Bandwidth Extension for Speech Enhancement

F. Mustiere, M. Bouchard, M. Bolic

University of Ottawa

Tuesday, May 4th 2010

CCECE 2010: Signal and Multimedia Processing
Outline

1. Context and objectives
2. Proposed solution
3. Results & demos
4. Conclusion
Current Topic

1. Context and objectives
2. Proposed solution
3. Results & demos
4. Conclusion
Speech enhancement or de-noising now found in several applications (speech transmission, recognition, hearing aids, etc.)

Noisy speech has frequency dependent SNR

Higher SNR in lowband (0-5 kHz in this work), lower SNR in highband (5-10 kHz in this work)
Context

- **Speech enhancement in highband**: because of lower SNR, higher risk of damaging speech (i.e. distortion) when attempting to remove noise.

Moreover, total complexity of lowband + highband enhancement can be significantly more costly than lowband enhancement only.
Objectives

To illustrate that a simple Bandwidth Extension scheme (BWE, details in next slide) can be both:

- a competitive speech enhancement or de-noising tool in the highband (as good as fairly advanced schemes)

- a way to reduce the complexity of advanced enhancement schemes, by computing enhancement only in the lowband (less bins or lower model order)

Using BWE could also allow to use a more complex lowband enhancement scheme, using the computations freed by the BWE scheme
Bandwidth extension

Some background on classic bandwidth extension:

- production of missing frequency bands with or without additional information
- generic audio bandwidth extension versus source-filter model-based speech bandwidth extension
Main techniques in classical BWE

Excitation signal extension:
- using non-linearities on time sequence
- using spectral shifting or modulation techniques
- using artificial function generators (e.g. harmonic sines)

Spectral envelope extension:
- using codebooks from parameters (LPC, cepstral coeffs.)
- using neural network mapping
- using linear mapping (sometimes combined with codebooks)
- using Bayesian estimation methods (GMMs, HMMs)
Bandwidth extension

- **BWE and spectral band replication (SBR) techniques** are **found in several speech codecs** (GSM full-rate, AMR-WB, AMR-WB+, G.729EV/G.729.1) **and audio codecs** (MP3pro, Enhanced AACplus, HE-AAC)

- **Different frequency bands** present **different challenges**, e.g. bandwidth extension 300Hz-3.4kHz to 0Hz-5.5kHz is different from 0Hz-11kHz to 0Hz-22kHz

- BWE has received **little attention** in the literature so far as an approach **for speech enhancement or denoising**
Current Topic

1. Context and objectives
2. Proposed solution
3. Results & demos
4. Conclusion
Application of BWE to Speech Enhancement

- In contrast with classical model-based BWE, here we have access to a coarse envelope estimate: the noisy signal envelope.

- In our particular context (0-10 kHz speech enhancement; SNR > −10 dB; non-synthetic recorded noise) it was found that if a “good” narrowband excitation signal can be obtained and extended, then the spectral envelope plays a fairly minor role in the resulting quality.
Application of BWE to Speech Enhancement

- Thus, for simplicity/efficiency, in this work LPC coefficients of noisy fullband spectral envelope are used:
 - for predicting the enhanced lowband excitation
 - for synthesizing the fullband enhanced signal.

- For the excitation signal extension, simple spectral shifting is used (spectral band replication, spectral folding).
Application of BWE to Speech Enhancement

Diagram:

- Decompose in 2 bands
- Enhance
- Deduce by BWE
- Reconstruct
- Incoming noisy wideband speech
- Output enhanced signal
Summary of method

1. Obtain analysis/synthesis filter by LPC analysis of \(\text{wb} \) noisy signal \(z(k) \)
2. From \(z(k) \), downsample to \(\text{nb} \) signal \(z_n(k) \)
3. Enhance downsampled \(z_n(k) \), upsample to \(\hat{x}_n(k) \)
4. Filter \(\hat{x}_n(k) \) with analysis filter to get \(\text{nb} \) enhanced excitation \(\hat{e}_n(k) \)
5. Bandwidth extend \(\hat{e}_n(k) \) by modulation to get \(\hat{e}_w(k) \)
6. Filter \(\hat{e}_w(k) \) with synthesis filter to obtain \(\text{wb} \) enhanced speech
Experimental setup

- **Speech** content from **TIMIT database** (several male and female speakers), upsampled to 20 kHz

- **Noise** from the **NOISEX-92 database** (babble, factory, tank, car), at different levels i.e. SNRs.

- Assessment using a mixture of SNR, speech quality and speech intelligibility **objective measures** (SNR, ASNR, CSII, WPESQ, Csig, Cbak, Covl)
Experimental setup

- **Assessment of subjective quality using informal listening tests**

- **Three different fairly advanced speech enhancement algorithms** were used, each in fullband and BWE modes: Kalman + EM, multi-band spectral subtractive algorithm, generalized subspace approach.
Results

- In large majority of cases, objectives measures results using the BWE approach were better than those using fullband enhancement, for either low or high input SNR.

- To fully quantify perceptual improvement would require more formal listening tests, but this is not the point here.

- Informal listening tests easily confirm that the BWE approach is at least perceptually similar to the fullband enhancement case, but at lower cost or complexity.
Sound demos, for Kalman + EM algorithm, 5 dB input SNR

<table>
<thead>
<tr>
<th>Noisy</th>
<th>Enhanced (wb)</th>
<th>Enhanced (nb)</th>
<th>Enhanced (nb + BWE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory</td>
<td>▶</td>
<td>▶</td>
<td>▶</td>
</tr>
</tbody>
</table>

Stop
Current Topic

1. Context and objectives
2. Proposed solution
3. Results & demos
4. Conclusion
Conclusion

- Simple BWE-based speech enhancement can reduce complexity of fairly advanced enhancement algorithms, with equivalent quality.

- Further quality improvements could likely be obtained by allocating the freed resources on improved narrowband enhancement.

- If reduction of complexity is not the main factor, an alternative would be to seek an even better enhancement performance by using a more complex BWE scheme than the one used here.
Thank you. Questions?

Frederic Mustiere, Martin Bouchard, Miodrag Bolic
{mustiere,bouchard,mbolic}@site.uottawa.ca