Real-world Particle Filtering-based Speech Enhancement
Frederic Mustiere, Miodrag Bolic, Martin Bouchard,
{mustiere,mbolic,bouchard}@site.uottawa.ca

Particle Filtering for Speech Enhancement
Particle Filters (PFs): sequential Monte Carlo methods, approximate solutions to state estimation problem, they can handle non-Gaussian non-linear models.
They operate by:
• Drawing candidates for the state to estimate
• Assigning scores to these candidates (based on model & measurement)
• Forming a global estimate.

Subband Domain Processing
• Use of maximally decimated filterbanks, to process minimal amount of data
• “Medium” amount of bands (32) for time-frequency resolution compromise.
• Three tested filterbank configurations
 • Multi-stage Wavelet-Packet decomposition of depth 5 (24 coeffs. each)
 • Pseudo-QMF filterbank with a Kaiser prototype window (468 coeffs.)
 • Modified Discrete Cosine Transform (MDCT) with a Kaiser-Bessel Derived window (64 coeffs.).

Perceptual Constraining
If external background noise PSD estimation is available:
• Use of perceptual hearing features, in particular simultaneous (i.e. frequency) masking curves
• Simple under/overestimation of the returned noise level can then be applied, depending on some conservative rules
• For example, an overestimation would be removing more noise, but would also introduce more speech distortion. The opposite also holds.

Main Objective and Constraints
The main objective is to obtain a PF-based algorithm with the following constraints:
1. Capable of operating in complex noise conditions, not restricted to stationary noise, and/or using ideal voice activity detectors (VADs)
2. As “light” as possible computationally
3. Able to work for wideband speech (0-10 kHz bandwidth in this work)
4. Resulting method must perform favourably in comparison with well-reviewed and well-established algorithms.

Elementary Subband Particle Filter Units
Proposed subband speech and noise model:
• Speech: 1st order time-varying autoregression (TVAR).
• Noise: 0th order TVAR, i.e. a Gaussian process with time-varying standard deviation.
• Elementary subband PF units are thus very simple
 • In addition, Rao-Blackwellization* can be used, the amount of particles required is then small i.e. less than a dozen particles (good robustness).

With known noise variances in each band (see below for details), a particle update is simple and consists of:
• Drawing 2 Gaussian random numbers (maintained set of means, fixed variances)
• 1-dimensional Kalman Filter update (~ 5 multiplications, 5 additions of real numbers)
• Computing the particle’s weight (exponential and square root functions).
• Rao-Blackwellization: Rao-Blackwellized Particle Filters (RBPFs) are applicable when a subset of a state vector is linear-Gaussian, conditional upon other states. Optimal Kalman filtering can be used for the linear part, and PF filtering for the non-linear part.

Noise Handling
Two solutions are proposed for noise handling:
1. Draw candidates for noise level (gain) internally at each iteration
 • Advantageous computationally (very low additional cost, i.e. one Gaussian number to draw and another variable to resample)
 • Allows for very sudden changes in noise level (sample-by-sample treatment)
2. Alternatively, external background noise Power Spectral Density (PSD) estimation (e.g. minimum statistics based estimator)
 • Estimated PSD can be “discretized” to a single point in each band
 • More robust than Voice Activity Detection

Performance and Simulations
• Comparisons with other schemes: averages over 12 different conditions – low, mid, high input SNR, and cafeteria, busy street, stadium and rain noise types
• Several objective measures used for evaluation: SNR, average (i.e. segmental) SNR, intelligibility index (CSII), wideband perceptual speech quality (w-PESQ)
• M-band (parallel) filterbanks were found to provide better results (better frequency selectivity, less inter-band leakage effects)
• Performance of internal noise PSD estimation approach close to performance with external dedicated noise estimation, but faster (less complex)

Audio Demonstrations
Corresponding audio demonstrations are available on-line, for anyone to subjectively assess the quality of enhanced speech signals: http://www.site.uottawa.ca/bouchard/papers/cip2010.zip

*Rao-Blackwellization: Rao-Blackwellized Particle Filters (RBPFs) are applicable when a subset of a state vector is linear-Gaussian, conditional upon other states. Optimal Kalman filtering can be used for the linear part, and PF filtering for the non-linear part.