CSI 4108
Cryptography

Assignment #1
Due: Friday, September 22, 2017 (before 16:00, to be e-mailed to the Corrector)

1. In class it was shown that the Hill cipher can be broken using a known-plaintext attack. Using an even stronger model of the adversary, we find that the Hill cipher can be easily broken with a chosen-plaintext attack. Explain how a chosen-plaintext attack can be used to determine the encryption key without requiring the execution of a matrix inversion or the solution of a set of linear equations. Is it realistic to assume that an adversary can mount a chosen-plaintext attack in real life? Why or why not (give a convincing answer)? Compared with a chosen-plaintext attack, would a chosen-ciphertext attack be more effective, less effective, or equally effective against this cipher? [1.5 marks]

2. The Caesar cipher is an example of a cipher based on a shifted alphabet, where each letter of the plaintext is shifted by \(k \) positions (that is, \(c = p + k \mod 26 \)). A generalization uses multiplication as the basis, so that \(c = pk \mod 26 \). In such a cipher, the values \(k = 0 \) and \(k = 1 \) would obviously not be wise choices. List all other values for \(k \) that would be unwise. What is unwise about these choices? In this multiplicative cipher, if the ciphertext is KSHUKRANMGUH, find \(k \) and \(p \). Does the multiplicative version have any advantages over the original Caesar cipher? [1.5 marks]

3. A further generalization of the Caesar cipher is the affine substitution cipher, in which \(c = (pk_1 + k_2) \mod 26 \). What is the size of the key space for this cipher? If it is suspected that the plaintext letter \(e \) (4) corresponds to the ciphertext letter \(p \) (15), what is the new size of the key space for the attacker? If it is known that the plaintext letter \(e \) (4) corresponds to the ciphertext letter \(p \) (15) and that the plaintext letter \(h \) (7) corresponds to the ciphertext letter \(e \) (4), break the cipher by solving for \(k_1 \) and \(k_2 \) (use brute force as well as a more efficient method). If we further generalize this cipher to \(c = pk_1k_2 + k_3 + k_4 \mod 26 \), how much security have we gained (in terms of key space and in terms of difficulty to break)? [3 marks]

4. Consider the transposition cipher, which permutes each block of \(m \) plaintext (alphabetic) characters in an \(n \)-bit message using a fixed \(m \)-valued permutation key. Someone tells you that because the data is very confidential, they will use double encryption (i.e., the ciphertext will be re-encrypted using an independent \(m \)-valued permutation key). Compute the additional security that this will provide in terms of \(m \) and \(n \). [2 marks]