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Abstract

This paper investigates how the splitting cri-
teria and pruning methods of decision tree
learning algorithms are influenced by misclas-
sification costs or changes to the class distri-
bution. Splitting criteria that are relatively
insensitive to costs (class distributions) are
found to perform as well as or better than,
in terms of expected misclassification cost,
splitting criteria that are cost sensitive. Con-
sequently there are two opposite ways of deal-
ing with imbalance. One is to combine a cost-
insensitive splitting criterion with a cost in-
sensitive pruning method to produce a deci-
sion tree algorithm little affected by cost or
prior class distribution. The other is to grow
a cost-independent tree which is then pruned
in a cost-sensitive manner.

1. Introduction

When applying machine learning to real world classifi-
cation problems two complications that often arise are
imbalanced classes (one class occurs much more often
than the other (Kubat et al., 1998; Ezawa et al., 1996;
Fawcett & Provost, 1996)) and asymmetric misclassi-
fication costs (the cost of misclassifying an example
from one class is much larger than the cost of misclas-
sifying an example from the other class (Domingos,
1999; Pazzani et al., 1997)). Traditional learning al-
gorithms, which aim to maximize accuracy, treat pos-
itive and negative examples as equally important and
therefore do not always produce a satisfactory clas-
sifier under these conditions. Furthermore, in these
circumstances accuracy is not an appropriate measure
of classifier performance (Provost et al., 1998). Class
imbalance and asymmetric misclassification costs are
related to one another. One way to counteract imbal-
ance is to raise the cost of misclassifying the minority
class. Conversely one way to make an algorithm cost
sensitive is to intentionally imbalance the training set.

In this paper we investigate how the splitting crite-
ria of decision tree learning algorithms are influenced
by changes to misclassification costs or class distribu-
tion. We show that splitting criteria in common use

are relatively insensitive to costs and class distribution;
costs and class distribution primarily affect pruning
(Breiman et al., 1984, p.94). One criterion, which we
refer to as DKM (Kearns & Mansour, 1996; Dietterich
et al., 1996) is completely insensitive to costs and class
distributions but in our experiments its performance
equals or exceeds that of other splitting criteria.

This suggests two different ways of dealing with im-
balance and costs. First, instead of artificially ad-
justing balance by duplicating or discarding exam-
ples, a cost-insensitive splitting criterion can be com-
bined with a cost insensitive pruning method to pro-
duce a decision tree algorithm little affected by cost
or prior class distribution. All the data available can
be used to produce the tree, thus throwing away no
information, and learning speed is not degraded due
to duplicate instances. Alternatively one can grow a
cost-independent tree which is then pruned in a cost-
sensitive manner. Thus the tree need only be grown
once, an advantage as growing trees is computationally
more expensive than pruning.

2. Measuring Cost Sensitivity

We restrict ourselves to two class problems in which
the cost of a misclassification depends only on the class
not on the individual example. Following Provost and
Fawcett (1998) we use ROC methods to analyze and
compare the performance of classifiers.

One point in an ROC diagram dominates another if it
is above and to the left, 1.e. has a higher true positive
rate (TP) and a lower false positive rate (FP). If point
A dominates point B, A will outperform B for all pos-
sible misclassification costs and class distributions. By
“outperforms” we typically mean “has lower expected
cost”, but Provost and Fawcett (1998) have shown that
dominance in ROC space implies superior performance
for a variety of commonly-used performance measures.

The slope of the line connecting two ROC points
(FP, TP) and (F P2, TP;) is given by equation 1
(Provost et al., 1998; Provost & Fawcett, 1997)

TP1 — TP2 _ p(—)C(‘H_) (1)
FP —FPy  p(+)C(—|+)




where p(z) is the probability of a given example being
in class z, and C'(z|y) is the cost incurred if an example
in class y is misclassified as being in class . Equation 1
shows that, for the purpose of evaluating performance
in 2-class problems, class probabilities (“priors”) and
misclassification costs are interchangeable. Doubling
p(+) has the same effect on performance as doubling
the cost C'(—|4) or halving the cost C'(+]|—). In the
rest of the paper we will freely interchange the two,
speaking of costs sometimes and priors other times.

A classifier is a single point in ROC space. Point (0,0)
represents classifying all examples as negative, (1,1)
represents classifying all examples as positive. We call
these the trivial classifiers. The slopes of the lines
connecting a non-trivial classifier to (0,0) and to (1,1)
define the range of cost ratios for which the classifier is
potentially useful. For cost ratios outside this range,
the classifier will be outperformed by a trivial classi-
fier. It is important in comparing two classifiers not
to use a cost ratio outside the operating range of one
of them. A classifier’s operating range may be much
narrower than one intuitively expects. Consider the
solid lines in Figure 1. These connect (0,0) and (1,1)
to a classifier which is approximately 70% correct on
each class. The slopes, shown below the lines, are 0.45
and 2.2. If the cost ratio is outside this range this clas-
sifier 18 outperformed by a trivial classifier. Operating
range increases as one moves towards the ideal classi-
fier, (0,1). Therefore if classifier A dominates classifier
B, A’s operating range will be larger than B’s.
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Figure 1. ROC hulls showing line segment slopes

Some classifiers have parameters for which different
settings produce different ROC points. For example,
a classifier that produces probabilities of an example
being in each class, such as a Naive Bayes classifier,
can have a threshold parameter biasing the final class
selection (Domingos, 1999; Pazzani et al., 1997). The
upper convex hull (Provost & Fawcett, 1997) of all the

ROC points produced by varying these parameters is
the ROC hull for the classifier. The ROC hull is a
discrete set of points, including (0,0) and (1,1), con-
nected by line segments. The dashed line in Figure 1 is
a typical ROC hull. The operating range of any point
on an ROC hull is defined by the slopes of the two
line segments connected to it. The figure shows the
slope below each dashed line segment. The operating
range of a parameterized classifier is the range defined
by the two extreme line segments, the ones involving
(0,0) and (1,1). The operating range of the dashed
ROC hull in the figure is about 1:14 to 14:1.

The cost-sensitivity of a classifier can be defined in
terms of its ROC hull, for example, as the length of
the ROC hull not counting the lines to (0,0) and (1,1).
This measures the amount of variation in performance
that can be achieved by varying the classifier’s pa-
rameters. An unparameterized classifier is not cost-
sensitive at all according to this definition. Alterna-
tively cost-sensitivity could be defined as the size of
the classifier’s operating range. This definition mea-
sures the range of cost ratios for which the classifier
is useful. Both definitions give important information
about a classifier when costs or priors are not known in
advance, but they can give opposite conclusions about
which of two classifiers is more cost-sensitive because it
is possible for classifier A to have a much shorter ROC
hull than B but to have a larger operating range. This
happens, for example, if A dominates B. The most
striking example is when A is an unparameterized clas-
sifier whose performance is sufficiently good that its
ROC hull completely dominates B’s ROC hull. For
example, the ROC hull of an unparameterized classi-
fier that was 94% correct on each class would dominate

the dashed ROC hull in Figure 1.

A learning algorithm may produce different classifiers
when its parameters’ values are changed or when the
class distribution in the training set is changed while
keeping all the conditional probabilities within each
class the same. For example, the ROC hull in Figure 1
was generated by applying the same learning algorithm
to training sets in which the class ratio was artificially
varied. The stipulation that the within-class condi-
tional probabilities must not change 1s important. It
can be achieved exactly by duplicating all the examples
in one of the classes the same number of times (“over-
sampling”), and it can be approximately achieved by
choosing a random subset of the examples in one class
(“undersampling”). The cost-sensitivity of a learning
algorithm can be measured in several ways. It could
be defined in terms of the responsiveness of the learn-
ing algorithm to changes in the class distribution as
measured, for example, by the length of the ROC hull
produced when the class ratio in the training set is
varied between two extremes (e.g. 1:10 to 10:1). Al-
ternatively, it could be defined “structurally”, as the
degree to which the classifiers produced differ from one
another when costs or priors are varied.



None of these definitions of cost-sensitivity is directly
related to performance. System A can be more cost-
sensitive than system B according to any of the defi-
nitions and yet be outperformed by B on almost their
entire operating range. Performance is our ultimate
criterion for preferring one system over another. Cost-
sensitivity is only desirable if it produces improved per-
formance, it is not a goal in itself.

To directly compare performance we transform an
ROC hull into a cost curve (see Drummond and Holte
(2000) for a detailed discussion of cost curves). Fig-
ure 2 shows three cost curves. The x-axis is p(+),
the prior probability of the positive class. The y-axis
is expected cost normalized with respect to the cost
incurred when every example is incorrectly classified.
The classifier that classifies everything as belonging to
the majority class has an expected normalized cost of
0.5 when p(4) = 0.5 and its expected cost decreases
linearly towards 0 as the probability of the majority
class increases. Its cost curve is the dotted line in Fig-
ure 2. The dashed and solid cost curves in Figure 2
correspond to the dashed and solid ROC hulls in Fig-
ure 1. The horizontal line atop the solid cost curve
corresponds to the unparameterized classifier. The lo-
cation of the line indicates the classifier’s operating
range (0.3 < p(+) < 0.7). Tt is horizontal because
PP =1—TP for this classifier. At the limit of its op-
erating range this classifier’s cost curve joins the cost
curve for the majority classifier. Each line segment in
the dashed cost curve corresponds to one of the ver-
tices defining the dashed ROC hull. The difference in
performance of two classifiers is precisely the differ-
ence between their cost curves. The dashed classifier
outperforms the solid one — has a lower or equal ex-
pected cost — for all values of p(4). The maximum
difference is about 20% (0.25 compared to 0.3), which
occurs when p(+) is about 0.3 (or 0.7).

3. Cost Sensitivity of the Split Criteria

This section investigates how different class distribu-
tions affect the four different splitting criteria shown
in Figure 3. The triangular function represents accu-
racy. Immediately above that is the Gini criterion used
in CART (Breiman et al., 1984), followed by informa-
tion gain or entropy as used in C4.5 (Quinlan, 1996).
At the top is the criterion we call DKM (Kearns &
Mansour, 1996; Dietterich et al., 1996). The splitting
criteria all have the same general form. The selected
split is the minimum of I(s) the total impurity after
applying the split, as shown in equation 2.

I(s) = P(L)f(P(+|Ls), P(=|Ls))
+P(R)[(P(+|Rs), P(=|R;)) (2)

This is the weighted sum of an impurity function
f(a,b) applied to the posterior probabilities of each
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Figure 2. Cost curves for the ROC hulls in Figure 1
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Figure 3. Decision Tree Splitting Criteria

class for each side of the split. The weights are the
probability of an example going to the left P(L) or
right P(R) of the split. The exact shape of each curve
in Figure 3 is determined by the impurity function.

To investigate the cost sensitivity of the splitting cri-
teria, we synthesize a simple single attribute problem
and assume perfect knowledge of the conditional prob-
abilities and the priors. The conditional probabilities
for the two classes are Gaussians with the same stan-
dard deviation but with means one standard deviation
apart. By changing the priors on one of the Gaussians,
as indicated by the dashed lines in Figure 4, different
Bayes optimal splits are achieved.

Figure 4. A Simple Decision Problem



The accuracy criterion, which uses the impurity func-
tion f(a,b) = min(a,b), produces Bayes optimal splits
in this synthetic problem. The top diagram in Figure
5 shows the splits selected for cost ratio from about
10/1 to 1/10 moving from the bottom to the top. Ex-
amples are classified as positive in the shaded regions,
and as negative in the unshaded regions.

The second diagram in Figure 5, shows the splits made
using the Gini criterion where f(a,b) is 2ab. The differ-
ence in the position of the split as the ratio 1s changed
is much smaller than for accuracy and therefore the
Bayes optimal. For the more extreme ratios, although
a split has occurred, the classification on both the left
and right sides is the same. The third diagram in Fig-
ure 5 shows the splits made using the entropy criterion
where f(a,b) is alog,(a) + blog,(b). The splits for all
the ratios are very similar, showing that entropy has
little sensitivity to priors. Finally, the bottom diagram
in Figure 5 shows that the splits made using the DKM
criterion, where f(a,b) is 2v/ab, are identical for all ra-
tios. Appendix A presents a simple proof that DKM
is completely insensitive to cost/priors.
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Figure 5. Decision Boundaries

The sensitivity to cost of the various splitting crite-
ria thus follows the order, from accuracy to DKM, in
which they appear in Figure 3, with accuracy being
extremely cost sensitive and DKM being totally in-
sensitive. Accuracy and DKM represent the two lim-
its of useful splitting criteria. Going below accuracy
would produce functions that are no longer concave
and therefore not useful as splitting criteria. Going
above DKM would produce functions that have an in-
verse sensitivity to cost.

The preceding discussion concerns “structural” sensi-
tivity, i.e., how much the split changes when priors
change. The other notions of sensitivity introduced
in section 2 follow the same pattern. The curves in
Figures 1, and 2 are the results of this experiment for

accuracy (dashed curves) and DKM (solid curves). On
this problem the more cost-sensitive the splitting cri-
terion the better the performance and the wider the
operating range. As discussed in section 2 accuracy’s
expected cost is up to 20% smaller than DKM’s.

4. The Split Criteria on Real Data

On 1-dimensional Gaussian data accuracy produces
the Bayes optimal split. But with multiple attributes
the optimal decision boundary is much more compli-
cated and accuracy is often not the best criterion for
growing a tree (Breiman et al., 1984, p97). This sec-
tion investigates the cost-sensitivity and performance
of the splitting criteria on real data. Two of the data
sets used, oil and sleepbr2, are from our earlier work
(Kubat et al., 1997) and one, appendicitis, was sup-
plied by S. Weiss of Rutgers University. Three addi-
tional sets were taken from the UCT collection (Blake
& Merz, 1998): Pima diabetes, sonar were used un-
changed; glass was converted to a two class problem
by combining the classes in the “float” and “non-float”
groups.

Decision trees were built using C.45 release 8 (Quin-
lan, 1996) in which we disabled the additional penalty
factor for continuous variables based on minimum de-
scription length and we set the minimum size of a split
equal to 2 independent of the number of instances. The
four splitting criteria from section 3 were used in place
of the normal one. These changes were made so that
the cost-sensitivity and performance of the four cri-
teria could be measured without confounding factors.
If the unmodified C4.5 release 8 is run on the same
data its ROC hull is virtually indistinguishable from
the hull reported here for the entropy criterion.

Twelve different cost ratios were used, ranging from
1:60 to 60:1. The cost ratios are introduced by reduc-
ing the individual weights of instances of the less costly
class in proportion to its ratio to the more costly one.
This is done in the C4.5 code that builds and that
prunes the tree. For each ratio we repeated 10-fold
stratified cross validation ten times and averaged the
resulting false positive rates and true positive rates to
get a single (F'P,TP) point. The twelve ratios thus
produce twelve ROC points for a given splitting crite-
rion.

Figure 6 shows the consistency in the choice of the
root attribute/value for each splitting criterion. Con-
sistency was measured as follows. For each fold of
each repetition of cross-validation on each dataset, we
count how many times the same root attribute/value
is chosen when using different cost ratios. For exam-
ple, if one attribute/value was chosen for 5 of the ra-
tios, another attribute/value was chosen for another
5 of the ratios, and a third attribute/value was cho-
sen for the other 2 ratios, we would record this as the
bag {5,5,2}. The same attribute/value being chosen
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for all the ratios is the bag {12} and a different at-
tribute/value being chosen for each ratio is the bag
containing twelve ones. The bag is reduced to a sin-
gle number, the consistency score for that particular
training set, by summing the squares of its values and
dividing by 12. For example, {5,5,2} produces a con-
sistency score of 54/12 = 4.5. This method for com-
puting consistency is somewhat arbitrary in its details
but it has the important properties that the maximum
score (12) occurs only if the same root attribute/value
is chosen for all the ratios, the minimum score (1) oc-
curs only if each ratio results in a different root at-
tribute/value being selected, and it generally agrees
with the intuitive judgements of relative consistency
in clearcut cases (for example the score for {6,6} is
considerably higher than the score for {4,4,4}).

For each splitting criterion, our complete set of experi-
ments produces 600 scores (10x 10 folds for 6 datasets).
The histogram for a splitting criterion in Figure 6 uses
integer bins to summarize these scores. DKM is almost
perfectly consistent choosing the same attribute/value
nearly every time. With entropy, the consistency de-
pends on the data set, ranging from mostly choosing
the same attribute/value to choosing different, ones for
different ratios. Gini and particularly accuracy choose
different attribute/values for many of the ratios. Thus
the root of the tree is consistent for DKM but is very
dependent on the ratio for accuracy. Figure 7 shows
the range of points generated by the middle eight of the
twelve ratios using an unpruned decision tree on the di-
abetes data set. The limits of this range are indicated
by the numbers. The dashed line 1s accuracy, points
are well spread out across ROC space. For DKM the
spread 1s much narrower, consistent with a low struc-
tural cost sensitivity. However when the tree is pruned
(Figure 8) the size of spread is increased considerably,
until there is relatively little difference between the
end points of the range. Roughly the same behavior is
exhibited on all the data sets, but the effect of prun-
ing is often much reduced. C4.5 grows a large tree on
the diabetes data which gives it many opportunities
for pruning to adjust for costs. In the other data sets
there 1s less chance for pruning to have this effect.

This section has shown that DKM is cost-insensitive
in terms of the decision trees it constructs and its re-
sponsiveness to variation in cost ratio. Although cost-
insensitive in these other senses, it is possible that
DKM might be more cost-sensitive than the other cri-
teria in terms of the size of its operating range and it
might outperform them in terms of expected cost.

Figures 9 to 14 show the ROC hulls for the splitting
criteria on the 6 data sets. The ROC hulls are gener-
ated by taking the convex hull of the twelve points, one
for each of the twelve ratios, and the two points repre-
senting the trivial classifiers. Points not on the hull are
discarded. The solid back diagonal line, P = 1-TP,
will be discussed in section 5. Only in Figure 9 does
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Figure 11. ROC Hulls for Diabetes
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Figure 14. ROC Hulls for Sonar



DKM’s insensitivity to cost result in inferior perfor-
mance. It dominates when the cost ratio is extremely
high in favor of the negative class (the bottom left por-
tion of the ROC hull) but fails to adapt as the ratio
decreases. Accuracy, the most cost-sensitive of the cri-
teria, produces the best performance once DKM stops
adapting. In Figures 10 and 11 the criteria all perform
about equally well, with the more cost-sensitive crite-
ria slightly outperforming DKM in Figure 10. In the
remaining three data sets, DKM is clearly the criterion
of choice. In Figure 12 the criteria perform about the
same when the cost ratio i1s extremely high in favor of
the negative class, but DKM emerges to dominate the
others once the ratio has swung to favor the positive
class. Figures 13 and 14 are the most striking because
there cost-sensitivity 1s clearly a disadvantage, with
performance being inversely related to cost sensitivity.

5. Discussion

In these figures DKM is the combination of a
cost-insensitive splitting criterion (DKM) and cost-
sensitive pruning and leaf-labeling methods. We have
seen that this combination generally performs as well
as or better than using a cost-sensitive splitting crite-
rion with the same pruning and leaf-labeling methods.
The fact that the splitting can be done independently
of cost/priors has several interesting consequences. In
applications where a classifier is to be deployed at sev-
eral sites with different costs/priors, the same tree can
be grown using DKM and distributed to all sites. Each
site can then prune the tree to suit its local condi-
tions. Moreover, if attributes are measured only when
needed, and the true classifications of the examples
classified by the tree eventually become known, these
examples can be used for pruning even though they
could not be used to learn a new tree from scratch
because they have so few measured attributes. The
structural stability of the cost-insensitive tree is im-
portant for comprehensibility. Experts analyzing the
tree can be assured that the attribute and value defin-
ing the split at the root node is a stable feature of the
tree, not something that is highly sensitive to the train-
ing data. More generally, the fact that good decision
trees can be grown in a cost-insensitive way suggests
that research should focus on ways of making classi-
fiers cost-sensitive, rather than learners. Techniques
such as under- and oversampling (Kubat & Matwin,
1997) should be reconsidered in terms of how they af-
fect pruning and leaf labeling, which can be regarded
as ways of adapting a classifier (fully grown decision
tree) to varying costs and priors.

One can even question if cost-sensitive pruning is bene-
ficial. In section 2 a single classifier; combined with the
trivial classifiers, was close to Bayes optimal perfor-
mance over much of its operating range. The intersec-
tion of an ROC curve with the line FP =1—TP (the
solid back diagonal line in Figures 9 to 14) represents
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Figure 15. Cost Curves for Sonar

a classifier with a normalized expected cost that is to-
tally independent of misclassification costs and priors.
Figure 15 shows cost curves for the different splitting
criteria on the sonar data set. For a given splitting cri-
terion the classifier corresponding to the intersection
would be a horizontal line through the highest point on
the cost curve. In all cases this cost-insensitive classi-
fier has a normalized misclassification cost within 20%
of the basic cost curve and is typically much closer.

A cost-insensitive learning system could also be cre-
ated by using DKM in conjunction with a cost-
insensitive pruning method. We made C4.5’s prun-
ing method cost-insensitive by adjusting the instance
weights prior to pruning so that total weight for each
class was the same. The cost curve for this algorithm
is the solid almost-horizontal line just above DKM’s
cost curve in Figure 15. This cost-insensitive learning
algorithm outperforms algorithms using the accuracy
and Gini splitting criterion and its performance is sim-
ilar to the entropy-based learning algorithm for much
of its operating range. It is, however, outperformed by
DKM with cost-sensitive pruning by a little over 25%
in some regions of its operating range but in other re-
gions 1t 1s much less.

6. Conclusions

We have shown that commonly used decision tree split-
ting criteria are relatively insensitive to cost. That in
fact, a newly introduced criterion is completely cost
insensitive. But as we have stressed it is performance
of the classifier with respect to costs that is the criti-
cal measure. This can only be truly judged by using
ROC hulls or our own direct representation of misclas-
sification costs. On this basis using a cost insensitive
splitting criterion, requiring pruning to introduce any
cost sensitivity, is surprisingly effective. Using a classi-
fier with a cost insensitive pruning algorithm was also
shown to increase the overall misclassification costs by
a relatively small amount.
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A. DKM’s Independence of Priors

Equation 3 is the general splitting criterion using the
DKM impurity function We replace the posterior prob-
abilities using Bayes rule producing equation 4. The
probability of going left, P(L), that weights the first
term cancels with the denominators inside the square
root, as does P(R), producing equation 5. Now the
prior probabilities P(+) and P(—) can be brought out-
side the brackets and being common to both terms be-
comes a scaling factor, as shown in equation 6. In this
form it can be seen that the position of the best split,
the minimum of this function, is independent of the
prior probabilities.
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