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Abstract. In order to simplify the consistent integration of different system 
views, i.e. class diagrams, and composite structure diagrams, we propose that 
ports should be UML Components (in some sense), and connectors be associa-
tions.  This entails that all these properties can be described with one type of di-
agram including classes, associations, components and composite structures, 
and the number of independent concepts in UML is reduced, thus simplifying 
the language.  The paper first reviews the relevant UML concepts with a very 
simple example. Then the proposal is formulated by giving details about the 
correspondence between the features of ports and components, and connectors 
and associations, referring to the UML meta-model for this comparison.  

1 Introduction 

In the early times of UML, until around 2005, there was much discussion about how 
best to represent software architecture models in UML, in particular, how to represent 
the connections by which different software components are linked within an archi-
tecture [2, 3, 4]. While UML-1 had only limited facilities for representing such mod-
els, UML-2 introduced the new concepts of composite structure, ports and connectors 
which provide much better facilities for this purpose. Ivers et al [5] discuss several 
options for representing connections in software architectures using UML concepts, 
including UML connectors and associations. Bock [6] gives an informal explanation 
of the meaning of composite structure diagrams and also explains the meaning of 
connectors in terms of associations.  

If one can explain the meaning of UML connectors through the meaning of UML 
associations, why is it necessary to introduce this new independent concept of “con-
nector” in UML-2? – Would it not be better to have fewer concepts in this modeling 
language? After all, important criteria for language evaluation include simplicity and 
ease of learning.  

The existing proliferation of concepts in UML also gives rise to difficulties regard-
ing consistency between different views of the same system, for instance between 
class diagrams and composite structure diagrams. In order to simplify the consistent 
integration of system views defining properties of classes and associations with sys-
tem views describing properties relating to the composite structure, we propose (in 
some sense) that ports are components, and connectors are associations (in the second 
point following the spirit of [6] – note that [7] also says “The natural choice for speci-
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Composite Structures 
 

Figure 2 shows a UML Composite Structure diagram where the company “class” 
contains two kinds of component classes: Employee and Server. The multiplicities are 
the same as in Figure 1. The line between the two component classes is a “connector” 
which has the same “name” and multiplicities as the access “association” in Figure 1. 
The semantics is the same as the Class diagram of Figure 1 including the Server-
Protection constraint defined above. As explained in Section 9.3.13 of [1], the class 
instances depicted in a Composite Structure diagram within a given composite class 
represent only those instances that are related to a particular instance of the composite 
class  - in Figure 2, to a particular instance of Company.  Note: We ignore in this 
paper the distinction between composition and aggregation relationships for the com-
posite class with its components, as shown in Figure 9.20 of [1].  

In the meta-model of UML, a “connector” has two “connectorEnds”. Each “con-
nectorEnd” has a “role” that points to “connectableElement” which is normally a 
“class”, such as Employee or Server in our example. A “connectorEnd” may also 
have a “partWithPort” which points to a “port”.  

The concept of a “port” is useful when one wants to describe objects that have sev-
eral interaction points through which different kinds of interactions take place. Figure 
3(a) is an extension of Figure 2 where a server interacts not only with the users, but 
also with the support staff. This diagram does not use ports since the details of the 
interactions are not specified. Figure 3(b) shows the same situation, and two “ports” 
are distinguished for the server instances. The interactions through the user port are 
different than the interactions through the staff port. In general, a “port” represents 
two kinds of “interfaces”: “provided” and “required”. An “interface” defines “attrib-
utes” and “operations”. By default, a “class” has a “provided” interface that defines 
the visible attributes of the class instances and the operations that may be invoked on 
an instance. Similarly, the attributes and operations defined by a “provided” interface 
of a “port” will be made available by the object instance to which the port belongs. 
On the other hand, it is assumed that this object instance will require having access 
(through the same port) to the attributes and operations defined by the “required” 
interface of the port. In Figure 3(b), the staff port of the servers is associated with a 
“port type” MaintenancePort (using the notation shown in [1], Figure 9.16) and the 
port type of the corresponding port of the support staff has the “conjugated” port type 
(indicated by the “~” symbol) which means that the “provided” and “required” inter-
faces are interchanged. In our example, the MaintenancePort port type could have a 
“provided” interface that provides access to an attribute CPUutilisation and an opera-
tion performanceTest, and a “required” interface that supports the execution of an 
alarm operation. 

Figure 3(c) shows a situation similar to Figure 3(b), except that the support staff is 
not part of the company. Here the company has a port m of type MaintenancePort 
through which the support staff has access to the servers of the company. The “con-
nector” between the staff port of the servers and the m port of the company is a “con-
nector” of kind “delegation”, since the requests arriving on the m port will be delegat-
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sembly” or “delegation”, and one may also distinguish between operation call or 
message transmission associations. As naming conventions for these associations, 
we suggest the following.  
(a) The name of the association is the same as the connector, if any. 
(b) For “assembly” connectors, the names of the association ends are the same as 

the names of the connected ports. Note, however, that these names change their 
position in the hierarchical structure diagram – the port name is located close to 
the port symbol, while the name of the association end would normally be lo-
cated at the other end of the association. If port names are present, there is no 
need for the names of the association ends. Compare Figure 1 and 4. 

(c) For “delegation” connectors, the corresponding association between the ports is 
in a sense a refinement of the implicit aggregation association between the compo-
site structure and the contained component. 

(d) As usual, interfaces of ports can be shown in diagrams as lollipops. 
4. Following the points (1) to (3) above, mixed UML diagrams, such as Figure 4 (in-

cluding classes with hierarchical composite structures and components with ports) 
obtain a clear semantics. Note that such mixed diagrams are already allowed ac-
cording to UML (see [1], page 694). 

The following are some rational arguments for this proposal.  
A port is a component. Considering a “port” to be a kind of  “component” can be 
justified by the following similarities between these two concepts:  

1. A port is a part of a StructuredClassifier ([1], see “ownedPort” in Fig. 9.4) and sim-
ilarly components are “part” of StructuredClassifiers (see [1], Fig. 9.2). 

2. Ports and components have provided and required “interfaces” ([1], Figs. 9.4, 8.2) 
3. Both can be associated with a dynamic behavior that imposes constraints on the 

order of interactions at the associated interfaces.  
4. In UML, both concepts, “ports” and “components”, can be linked by “connectors”. 
5. Note that “port” is not a “classifier” in UML. Making it a “component” (which is a 

“classifier”) allows ports to be linked by associations.  

Associations are used to link parts of a Structured Classifier. Using an “associa-
tion” to represent a connector between the components within a software architecture 
has been considered by several authors (see for instance [6]). This approach can be 
justified by the following similarities between these two concepts:  

1. An association has two or more endpoints which are “properties” of some “class” 
(see “memberEnd” in [1] Fig. 7.12). Similarly, a “connector” has two “connect-
orEnds”, each having  a “withPort” which also is a “property” of some “class” or 
has a “role” which is usually a “component” (see [1] Fig. 8.3). 

2. An “association” is used to link “classes”. Since “components” are “classes” they 
can be linked by “associations. If ports are components (see above) then also ports 
can be linked by “associations”. 

One of the issues discussed in [5] was the representation of connections that have 
more complex behavior, such as message loss or transmission delays, or other behav-



iors, and the use of three-way associations or classes was proposed for this purpose. 
We think that it is more natural to represent such a connection by a class with two 
ports that would be linked to the two endpoints of the original connection.  

We also note that a single port may be connected (associated) to ports of different 
components thus allowing the routing of messages or operation calls to the appropri-
ate component (as supported by the channels in SDL [8]).  

4 Conclusions 

We have proposed in Section 3.1 changes to UML in which ports would become 
components and connectors would be associations, given the similarity of their se-
mantics. This has the advantage that UML becomes simpler, since the number of 
independent concepts is reduced, and that the consistency between different view-
points, such as expressed by UML Class and CompositeStructure diagrams, is easier 
to establish. We plan to integrate this approach into an extension of Umple [9] for 
supporting composite structures.  

Another question of simplification, not discussed in this paper, is the similarity be-
tween UML Components and StructuredClassifiers. A component is a black-box view 
of a Classifier, however, it also needs a behavior specification. A component is simi-
lar to an SDL block [8] which can be refined by providing a state machine behavior or 
some hierarchical sub-component structure.  
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