in Figure 2correspond to the dashed and solid ROC hulls in Fig-ure 1. The horizontal line atop the solid cost curvecorresponds to the unparameterized classi�er. The lo-cation of the line indicates the classi�er's operatingrange (0:3 � p(+) � 0:7). It is horizontal becauseFP = 1�TP for this classi�er. At the limit of its op-erating range this classi�er's cost curve joins the costcurve for the majority classi�er. Each line segment inthe dashed cost curve corresponds to one of the ver-tices de�ning the dashed ROC hull. The di�erence inperformance of two classi�ers is precisely the di�er-ence between their cost curves. The dashed classi�eroutperforms the solid one { has a lower or equal ex-pected cost { for all values of p(+). The maximumdi�erence is about 20% (0.25 compared to 0.3), whichoccurs when p(+) is about 0:3 (or 0:7).3. Cost Sensitivity of the Split CriteriaThis section investigates how di�erent class distribu-tions a�ect the four di�erent splitting criteria shownin Figure 3. The triangular function represents accu-racy. Immediately above that is the Gini criterion usedin CART (Breiman et al., 1984), followed by informa-tion gain or entropy as used in C4.5 (Quinlan, 1996).At the top is the criterion we call DKM (Kearns &Mansour, 1996; Dietterich et al., 1996). The splittingcriteria all have the same general form. The selectedsplit is the minimum of I(s) the total impurity afterapplying the split, as shown in equation 2.I(s) = P (L)f(P (+jLs); P (�jLs))+P (R)f(P (+jRs); P (�jRs)) (2)This is the weighted sum of an impurity functionf(a; b) applied to the posterior probabilities of each
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Figure 2. Cost curves for the ROC hulls in Figure 1
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Probability of Positive ClassFigure 3. Decision Tree Splitting Criteriaclass for each side of the split. The weights are theprobability of an example going to the left P (L) orright P (R) of the split. The exact shape of each curvein Figure 3 is determined by the impurity function.To investigate the cost sensitivity of the splitting cri-teria, we synthesize a simple single attribute problemand assume perfect knowledge of the conditional prob-abilities and the priors. The conditional probabilitiesfor the two classes are Gaussians with the same stan-dard deviation but with means one standard deviationapart. By changing the priors on one of the Gaussians,as indicated by the dashed lines in Figure 4, di�erentBayes optimal splits are achieved.Figure 4. A Simple Decision Problem



The accuracy criterion, which uses the impurity func-tion f(a; b) = min(a; b), produces Bayes optimal splitsin this synthetic problem. The top diagram in Figure5 shows the splits selected for cost ratio from about10/1 to 1/10 moving from the bottom to the top. Ex-amples are classi�ed as positive in the shaded regions,and as negative in the unshaded regions.The second diagram in Figure 5, shows the splits madeusing the Gini criterion where f(a; b) is 2ab. The di�er-ence in the position of the split as the ratio is changedis much smaller than for accuracy and therefore theBayes optimal. For the more extreme ratios, althougha split has occurred, the classi�cation on both the leftand right sides is the same. The third diagram in Fig-ure 5 shows the splits made using the entropy criterionwhere f(a; b) is a log2(a) + b log2(b). The splits for allthe ratios are very similar, showing that entropy haslittle sensitivity to priors. Finally, the bottom diagramin Figure 5 shows that the splits made using the DKMcriterion, where f(a; b) is 2pab, are identical for all ra-tios. Appendix A presents a simple proof that DKMis completely insensitive to cost/priors.
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M Figure 5. Decision BoundariesThe sensitivity to cost of the various splitting crite-ria thus follows the order, from accuracy to DKM, inwhich they appear in Figure 3, with accuracy beingextremely cost sensitive and DKM being totally in-sensitive. Accuracy and DKM represent the two lim-its of useful splitting criteria. Going below accuracywould produce functions that are no longer concaveand therefore not useful as splitting criteria. Goingabove DKM would produce functions that have an in-verse sensitivity to cost.The preceding discussion concerns \structural" sensi-tivity, i.e., how much the split changes when priorschange. The other notions of sensitivity introducedin section 2 follow the same pattern. The curves inFigures 1, and 2 are the results of this experiment for

accuracy (dashed curves) and DKM (solid curves). Onthis problem the more cost-sensitive the splitting cri-terion the better the performance and the wider theoperating range. As discussed in section 2 accuracy'sexpected cost is up to 20% smaller than DKM's.4. The Split Criteria on Real DataOn 1-dimensional Gaussian data accuracy producesthe Bayes optimal split. But with multiple attributesthe optimal decision boundary is much more compli-cated and accuracy is often not the best criterion forgrowing a tree (Breiman et al., 1984, p97). This sec-tion investigates the cost-sensitivity and performanceof the splitting criteria on real data. Two of the datasets used, oil and sleepbr2, are from our earlier work(Kubat et al., 1997) and one, appendicitis, was sup-plied by S. Weiss of Rutgers University. Three addi-tional sets were taken from the UCI collection (Blake& Merz, 1998): Pima diabetes, sonar were used un-changed; glass was converted to a two class problemby combining the classes in the \
oat" and \non-
oat"groups.Decision trees were built using C.45 release 8 (Quin-lan, 1996) in which we disabled the additional penaltyfactor for continuous variables based on minimum de-scription length and we set the minimum size of a splitequal to 2 independent of the number of instances. Thefour splitting criteria from section 3 were used in placeof the normal one. These changes were made so thatthe cost-sensitivity and performance of the four cri-teria could be measured without confounding factors.If the unmodi�ed C4.5 release 8 is run on the samedata its ROC hull is virtually indistinguishable fromthe hull reported here for the entropy criterion.Twelve di�erent cost ratios were used, ranging from1:60 to 60:1. The cost ratios are introduced by reduc-ing the individual weights of instances of the less costlyclass in proportion to its ratio to the more costly one.This is done in the C4.5 code that builds and thatprunes the tree. For each ratio we repeated 10-foldstrati�ed cross validation ten times and averaged theresulting false positive rates and true positive rates toget a single (FP; TP ) point. The twelve ratios thusproduce twelve ROC points for a given splitting crite-rion.Figure 6 shows the consistency in the choice of theroot attribute/value for each splitting criterion. Con-sistency was measured as follows. For each fold ofeach repetition of cross-validation on each dataset, wecount how many times the same root attribute/valueis chosen when using di�erent cost ratios. For exam-ple, if one attribute/value was chosen for 5 of the ra-tios, another attribute/value was chosen for another5 of the ratios, and a third attribute/value was cho-sen for the other 2 ratios, we would record this as thebag f5; 5; 2g. The same attribute/value being chosen
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for all the ratios is the bag f12g and a di�erent at-tribute/value being chosen for each ratio is the bagcontaining twelve ones. The bag is reduced to a sin-gle number, the consistency score for that particulartraining set, by summing the squares of its values anddividing by 12. For example, f5; 5; 2g produces a con-sistency score of 54=12 = 4:5. This method for com-puting consistency is somewhat arbitrary in its detailsbut it has the important properties that the maximumscore (12) occurs only if the same root attribute/valueis chosen for all the ratios, the minimum score (1) oc-curs only if each ratio results in a di�erent root at-tribute/value being selected, and it generally agreeswith the intuitive judgements of relative consistencyin clearcut cases (for example the score for f6; 6g isconsiderably higher than the score for f4; 4; 4g).For each splitting criterion, our complete set of experi-ments produces 600 scores (10�10 folds for 6 datasets).The histogram for a splitting criterion in Figure 6 usesinteger bins to summarize these scores. DKM is almostperfectly consistent choosing the same attribute/valuenearly every time. With entropy, the consistency de-pends on the data set, ranging from mostly choosingthe same attribute/value to choosing di�erent ones fordi�erent ratios. Gini and particularly accuracy choosedi�erent attribute/values for many of the ratios. Thusthe root of the tree is consistent for DKM but is verydependent on the ratio for accuracy. Figure 7 showsthe range of points generated by the middle eight of thetwelve ratios using an unpruned decision tree on the di-abetes data set. The limits of this range are indicatedby the numbers. The dashed line is accuracy, pointsare well spread out across ROC space. For DKM thespread is much narrower, consistent with a low struc-tural cost sensitivity. However when the tree is pruned(Figure 8) the size of spread is increased considerably,until there is relatively little di�erence between theend points of the range. Roughly the same behavior isexhibited on all the data sets, but the e�ect of prun-ing is often much reduced. C4.5 grows a large tree onthe diabetes data which gives it many opportunitiesfor pruning to adjust for costs. In the other data setsthere is less chance for pruning to have this e�ect.This section has shown that DKM is cost-insensitivein terms of the decision trees it constructs and its re-sponsiveness to variation in cost ratio. Although cost-insensitive in these other senses, it is possible thatDKM might be more cost-sensitive than the other cri-teria in terms of the size of its operating range and itmight outperform them in terms of expected cost.Figures 9 to 14 show the ROC hulls for the splittingcriteria on the 6 data sets. The ROC hulls are gener-ated by taking the convex hull of the twelve points, onefor each of the twelve ratios, and the two points repre-senting the trivial classi�ers. Points not on the hull arediscarded. The solid back diagonal line, FP = 1�TP ,will be discussed in section 5. Only in Figure 9 does
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DKM's insensitivity to cost result in inferior perfor-mance. It dominates when the cost ratio is extremelyhigh in favor of the negative class (the bottom left por-tion of the ROC hull) but fails to adapt as the ratiodecreases. Accuracy, the most cost-sensitive of the cri-teria, produces the best performance once DKM stopsadapting. In Figures 10 and 11 the criteria all performabout equally well, with the more cost-sensitive crite-ria slightly outperforming DKM in Figure 10. In theremaining three data sets, DKM is clearly the criterionof choice. In Figure 12 the criteria perform about thesame when the cost ratio is extremely high in favor ofthe negative class, but DKM emerges to dominate theothers once the ratio has swung to favor the positiveclass. Figures 13 and 14 are the most striking becausethere cost-sensitivity is clearly a disadvantage, withperformance being inversely related to cost sensitivity.5. DiscussionIn these �gures DKM is the combination of acost-insensitive splitting criterion (DKM) and cost-sensitive pruning and leaf-labeling methods. We haveseen that this combination generally performs as wellas or better than using a cost-sensitive splitting crite-rion with the same pruning and leaf-labeling methods.The fact that the splitting can be done independentlyof cost/priors has several interesting consequences. Inapplications where a classi�er is to be deployed at sev-eral sites with di�erent costs/priors, the same tree canbe grown using DKM and distributed to all sites. Eachsite can then prune the tree to suit its local condi-tions. Moreover, if attributes are measured only whenneeded, and the true classi�cations of the examplesclassi�ed by the tree eventually become known, theseexamples can be used for pruning even though theycould not be used to learn a new tree from scratchbecause they have so few measured attributes. Thestructural stability of the cost-insensitive tree is im-portant for comprehensibility. Experts analyzing thetree can be assured that the attribute and value de�n-ing the split at the root node is a stable feature of thetree, not something that is highly sensitive to the train-ing data. More generally, the fact that good decisiontrees can be grown in a cost-insensitive way suggeststhat research should focus on ways of making classi-�ers cost-sensitive, rather than learners. Techniquessuch as under- and oversampling (Kubat & Matwin,1997) should be reconsidered in terms of how they af-fect pruning and leaf labeling, which can be regardedas ways of adapting a classi�er (fully grown decisiontree) to varying costs and priors.One can even question if cost-sensitive pruning is bene-�cial. In section 2 a single classi�er, combined with thetrivial classi�ers, was close to Bayes optimal perfor-mance over much of its operating range. The intersec-tion of an ROC curve with the line FP = 1�TP (thesolid back diagonal line in Figures 9 to 14) represents
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ACCFigure 15. Cost Curves for Sonara classi�er with a normalized expected cost that is to-tally independent of misclassi�cation costs and priors.Figure 15 shows cost curves for the di�erent splittingcriteria on the sonar data set. For a given splitting cri-terion the classi�er corresponding to the intersectionwould be a horizontal line through the highest point onthe cost curve. In all cases this cost-insensitive classi-�er has a normalized misclassi�cation cost within 20%of the basic cost curve and is typically much closer.A cost-insensitive learning system could also be cre-ated by using DKM in conjunction with a cost-insensitive pruning method. We made C4.5's prun-ing method cost-insensitive by adjusting the instanceweights prior to pruning so that total weight for eachclass was the same. The cost curve for this algorithmis the solid almost-horizontal line just above DKM'scost curve in Figure 15. This cost-insensitive learningalgorithm outperforms algorithms using the accuracyand Gini splitting criterion and its performance is sim-ilar to the entropy-based learning algorithm for muchof its operating range. It is, however, outperformed byDKM with cost-sensitive pruning by a little over 25%in some regions of its operating range but in other re-gions it is much less.6. ConclusionsWe have shown that commonly used decision tree split-ting criteria are relatively insensitive to cost. That infact, a newly introduced criterion is completely costinsensitive. But as we have stressed it is performanceof the classi�er with respect to costs that is the criti-cal measure. This can only be truly judged by usingROC hulls or our own direct representation of misclas-si�cation costs. On this basis using a cost insensitivesplitting criterion, requiring pruning to introduce anycost sensitivity, is surprisingly e�ective. Using a classi-�er with a cost insensitive pruning algorithm was alsoshown to increase the overall misclassi�cation costs bya relatively small amount.
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