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Abstract. Some key agreement protocols leak information about secret
keys if dishonest participants use specialized public keys. We formalize
these protocols and attacks, and present a generic transformation that
can be made to such key agreement protocols to resist such attacks.
Simply put, each party generates k different keys, and two parties per-
form key agreement using all k2 combinations of their individual keys.
We consider this transformation in the context of various post-quantum
key agreement schemes and analyze the attacker’s success probabilities
(which depend on the details of the underlying key agreement proto-
col) to determine the necessary parameter sizes for 128-bit security. Our
transformation increases key sizes by a factor of k and computation times
by k2, which represents a significant cost—but nevertheless still feasible.
Our transformation is particularly well-suited to supersingular isogeny
Diffie-Hellman, in which one can take k = 92 instead of the usual k = 256
at the 128-bit quantum security level. These results represent a poten-
tial path forward towards solving the open problem of securing long-term
static-static key exchange against quantum adversaries.

Keywords: post-quantum cryptography, key agreement, isogenies, su-
persingular isogeny Diffie-Hellman

1 Introduction

In Asiacrypt 2016, Galbraith, Petit, Shani, and Ti [13] introduced an active
attack against the supersingular isogeny-based cryptosystem of De Feo, Jao, and
Plût [10], which circumvents all extant (at the time) direct validation techniques.
The attack allows an attacker who interacts with a static key over multiple
rounds of key exchange to efficiently compute the private key corresponding to
the static key over multiple sessions. When communicating, the participants in
an SIDH key exchange each send a supersingular elliptic curve and two points



on the curve. By manipulating the values of the two points, the attacker can
learn one bit of information about the other participant’s private key (depending
on whether or not the key exchange operation succeeds using the manipulated
points), and then repeat this process over additional sessions to learn additional
private key bits. As stated in [13], a countermeasure to their attack was already
available in the earlier work of Kirkwood et al. [17], who proposed so-called
“indirect key validation” using a Fujisaki-Okamoto type transform [12] in order
to allow the honest participant to detect whether or not the other party is
manipulating points. Unfortunately, this countermeasure requires the untrusted
party to disclose their SIDH private key, precluding the use of SIDH as a drop-in
replacement for Diffie-Hellman or other protocols that support static-static key
exchange using direct key validation.

Although [13] specifically targets SIDH, similar attacks apply against all
other available post-quantum cryptosystems. No currently known post-quantum
scheme achieves secure static-static key exchange without the use of ephemeral
keys or indirect validation techniques that would expose one’s key in the static-
static setting. Major lattice-based key establishment schemes such as “A New
Hope” [1] and “Frodo” [5] achieve only passive security and are intended and
designed to be used with ephemeral keys. Peikert’s Ring-LWE based scheme [19]
is a key encapsulation mechanism that uses a Fujisaki-Okamoto type transform
to achieve IND-CCA security [19, §5]. In Peikert’s scheme, the encrypting partic-
ipant must reveal their random coins to the decrypting participant, and so one
member must use an ephemeral key. The Module-LWE key exchange Kyber [6,
§5] has at least one party using an ephemeral key, and both parties using both
a static and ephemeral key in the authenticated variant. In Niederreiter hybrid
encryption [23, §3.1], the error vector is revealed and used to derive the shared
symmetric key. Similarly, in McEliece encryption [18], although the error vector
is not explicitly used in decryption, it is trivial to compute once the message is
determined, and therefore one party must use an ephemeral key.

In this work we present a new generic transformation that takes any key es-
tablishment protocol satisfying certain security properties (see Definition 3) and
converts it into a different protocol that is immune to attacks of the form pre-
sented in [13]. In our transformation, each party generates k different key pairs
and publishes for their public key the list of k individual public keys. During key
agreement, two parties compute k2 different shared secrets obtained by perform-
ing shared key agreement with each of their keys in all possible combinations,
and hashing the shared secrets to derive a final shared key. Under this scheme,
any use of an invalid public key will, with all but negligible probability, cause
at least one of the k2 shared secret computations to fail, which neutralizes the
attack of [13]. Moreover, the number of possible failure outcomes is exponential
in k, making it impossible for an attacker to predict a likely failure outcome in
advance and lie about the value of their final shared key in order to salvage the
attack of [13].



The necessary value of k depends on the details of the original protocol
with which we started. The easiest (and worst) case is where each invalid key
attempt in the original protocol leads to one of two possible (invalid) shared
secret computations on the part of the honest party, depending on the value of
one of the bits in the honest party’s private key. In this case, one simply needs
k ≈ ` to achieve `-bit classical security, and k ≈ 2` in the quantum case to
account for Grover search. However, if there are more possible invalid outcomes,
then the attacker’s job is harder, and (as a designer) we can use a smaller value
of k while still achieving `-bit security. For example in Section 3.4 we perform
a detailed analysis of SIDH and conclude that a value of k = 92 is sufficient to
achieve 128-bit quantum security. While a key size penalty of a factor of O(`)
and performance penalty of a factor of O(`2) might seem untenable, we point out
that our scheme is far from the worst in this regard compared to some recently
published articles such as [3].

In Section 2 we present our security theorem which states that, for SIDH and
other suitable protocols, our transformation is secure in the sense that finding
even a single invalid key resulting in a successful key exchange (in the sense that
the attacker can guess the shared secret computed by the honest party under
this invalid key) is equivalent to breaking the passive security of the original un-
transformed protocol. We recognize and emphasize that our security reduction
falls short of a full proof of active security, as it only shows that attacks of the
type that involve feeding an honest party invalid keys must fail, and not that
arbitrary attacks must fail. Nevertheless, we suggest that our results provide
a useful foundation for building secure static-static key agreement protocols,
and is worthy of further study, especially in the post-quantum setting where
the question of achieving secure static-static key agreement remains an open
problem.

2 Multiple Instances of Key Agreement

We begin with a review of the format for key agreement protocols. The content
of this paper focuses on two participants establishing a shared secret key that
depends on inputs from both members, it does not address authentication.

Definition 1. We let KE be a key establishment function (the requirements of
which will be stated shortly). A key agreement protocol, KA, for Alice and Bob
using KE consists of the phases:

0. Setup: Both members obtain a valid copy of the global parameters, gp.
1. Key Generation: Alice generates a secret key sA and public key pA, likewise

Bob generates sB and pB.
2. Communication: Alice obtains pB and Bob obtains pA.
3. Key Establishment: Alice computes KE(gp, pB , sA) and Bob computes

KE(gp, pA, sB).



4. Verification: If applicable, each participant test the validity of the others
public key. Alice and Bob verify that they have computed the same shared
secret. If they have not, communication is terminated.

For the verification step to succeed, clearly the key establishment function KE has
the requirement that these two outputs are equal when the participants operate
honestly. Additionally, the following values must be computationally infeasible
to compute: a secret key from its corresponding public key, a secret key s from
KE(gp, p, s), and KE(gp, pB , sA) from gp, pB, and pA.

Note, this protocol is incomplete as it does not state how Alice and Bob
check if they computed the same secret in the verification phase. However this
step of the protocol will become explicit below, and the security of our choice
will be examined in detail. We now formally state and analyze the security of
performing multiple simultaneous instances of key agreement. First is the attack
model that will be used throughout.

Definition 2. Consider the attack model on a key agreement protocol where Bob
may use a specially chosen public key/private key (pB , sB) and additionally act
dishonestly in the verification phase.

Following [13, §3] we define a two types of oracles that we will consider Bob
having access to once per verification phase:

1. Oracle1(pB) = KE(gp, pB , sA), which corresponds to Bob somehow obtain-
ing the output of Alice’s key establishment function.

2. Oracle2(pB , h
′) returns 1 if h′ = KE(gp, pB , sA), and returns 0 otherwise,

which corresponds to Alice either terminating or continuing a session after
she and Bob performed verification in which Bob used some h′ as his secret.

Suppose Bob chooses pB in such a way that a response from a type (1) or-
acle, or a response of 1 from a type (2) oracle, will reveal κ(pB) bits of Alice’s
secret key to Bob (where κ(·) returns non-negative integers). Then the output
of Oracle1(pB) follows some discrete probability distribution (as those κ(pB)
bits vary); denote the corresponding probability mass function by χKE(pB , ·).
Likewise for the type (2) oracle, let χKE(pB , h

′) denote the probability that
Oracle2(pB , h

′) = 1.

In protocols where these attacks apply, a malicious Bob will typically know
the distribution χKE(pB , ·) (loosely speaking, if pB is “close” to the actual public
key derived by sB , then KE(gp, pB , sA) will be “close” to KE(gp, pA, sB)). Then
Bob can use the values of h′ for which χKE(pB , h

′) > 0 and have Alice respond
as a type (2) oracle during verification which reveals those κ(pB) bits of her
private key when he guesses h′ correctly. Our goal is to modify key agreements
susceptible to such attacks so that we can bound all probabilities in χKE(·)
arbitrarily from above. We first need to define a specific type of key agreement
protocol.



Definition 3. Let KA be a key agreement protocol which uses the key estab-
lishment function KE(gp, ·, ·), for some global parameters gp. If Bob has a pub-
lic key/secret key pair (pB , sB) for KA and is given two public keys p1 and
p2 (derived from some secret keys s1, s2 which are unknown to Bob), then
KE(gp, pB , s1) = KE(gp, p1, sB) and KE(gp, pB , s2) = KE(gp, p2, sB) by re-
quirement of KE. A public key which has been altered in any way will be referred
to as modified. A modified public key p∗ that is guaranteed to satisfy:

1. p∗ passes all validation tests Alice performs in the verification phase,
2. κ(p∗) > 0,
3. KE(gp, p∗, s1) = KE(gp, pB , s1), and
4. KE(gp, p∗, s2) = KE(gp, pB , s2),

will be called malicious. If it is computationally infeasible for Bob to modify his
public key to some malicious p∗ then we will say KA is irreducible.

We can now define our key agreement transformation. With the above general
framework for a key agreement in mind, consider the following variant.

Definition 4. Let KE be a key establishment function as above, let k be a pos-
itive integer, and let H be a preimage resistant hash function. Consider the
following key agreement process between Alice and Bob, called k −KA:

0. Setup: Both members obtain a valid copy of the global parameters, gp.
1. Key Generation: Alice generates k secret key/public key pairs (sAi, pAi),

1 ≤ i ≤ k. Likewise Bob generates (sBi, pBi) for 1 ≤ i ≤ k.
2. Communication: Alice initiates communication and sends all k of her pub-

lic keys to Bob. Bob then sends all k of his public keys to Alice.
3. Key Establishment: Alice computes zi,j ← KE(gp, pBi, sAj) for every pair

1 ≤ i, j ≤ k, then computes

h← H(z1,1, . . . , z1,k, z2,1, . . . , z2,k, . . . , zk,1, . . . , zk,k).

Similarly, Bob computes z′i,j ← KE(gp, pAj , sBi) for each pair 1 ≤ i, j ≤ k,
and then computes

h′ ← H(z′1,1, . . . , z
′
1,k, z

′
2,1, . . . , z

′
2,k, . . . , z

′
k,1, . . . , z

′
k,k).

4. Verification: If applicable, Alice and Bob test the validity of each others
public keys. Alice and Bob verify that h is equal to h′ as follows: Alice sends
H(H(h)) to Bob, and Bob responds with H(h′). Alice checks that H(h) =
H(h′) and Bob checks that H(H(h′)) = H(H(h)). Either party terminates
the session if their verification fails.

When Alice and Bob perform honestly, it is clear that they will share the same
key and verification will pass on both ends. We now present our main theorem
which explains how the parameter k can affect the security of the protocol from
attacks of the type mentioned in Definition 2.



Theorem 1. Let KA be an irreducible key agreement protocol which uses the
key establishment function KE(gp, ·, ·), for some global parameters gp. Let p∗ be
a modified public key with κ(p∗) > 0 that passes all validity tests of KA, and
let ρ denote the largest probability in the image of χKE(p∗, ·). Suppose that in
k-KA one of the k parts to Bob’s public key is p∗. If Bob has access to a type
(1) oracle for k-KA, then the largest probability in χk-KA(pB) is ρk−1.

In k-KA Bob has access to a type (2) oracle (see Definition 2) in the form of
Alice sending H(H(h)) (or H(h) if the roles are reversed) as he can guess at the
preimage and check his guess. However we are assuming that Bob has access to
a type (1) oracle, that is he somehow recovers h from Alice during verification,
which provides the adversary with greater capabilities. We now prove Theorem
1.

Proof. During the k-KA session, denote by (pA1, sA1), . . . , (pAk, sAk) the keys
generated by Alice and likewise (pB2, sB2), . . . , (pBk, sBk) the keys generated
by Bob, along with pB1 = p∗ (without loss of generality). Bob can potentially
learn about Alice’s secret keys during the verification phase. Alice will compute
z1,j ← KE(gp, p∗, sAj) and zi,j ← KE(gp, pBi, sAj) for every 2 ≤ i ≤ k and
1 ≤ j ≤ k. She then computes

h← H(z1,1, . . . , z1,k, z2,1, . . . , z2,k, . . . , zk,1, . . . , zk,k).

We are assuming Bob has access to a type (1) oracle, and so he has obtained
h from Alice. As H is preimage resistant, in order to learn anything about
Alice’s secret keys Bob must guess at the preimage of h. Bob can easily compute
zi,j = KE(gp, pAj , sBi) for all 2 ≤ i ≤ k, 1 ≤ j ≤ k. Therefore determining
the preimage relies completely on Bob’s ability to find z1,j = KE(gp, p∗, sAj)
for every 1 ≤ j ≤ k, each of which is an instance of the original KA protocol,
however he is only able to test a guess for the tuple (z1,1, . . . , z1,k) instead of
each one individually. By assumption, KA is irreducible and p∗ is modified with
κ(p∗) > 0 and passes all applicable validity tests. It follows that KE(gp, pAj , sB1)
is not guaranteed to be equal to KE(gp, p∗, sAj) = z1,j for more than one value
of j. Bob can therefore be certain of no more than one value of z1,j before testing
guesses.

Note that if Bob guesses (x1, . . . , xk) = (z1,1, . . . , z1,k), then the probability
of success is unaffected by his previous guesses. Therefore the probability that
each of Bob’s guesses of z1,j is bounded above by ρ, except for possibly the one
value which can be forced to be KE(gp, pAj , sB1) by Bob’s choice of p∗. Since
the type (2) oracle only returns 1 if all k instances are correct, Bob’s maximum
probability of success on any guess is ρk−1. ut

More than the theorem’s result, the proof shows that the probability that a
guess (x1, . . . , xk) is equal to (z1,1, . . . , z1,k) is the product that each individual
xj is equal to z1,j , 1 ≤ j ≤ k, with the exclusion of no more than one j by the
irreducibility assumption.



3 Multiple Instances of SIDH

In this section we will apply the previous theory to the SIDH key agreement
protocol to enable secure use of static keys. We then estimate the expected
amount of work required to break our transformation in this case.

3.1 Preliminaries

For general background on elliptic curves we refer the reader to [21]. Throughout,
we let E be an elliptic curve over a finite field Fq and use [m]P to denote applying
the multiplication-by-m map to the point P (adding P to itself m times) for
any m ∈ Z. We denote the m-torsion subgroup of E, the subgroup of points
P ∈ E(Fq) such that [m]P is the identity on E, by E[m]. If q = pn, then those
elliptic curves for which E[pr] is the trivial subgroup (for all r ∈ N) are called
supersingular elliptic curves. Otherwise E[pr] ∼= Z/prZ for all r ∈ N and such
elliptic curves are called ordinary. Supersingular elliptic curves are all defined
over Fp2 .

Let E′ be a second elliptic curve defined over the finite field Fq. An isogeny
φ : E → E′ over Fq is a non-constant rational map defined over Fq, mapping
identity to identity, and is a group homomorphism from E(Fq) to E′(Fq) [21,
III.4]. The elliptic curves E and E′ defined over Fq are then said to be isogenous
over Fq. For each subgroup G of E, there is up to isomorphism a unique isogeny
φ with domain E and kernel G [21, III.4.12], which we will denote E/G. The
degree, deg(φ), is its degree as a rational map which is equal to the size of its
kernel for separable isogenies. If φ has degree `, we will frequently refer to φ as
an `-isogeny. Every isogeny with deg(φ) > 1 can be represented uniquely (up to
isomorphism) as a composition of prime degree isogenies over Fq [9]. For every

isogeny φ there exists a dual isogeny φ̂ : E′ → E of equal degree [21, III.6]
and it follows that being isogenous over Fq is an equivalence relation on the
set of Fq-isomorphism classes of elliptic curves which are defined over Fq. If E
is supersingular and ` - p, then E is `-isogenous to ` + 1 supersingular elliptic
curves (counting multiplicites).

Associated to each elliptic curve is a j-invariant, and two elliptic curves are
isomorphic over Fq if and only if they have the same j-invariant [21, III.1.4].
Therefore we can refer to the Fq-isomorphism classes of elliptic curves over Fq
by their j-invariant. If the elliptic curve is represented as E : y2 = x3 + ax + b
with a, b ∈ Fq, then

j(E) = 1728
4a3

4a3 + 27b2
∈ Fq.

For any integer ` > 0 with p - `, the Weil pairing is a bilinear form that we
denote by

e` : E[`]× E[`]→ µ`,



where µ` = {x ∈ Fq|x` = 1}. The following remark connecting the Weil pairing
and isogenies follows immediately from [21, III.8.2].

Remark 1. Let E be an elliptic curve and R,S ∈ E[`] for some positive integer
`. If φ : E → E′ is an isogeny, then

e`(φ(R), φ(S)) = e`(R,S)deg(φ).

3.2 Supersingular Isogeny Diffie-Hellman Key Agreement

We give a simplified overview of the original SIDH key-establishment protocol
[10] in the format of §2 and the Galbraith et al. attack [13].

Setup: The global parameters consist of a prime number p = 2m3nf ± 1
where f is 1 or a small prime, a supersingular elliptic curve E/Fp2 , and four
points PA, QA, PB , QB ∈ E(Fp2) such that 〈PA, QA〉 = E[2m] and 〈PB , QB〉 =
E[3n].

Key Generation: The key generation function takes in E, p, PA, QA, PB , QB
and r ∈ {0, 1}. Upon input of r = 0, the key generation function computes:

α←R Z/2mZ,
φA : E → EA = E/〈PA + [α]QA〉,

(RA, SA)← (φA(PB), φA(QB)).

The key generation function then outputs the private key α and the public
key (EA, RA, SA). Upon input of 1 the key generation function performs the
analogous computations with some β ←R Z/3nZ, and outputs the private key β
and the public key (EB , RB , SB). Additionally, to prevent the recently discovered
fault attack [22] Alice and Bob each check the order of the points in their own
public key. This is efficient since the order of each point is known.

Communication: Bob initiates conversation and sends his public key,

(EB , RB , SB),

to Alice. Alice then responds with her public key,

(EA, RA, SA).

Key Establishment: Alice computes

EBA = EB/〈RB + [α]SB〉, and S = j(EBA).

Bob computes

EAB = EA/〈RA + [β]SA〉, and S′ = j(EAB).



Verification: Both Alice and Bob perform validation on the public key the
received by the other via the methods proposed by Costello et al. [8, §9], veri-
fying that the points have the correct order and are independent. This includes
Alice verifying that 〈RB , SB〉 = EB [2m] and e2m(RB , SB) = e2m(PA, QA)3

n

,
and Bob acting mutatis mutandis. Additionally, Alice and Bob check that they
have computed the same secret key. If any of the tests fail, then the session is
terminated. Otherwise they continue communication with S = S′ as their shared
secret key.

As in Definition 1 this protocol as defined is incomplete since it does not state
how Alice and Bob check if they computed the same secret in the verification
phase. This step is made explicit when we apply our multiple instances model.

In its original form [10], the key generation phase produces two values, say α1

and α2 (not both divisible by 2) as Alice’s private key, her isogeny φA has kernel
〈[α1]PA + [α2]QA〉, and she takes the analogous linear combination during the
key establishment phase. However, through a change of variables one can always
obtain kernel 〈PA + [α]QA〉 or 〈[α]PA + QA〉 since at least one of α1 or α2 is
invertible modulo 2m. Throughout the remainder of this work we assume without
loss of generality that we fall into the former case (as we stated in our definition
of SIDH) because it simplifies our analysis.

The SIDH key-establishment protocol relies on the difficulty of the following
computation problem.

Definition 5. Let E be a supersingular elliptic curve defined over Fp2 , with
p = `mA `

n
Bf ± 1, and let PA, QA ∈ E(Fp2) be such that 〈PA, QA〉 = E[`mA ].

Given an elliptic curve EA defined over Fp2 which is `mA -isogenous to E, the
Supersingular Isogeny (SSI) problem is to find an isogeny over Fp2 of degree `mA
from E to EA with a cyclic kernel. Since the isogeny itself can be infeasible to
store, a solution to the SSI problem is an integer α ∈ Z/`mAZ such that 〈PA +
[α]QA〉 is the kernel of the isogeny.

As mentioned, this Diffie-Hellman type protocol is susceptible to an active
attack if Alice uses the same private key in different sessions [13, §3]. We will
describe it now. For this discussion we will assume `A = 2 and `B = 3, a similar
attack applies when this is not the case.

Instead of using the public key (EB , φB(PA), φB(QA)) when communicating
with Alice, a dishonest Bob can send

(EB , R, S) = (EB , [θ]φB(PA), [θ](φB(QA) + [2m−1]φB(PA))),

where θ is chosen such that e2m(R,S) = e2m(PA, QA)3
n

. This modified public
key is certain to pass the validation methods in [8, §9]. The parity of Alice’s
private key α can then be determined as follows. The subgroup computed by
Alice during key establishment is 〈R + [α]S〉. When α is even this subgroup



is equal to 〈φB(PA) + [α]φB(QA)〉, but the subgroup will be different when α
is odd. Therefore, if Bob performs his half of the key establishment honestly
and uses the shared secret key EA/〈φA(PB) + [β]φA(QB)〉 during verification,
then he can determine the parity of α based on Alice terminating the session
or not. This attack can be extended adaptively to learn each bit of α efficiently
and without detection when using the described validation methods. An indirect
validation technique [17] is available which prevents the attack, but at the cost
of Bob revealing his private key so that Alice can verify the message he sends
was computed honestly.

This active attack suggests that static keys can no longer be used for SIDH
key exchange unless the other party is using an ephemeral key. In addition, it
requires that all holders of static keys must double their computational costs,
recomputing the other participant’s message in order to verify the validity of the
message.

3.3 k-SIDH Key Agreement Protocol

We now apply the multiple instances model of §2 to create a k-KA scheme based
on supersingular isogenies. For the security proof of Theorem 1 to apply we need
to show that SIDH is irreducible as defined in Definition 3. We first address the
case where a malicious Bob scales his public torsion points by some invertible
element.

Lemma 1. Suppose Alice and Bob participate in an instance of SIDH key-
agreement and that Bob uses the dishonest public key

p∗ = (EB , [µ]φB(PA), [µ]φB(QA))

for some µ coprime to order of PA and QA. Then p∗ is not a malicious key in
the sense of Definition 3.

Proof. Denote the order of Alice’s torsion subgroup by `mA and Bob’s by `nB . The
verification phase of SIDH consists of checking that the two torsion points are
independent, have the correct order, satisfy the Weil pairing condition, and that
both parties compute the same shared secret key. The order and independence
conditions follow immediately from the assumption that `A and µ are coprime.
By Remark 1 and the bilinearity of the Weil pairing,

e`mA ([µ]φB(PA), [µ]φB(QA)) = e`mA (PA, QA)µ
2`nB .

Therefore p∗ passes the Weil pairing test if and only if µ2 ≡ 1 mod `mA . Lastly,
if we denote Alice’s private key by α, then

〈[µ]φB(PA) + [α] ([µ]φB(QA))〉 = 〈[µ] (φB(PA) + [α]φB(QA))〉
= 〈φB(PA) + [α]φB(QA)〉,



where the second equality follows from µ being coprime to `A.

This shows that if Bob modifies his public key in this way, then Alice will
compute the same shared secret independent of her private key. Therefore no
more information about her private key can be leaked by Alice accepting (or
rejecting if µ2 6≡ 1) than is already leaked when Bob performs honestly. Hence,
κ(p∗) = 0 and this modification does not result in a malicious public key. ut

It is worth noting that if Bob scales his two torsion points by different scalers,
say µ1 and µ2, then they will no longer generate the same subgroup under
Alice’s private key by the independence of φB(PA) and φB(QA), again resulting
in a public key which is not malicious. Now we can prove that isogenies lend
themselves to the transform of §2.

Theorem 2. Under the assumption that the SSI problem is intractable, it is
computationally infeasible for a malicious Bob with non-negligible probability to
modify his public key (EB , φB(PA), φB(QA)) to some p∗ = (EB , R, S) which is
malicious for SIDH.

Proof. Let p = `mA `
n
Bf ± 1 be prime, let E be an elliptic curve defined over Fp2 ,

and let PA, QA, PB and QB be points on E(Fp2) such that 〈PA, QA〉 = E[`mA ]
and 〈PB , QB〉 = E[`nB ]. Alice has some public key/secret key pair

φA1 : E → EA1 = E/〈PA + [α1]QA〉, α1 ∈ Z/`mAZ.

Bob knows the global parameters p, PA, QA, PB and QB , and receives the public
key (EA1, φA1(PB), φA1(QB)) from Alice. By the assumption of intractability
of the SSI problem, it should be infeasible for Bob to compute α1. The goal of
our proof is to show that if Bob can violate the definition of irreducibility by
computing p∗ in the statement of the theorem, then he can compute α1 efficiently
which violates the SSI assumption.

Bob uses the SIDH key generation algorithm twice, to generate some

α2 ∈ Z/`mAZ, φA2 : E → EA2 = E/〈PA + [α2]QA〉, and

β ∈ Z/`nBZ, φB : E → EB = E/〈PB + [β]QB〉.

Suppose for contradiction that Bob is able to modify (EB , φB(PA), φB(QA))
to some malicious public key (EB , R, S), violating irreducibility as stated in
Definition 3. That is:

• (EB , R, S) passes all validation tests,
• j(EB/〈R+ [α1]S〉) = j(EB/〈φB(PA) + [α1]φB(QA)〉),
• j(EB/〈R+ [α2]S〉) = j(EB/〈φB(PA) + [α2]φB(QA)〉), and
• κ(EB , R, S) > 0.



Since we cannot fully characterize public keys with κ(p∗) > 0 in this setting,
we instead use the condition that (R,S) 6= ([µ]φB(PA), [µ]φB(QA)) for some
µ coprime to `A. By Lemma 1 these public keys satisfy κ(p∗) = 0, so we are
assuming a potentially weaker condition than κ(p∗) > 0 by excluding only public
keys of this type.

To simplify notation for the remainder of this proof we set ` = `A . The
subgroups 〈R+ [α1]S〉 and 〈R+ [α2]S〉 are guaranteed to be kernels of isogenies
from E to elliptic curves isomorphic to EA1 and EA2 respectively by the j-
invariant requirements. For the first subgroup one of two cases is true:

i The isogeny with kernel 〈R+ [α1]S〉 is isomorphic to the isogeny with kernel
〈φB(PA) + [α1]φB(QA)〉,

ii The isogeny with kernel 〈R + [α1]S〉 is not isomorphic to the isogeny with
kernel 〈φB(PA) + [α1]φB(QA)〉.

Likewise, there are two cases for α2 and the isogeny to EA2. For the remainder
of the proof we assume that both isogenies fall into case (i) as our reduction only
applies in this situation. This point will be examined in greater detail in the run-
time analysis at the end of the proof. This distinction of cases must be made as it
is possible for the two isogenies to be non-isomorphic and yet the torsion points
R and S (or some scaling of them) still satisfy all the requirements of the veri-
fication phase, including the Weil pairing test that e`m(R,S) = e`m(PA, QA)`

n
B

(see [13, §3.2] for details).

Suppose the isogeny with kernel 〈φB(PA)+[αi]φB(QA)〉 is isomorphic to that
of 〈R+ [αi]S〉 for both i ∈ {1, 2}. Then the two subgroups themselves are equal
for each i. It follows that their generators must then differ by a scalar multiple
coprime to the order of the subgroup. We can then write

[λi](φB(PA) + [αi]φB(QA)) = R+ [αi]S, (1)

for some λi ∈ Z/`mZ coprime to `m (i.e. coprime with `), for both i ∈ {1, 2}.
Since ` is a small prime, the elliptic curve discrete log problem is tractable on

EB [`m] using Pohlig-Hellman [20] and the Weil or Tate pairing (see [2, §3.2] and
optimization [7, §4-5]). Solving two instances of the two-dimensional ECDLP
provides a, b, c, d ∈ Z/`mZ such that

R = [a]φB(PA) + [b]φB(QA), and S = [c]φB(PA) + [d]φB(QA). (2)

Substituting these decompositions into (1) and rearranging we obtain

[λ1](φB(PA) + [α1]φB(QA)) = [a+ α1c]φB(PA) + [b+ α1d]φB(QA).

The points PA and QA are independent—there does not exist t ∈ Z/`mZ such
that PA = [t]QA. Therefore φB(PA) and φB(QA) are independent as well. Com-
paring coefficients of φB(PA) implies that λ1 ≡ a + α1c mod `m. Comparing
coefficients of φB(QA) then gives the congruence

b+ α1d ≡ λ1α1 ≡ (a+ α1c)α1 mod `m. (3)



Similar analysis of the subgroups associated with α2 result in the congruence

b+ α2d ≡ (a+ α2c)α2 mod `m. (4)

Rearranging (3) and (4) gives

cα2
1 + (a− d)α1 − b ≡ 0 mod `m, and cα2

2 + (a− d)α2 − b ≡ 0 mod `m.

Therefore α1 and α2 are solutions to the quadratic congruence relation

cx2 + (a− d)x− b ≡ 0 mod `m. (5)

Bob has the ability to construct this polynomial. One approach to solving
this equation comes from the assumption that α1 and α2 are simple roots modulo
` (this is the same assumption required in Hensel’s lemma) as it implies α1−α2

is invertible modulo `m. By subtracting (4) from (3) and multiplying the result
by (α1 − α2)−1 mod `m we obtain

d ≡ a+ c(α1 + α2) mod `m, (6)

and it follows that

b ≡ −cα1α2 mod `m. (7)

Therefore, if `r | c, then `r | a−d and `r | b too. If c ≡ 0 mod `m, then b ≡ 0 and
a ≡ d mod `m, which contradicts the assumption that (EB , R, S) is malicious
by Lemma 1.

From the malicious public key (EB , R, S), Bob can now efficiently solve for
α1 and α2 using the following process:

1 Compute the discrete log coefficients a, b, c, d ∈ Z/`mZ as above.
2 Write c = `rg for some g indivisible by ` and 0 ≤ r < m.

3 Let K = g−1
a− d
`r

mod `m−r and L = −g−1 b
`r

mod `m−r, where the inverse

of g is computed modulo `m−r.
4 α1 and α2 are roots of the quadratic x2 + Kx + L ≡ 0 mod `m−r by (5).

Solve for all roots of this polynomial modulo `m−r.
5 For each root, u, extend it to an integer mod `m, say u′, and test if it is

equal to α1. This test can be performed by computing the image curve of
the isogeny with 〈PA + [u′]QA〉 ⊂ E(Fp2) as its kernel and comparing its
j-invariant with j(EA1) (the image curve of the isogeny with 〈PA + [α1]QA〉
as its kernel).

What remains is to analyze the computational cost of this reduction and the
probability of success. For this analysis, we need to know the likelihood of our
assumptions, the probable size of the value r, and the number of roots of the
quadratic congruence.



The first assumption is that the subgroup associated to the points R and S
is the same as the isogeny kernel in the SIDH instance. The existence of multiple
isogenies of degree `m between two fixed supersingular elliptic curves is possible,
but unlikely under the Galbraith et al. heuristic of [13, §4.2]. For instance there
can exist multiple isogenies of degree ` from one j-invariant, j0, to another and
this occurs exactly when the classical modular polynomial Φ`(j0, x) has repeated
roots in x. The set of possible roots grows with p and yet its degree in x is fixed
by `+ 1, so this situation unlikely for large p.

Next we examine the value r when α1 ≡ α2 mod `. When ` = 2, we have
that r ≥ 3 whenever m > 3. From the distribution of multiples of ` in Z/2mZ,
we have r = j for 3 ≤ j < m with probability 1

2j−2 , and the probability that
r = m (i.e. c = 0) is 1

2m−3 . When ` is odd, only r ≥ 1 is guaranteed. For Z/`mZ
with odd `, we have r = j for 1 ≤ j < m with probability 1

`j , and the probability
that r = m is 1

2m−1 . Hence, it is most likely that r = 3 or 4 when ` = 2, and
r = 1 or 2 when ` is an odd prime.

Lastly, we look at the number of solutions to (5). If α1 6≡ α2 mod ` and ` - c,
then there are exactly two solutions modulo `m, namely α1 and α2. Letting r
be the `-adic valuation of c as above, the number of solutions to this quadratic
congruence is 2`r, namely

αi + z`m−r−1, 0 ≤ z ≤ `r − 1, i ∈ {1, 2}.

Even though the number of roots to check grows exponentially in r, the prob-
ability of each successive value of r occurring decreases exponentially (see the
previous paragraph).

When α2 is chosen to be congruent to α1 modulo `, b and d are not necessarily
of the form (6) and (7). This makes solving for α1 much harder, and in some
cases, impossible. However, this only happens with probability 1

` . By the previous
paragraph we see that if Bob counts the number of roots of (5) modulo `m−r

before solving for α1, then verifying there are less than `r+1 of them can serve
to test for when α1 ≡ α2 mod `. If the test fails then Bob can reuse the key
generation algorithm until the private key provided is incongruent to the initial
α2, and then repeat the process above (he never has to run this process more
than twice).

We conclude that if Bob can violate this irreducibility condition, then he can
efficiently solve the SSI problem. ut

Combining Theorem 2 with the fact that there are currently no know attacks
on SIDH that involve modified elliptic curves (as opposed to modified torsion
points) we conclude that SIDH is irreducible for all known modified public keys.
We now give an explicit statement of the k-SIDH protocol.

Setup: A preimage resistant hash functionH, a prime number p = 2m3nf±1,
a supersingular elliptic curve E/Fp2 , and four points PA, QA, PB , QB ∈ E(Fp2)
such that 〈PA, QA〉 = E[2m] and 〈PB , QB〉 = E[3n].



Key Generation: Upon input of 0, the key generation function computes,
for 1 ≤ i ≤ k:

αi ←R Z/2mZ,
φAi : E → EAi = E/〈PA + [αi]QA〉,

(Ri, Si)← (φAi(PB), φAi(QB)).

The key generation function then outputs the private key (α1, . . . , αk) and the
public key (EA1, R1, S1), . . . , (EAk, Rk, Sk). The recipient checks that the order
of each Ri and Si is 3n to ensure no faults were induced.

Upon input of 1 the key generation function computes, for 1 ≤ j ≤ k:

βj ←R Z/3nZ,
φBj : E → EBi = E/〈PB + [βj ]QB〉,

(Uj , Vj)← (φBj(PA), φBj(QA)).

The key generation function then outputs the private key (β1, . . . , βk) and the
public key (EB1

, U1, V1), . . . , (EBk
, Uk, Vk). The recipient checks that the order

of each Uj and Vj is 2m to ensure no faults were induced.

Communication: Bob initiates conversation and sends his public key to
Alice. Alice responds with her public key.

Key Establishment: For each 1 ≤ i, j ≤ k, Alice computes

zi,j = j(EBj/〈Uj + [αi]Vj〉),

and then she calculates the hash

h = H(z1,1, . . . , z1,k, z2,1, . . . , z2,k, . . . , zk,1, . . . , zk,k).

Similarly, for each 1 ≤ i, j ≤ k, Bob computes

z′i,j = j(EAi/〈Ri + [βj ]Si〉),

and calculates the hash

h′ = H(z′1,1, . . . , z
′
1,k, z

′
2,1, . . . , z

′
2,k, . . . , z

′
k,1, . . . , z

′
k,k).

Verification: Alice verifies that for each 1 ≤ j ≤ k the pair Uj and Vj
are independent points of order 2m on the curve EBj [8, §9]. Additionally Al-
ice verifies that e2m(Uj , Vj) = e2m(PA, QA)3

n

. Likewise Bob verifies that each
pair Ri and Si are independent points of order 3n on the curve EAi and that
e3n(Ri, Si) = e3n(PB , QB)2

m

. Alice sends H(H(h)) to Bob who verifies it is
equal to H(H(h′)). Bob sends H(h′) to Alice who verifies it is equal to H(h).
If they have different secret keys, or any of the public key pairs fail the verifi-
cation, then the session is terminated. Otherwise they continue communication
with h = h′ as their shared secret key.



3.4 Security Analysis and Key Size

Before the security of k-SIDH can be properly analyzed we need the following
simple result. As before, let ` = `A denote the prime defining Alice’s torsion
subgroup. Recall that an `m-degree isogeny can be expressed uniquely as a com-
position of m `-degree isogenies. The following result tells us that, given the
shared j-invariant and Alice’s public key, Bob is unable to determine the final
`-isogeny in the composition of Alice’s isogeny (under the SSI assumption).

Theorem 3. Suppose Alice and Bob perform the standard SIDH key-agreement
protocol as described §3.2. In the key establishment phase Alice computes a secret
isogeny φA : EB → EBA of degree `m (` ∈ {2, 3}) as the composition of m
isogenies of degree `, say φA = φm ◦ · · · ◦ φ1. Let φ′ = φm−1 ◦ · · · ◦ φ1 be the
isogeny whose image curve is ` isogenous to EAB, say φ′ : EB → E′. Bob
also knows the curve EBA by performing his half of the key establishment. If
Bob has access to an efficient, deterministic algorithm which produces E′ from
E,EA, EB , EBA and `m, then Bob can efficiently solve the SSI problem.

Proof. The elliptic curve E′ is ` isogenous to EBA. Given E′ Bob can then
determine φm as there are only ` + 1 choices which he can test exhaustively.
Repeated iterations of the procedure, replacing the target curve adaptively and
decreasing the exponent of the degree iteratively by 1, will return each `-isogeny
in the composition. This procedure will reveal φA, breaking SSI. ut

The security of this scheme is based on the amount of work Bob must do in the
proof of Theorem 1 to compute the preimage of h. There are two benchmarks
that we could use when choosing k: the expected number of hashes Bob will
compute before correctly hashing the preimage, or the number of hashes before
the solution is found with probability 1

2 . The former is asymptotically greater in
our case, and so it is irrelevant when setting a security level.

The runtime depends on the order Bob guesses at solutions, so we always
assume he does so optimally. We index Bob’s guesses by i, and denote the asso-
ciated probability of success by Pi. The proof of Theorem 1 shows that for Bob
to determine the preimage of h he must correctly guess at least k−1 independent
samples from some distribution. We now determine that distribution for SIDH.

In the attack of Galbraith et al. [13], the public key with the greatest ratio
of revealed bits of Alice’s private key to probability of success that Bob could
use is p∗ = (EB , φB(PA), φB(QA) + [`m−1]φB(PA)). Bob knows the shared key
that Alice computes were he to participate honestly,

j0 = j(EA/〈φA(PB) + [β]φB(QA)〉),

and when using this dishonest p∗ he knows Alice will compute either j0 or some
other j-invariant which is `2-isogenous to j0. With overwhelming probability
there are `(` + 1) distinct isomorphism families which are `2-isogenous to any



isomorphism family (not represented by the j-invariant 0 or 1728). Combining
this fact with the Theorem 3 shows that k-SIDH exhibits the following proba-
bility distribution for each of Bob’s k guesses:

{1

2
,

1

2`(`+ 1)
, . . . ,

1

2`(`+ 1)
},

where
1

2`(`+ 1)
occurs `(` + 1) times. For example, if ` = 2, then the honestly

computed j-invariant, j0, occurs with probability 1
2 , and there are six j-invariants

which are 4-isogenous to j0 each occurring with probability 1
12 .

The guess that maximizes Bob’s probability of success is j0 for each of the

k − 1 unknown values, resulting in P1 =
1

2k−1
. The next most likely outcomes

are those with j0 for k−2 of the values and one of the other `(`+1) j-invariants,
each occurring with probability

Pi =
1

2k−2 · (2`(`+ 1))
for 2 ≤ i ≤ (k − 1)(`(`+ 1)) + 1.

From this we calculate r, the number of hashes that Bob computes before his

probability of success is 1
2 , by solving

1

2
=

r∑
i=1

Pi for r.

The first step is to collect all guesses with the same probability of success,
that is, those which select the same number of j0. To achieve this we change from
the variable r, the total number of guesses Bob makes, to t which represents the
quantity of non-j0 elements in Bob’s choice. They are related by

r =

t∑
i=0

(
k − 1

i

)
(`(`+ 1))i

as each term in the summand is the number of possibilities with i non-j0 ele-
ments. Therefore,

r∑
i=1

Pi =

t∑
i=0

1

2k−1−i(2`(`+ 1))i

(
k − 1

i

)
(`(`+ 1))i =

1

2k−1

t∑
i=0

(
k − 1

i

)
,

and this final sum equals 1
2 exactly when t = k−2

2 (if k is odd then the sum needs

one half times the
(k−1

k−1
2

)
term) by the symmetry of the binomial coefficient. This

implies that the number of hashes required by Bob to learn the first bit of each
of Alice’s k secret keys is

r =

k−2
2∑
i=0

(
k − 1

i

)
(`(`+ 1))i. (8)

If ` = 2, then k = 60 gives r = 2130; for ` = 3, 2131 hashes is achieved by k = 50.



When considering security against a quantum enabled adversary, one would
expect a quadratic speedup by Grover’s algorithm [14]. The number of steps
required when applying Grover’s algorithm to a non-uniform distribution is still√
N when searching for one particular item, where N is the size of the domain [4].

We therefore calculate the minimal k such that Bob is required to compute 2128

quantum operations before successfully calculating the preimage of Alice’s hash,
and therefore k bits of her secret key. The domain for k-SIDH is the total number
of possible guesses Bob can make, which is (1 + `(`+ 1))k. When ` = 2, setting

k = 92 into
√

7k gives 2128, and ` = 3 achieves 2128 from setting k = 70.

These choices of k are based on the currently best known attack that satisfies
Definition 2. There is of course, the possibility of other attacks of this type which
are currently unknown such as modifying the elliptic curve in a public key instead
of the torsion points, or perhaps stronger attacks using modified torsion points.
However, if such attacks are discovered, the generality of the Theorem 1 shows
that only a recalculation of k is needed to adapt as these qualify as malicious
public key attacks.

To achieve a specified level of security for k-SIDH each individual SIDH
instance must also meet that security level. Using the compression techniques of
[7], at the 128-bit quantum security (or 192-bit classical security) level, an SIDH
public key can be represented in 331 bytes. It follows that that a k-SIDH pubic
key requires 331× k bytes, or 31 kb at the 128-bit quantum security level.

3.5 Other Applicable Post-Quantum Schemes and Future Work

The proposed k-instances model applies to key agreement schemes in which the
resulting shared secret is dependent on input from both parties (not encapsula-
tion methods) where the use of static keys may reveal private keys to a malicious
participant. We have seen that this applies to SIDH [13], but it may also apply to
lattice based schemes. The ring-LWE key agreement protocol by Ding et al. [16]
satisfies this criterion as it is susceptible to such an active attack [11]. However,
one would have to show that this protocol is irreducible (Definition 3).

The computational costs of k-SIDH are naively k2 that of standard SIDH,
in which parties simply perform k2 independent SIDH operations. Economies
of scale could be realized in an optimized implementation using (for example)
SIMD, since the key establishments can be organized into k groups of k such
that all SIDH operations in a group have one half in common.

k-SIDH only addresses the problem of dishonest users who manipulate ellip-
tic curve points. It does not address the case where the curves themselves are
manipulated. It may be worth examining whether approaches like k-SIDH can
help protect against attacks involving manipulated curves. Another interesting
problem comes from the heuristic assumption from [13, §4.2] which was used in
the proof of Theorem 2. Although this assumption seems plausible in light of
the Ramanujan property of the supersingular `-isogeny graph, a proof would be



preferable, perhaps under a standard assumption such as GRH. Similar results
have been achieved in the ordinary case [15].

4 Conclusion

We presented a new key agreement model which performs k2 simultaneous key
agreements and defends against a specific class of active adversaries when cer-
tain assumptions about the underlying key agreement protocol are satisfied. We
showed that supersingular isogeny key agreement satisfies these assumptions
provided its computational problem is intractable. Using this new model, we de-
termined that performing 602 simultaneous instances of SIDH will protect both
participants from leaking any information of their secret key against these ac-
tive adversaries with classical capabilities, and 922 suffices for protection against
quantum adversaries.

Acknowledgments. The authors would like to thank the reviewers for their
comments. This work is supported in part by grants NIST-60NANB17D184,
NIST-60NANB16D246, NSF CNS-1661557, NSERC, CryptoWorks21, and Pub-
lic Works and Government Services Canada.

References
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