
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Integration of Composite Structure and Class Diagrams

Gregor v. Bochmann

Department of Electrical Engineering and Computer Science
University of Ottawa, Canada
bochmann@uottawa.ca

Abstract. In order to simplify the consistent integration of different system
views, i.e. class diagrams, and composite structure diagrams, we propose that
ports should be UML Components (in some sense), and connectors be associa-
tions. This entails that all these properties can be described with one type of di-
agram including classes, associations, components and composite structures,
and the number of independent concepts in UML is reduced, thus simplifying
the language. The paper first reviews the relevant UML concepts with a very
simple example. Then the proposal is formulated by giving details about the
correspondence between the features of ports and components, and connectors
and associations, referring to the UML meta-model for this comparison.

1 Introduction

In the early times of UML, until around 2005, there was much discussion about how
best to represent software architecture models in UML, in particular, how to represent
the connections by which different software components are linked within an archi-
tecture [2, 3, 4]. While UML-1 had only limited facilities for representing such mod-
els, UML-2 introduced the new concepts of composite structure, ports and connectors
which provide much better facilities for this purpose. Ivers et al [5] discuss several
options for representing connections in software architectures using UML concepts,
including UML connectors and associations. Bock [6] gives an informal explanation
of the meaning of composite structure diagrams and also explains the meaning of
connectors in terms of associations.

If one can explain the meaning of UML connectors through the meaning of UML
associations, why is it necessary to introduce this new independent concept of “con-
nector” in UML-2? – Would it not be better to have fewer concepts in this modeling
language? After all, important criteria for language evaluation include simplicity and
ease of learning.

The existing proliferation of concepts in UML also gives rise to difficulties regard-
ing consistency between different views of the same system, for instance between
class diagrams and composite structure diagrams. In order to simplify the consistent
integration of system views defining properties of classes and associations with sys-
tem views describing properties relating to the composite structure, we propose (in
some sense) that ports are components, and connectors are associations (in the second
point following the spirit of [6] – note that [7] also says “The natural choice for speci-

fying AD
element.”
diagram i

In this
very simp
ponents,
structures
tation of t

2 R

Writing
concepts
the examp

The cl
Server. It
ees and s
single em
Company
ployee m
ees. The w
sent the r
Formally
ation” wh
A “prope
end-point
property.
points as
attribute o

Fig. 1. A

It is im
such that
from the
lowing co

Server
employer

DL connector
”). This entail
including clas
s paper, we fir
ple example.
and how asso
s for which U
this proposal,

Review of so

convention:
in the UML
ple models di
lass diagram
t represents a
ervers. The tw

mployer which
y. In addition

may access som
words user an
roles that the

y, each of these
hich is in fact
erty” of a “clas
t of an “associ
We note tha
for attributes
of Employee w

A Class diagram

mportant to no
an employee
employer of t

onstraint:
r-Protection:
r. - - This con

 context acc

s in UML is
ls that all the

sses, associatio
rst review in S
In Section 3,

ociations can b
UML proposes

we provide so

ome UML c

In the followi
meta-model [
scussed in thi
 in Figure 1 c
universe of o

wo aggregatio
h is a Compan
, there is the

me servers and
nd service stan
“linked” clas
e words is the
a “property”

ss” is either an
iation” (as in
at one someti
, for instance,
written as “ser

m

ote that in the
e may access a
the employee

 An employee
nstraint can be
cess : self.use

 by stereotyp
ese properties
ons, compone
Section 2 the
we explain h

be used to rep
 the Connecto
ome rational a

concepts an

ing we write b
[1]. We write
s paper.
contains three
object instance
on “association
ny, and each s
access “asso

d each server
nd for the end
s instances pl

e “name” of a
of the linked

n attribute (su
the case discu

imes uses a s
, the access as
rvice: Server [

 Fig. 2: Corre

model of Fig
a server where
. If that is not

e can only ac
 expressed in
r.employer =

ping the stand
 can be descr

ents and comp
relevant conc

how ports can
present the co
or concept. Af
arguments in i

nd notation

between “ ” th
in italics the

e “classes” Co
es consisting
ns” indicate th
server has an

ociation” whic
may be acces

d-points of the
lay in the con
“memberEnd
class instance

uch as the nam
ussed here), or
similar notatio
ssociation cou
[*]”.

esponding comp

gure 1, the acc
e the owner o
t desirable, w

ccess servers
OCL as follow
self.service.ow

dard UML A
ribed with on
osite structure

cepts of UML
be considere

onnections in c
fter an inform
its favor.

ns

he names that
e names that a

ompany, Emp
of companies

hat each emplo
n owner which
ch states that
ssed by severa
e association a
ntext of the as
d” of the acces
e (see [1], Fig

me of the Empl
r a “port” or s
on for associa
uld be represen

posite structure

cess associatio
of the server is
e may consid

that are own
ws:
wner

Association
ne type of
es.
-2 using a
d as com-
composite

mal presen-

t represent
are part of

ployee and
s, employ-
oyee has a
h is also a

each em-
al employ-
and repre-
ssociation.
ss “associ-
gure 7.12).
loyee), the
ome other
ation end-
nted as an

diagram

on may be
s different

der the fol-

ned by his

Composite Structures

Figure 2 shows a UML Composite Structure diagram where the company “class”
contains two kinds of component classes: Employee and Server. The multiplicities are
the same as in Figure 1. The line between the two component classes is a “connector”
which has the same “name” and multiplicities as the access “association” in Figure 1.
The semantics is the same as the Class diagram of Figure 1 including the Server-
Protection constraint defined above. As explained in Section 9.3.13 of [1], the class
instances depicted in a Composite Structure diagram within a given composite class
represent only those instances that are related to a particular instance of the composite
class - in Figure 2, to a particular instance of Company. Note: We ignore in this
paper the distinction between composition and aggregation relationships for the com-
posite class with its components, as shown in Figure 9.20 of [1].

In the meta-model of UML, a “connector” has two “connectorEnds”. Each “con-
nectorEnd” has a “role” that points to “connectableElement” which is normally a
“class”, such as Employee or Server in our example. A “connectorEnd” may also
have a “partWithPort” which points to a “port”.

The concept of a “port” is useful when one wants to describe objects that have sev-
eral interaction points through which different kinds of interactions take place. Figure
3(a) is an extension of Figure 2 where a server interacts not only with the users, but
also with the support staff. This diagram does not use ports since the details of the
interactions are not specified. Figure 3(b) shows the same situation, and two “ports”
are distinguished for the server instances. The interactions through the user port are
different than the interactions through the staff port. In general, a “port” represents
two kinds of “interfaces”: “provided” and “required”. An “interface” defines “attrib-
utes” and “operations”. By default, a “class” has a “provided” interface that defines
the visible attributes of the class instances and the operations that may be invoked on
an instance. Similarly, the attributes and operations defined by a “provided” interface
of a “port” will be made available by the object instance to which the port belongs.
On the other hand, it is assumed that this object instance will require having access
(through the same port) to the attributes and operations defined by the “required”
interface of the port. In Figure 3(b), the staff port of the servers is associated with a
“port type” MaintenancePort (using the notation shown in [1], Figure 9.16) and the
port type of the corresponding port of the support staff has the “conjugated” port type
(indicated by the “~” symbol) which means that the “provided” and “required” inter-
faces are interchanged. In our example, the MaintenancePort port type could have a
“provided” interface that provides access to an attribute CPUutilisation and an opera-
tion performanceTest, and a “required” interface that supports the execution of an
alarm operation.

Figure 3(c) shows a situation similar to Figure 3(b), except that the support staff is
not part of the company. Here the company has a port m of type MaintenancePort
through which the support staff has access to the servers of the company. The “con-
nector” between the staff port of the servers and the m port of the company is a “con-
nector” of kind “delegation”, since the requests arriving on the m port will be delegat-

ed to the
“assembl

Fig. 3.

Fig. 3. (c

3 In

We propo
nent Stru
cifically,
use the co
in compo
ports and
proposal
would be

1. Ports a
havior
called
its inte
which

2. The in
the co
the co
source

3. Conne
ciation
of the

staff port, an
y”.

 Composite str
Figure

c): with externa

ntegration o

ose an integra
ucture diagram

we propose th
oncept of asso
osite structure
d hierarchical
requires a rev

e a difficult un

are componen
r is specified f
“protocol”) th

erfaces. The r
the port belon

nstance names
rresponding “

omponent and
es” in Figures
ectors within a
ns, where the e

correspondin

nd inversely. T

ructure includin
3(b) may be co

al support staff.

of compone

ation of the co
ms by reducing
he following:
ociations inste
es. (c) To exte

structures for
vision of the d
ndertaking, we

nts, and as suc
for such a com
hat defines co
ealization of a
ngs.
s of compone
“memberEnd”
d the compos
1 and 2.

a hierarchical
endpoints of a

ng connector.

The other con

ng support staff
onsidered a refi

. Fig. 4: C

ent structu

ncepts in UM
g the number
(a) To consid

ead of connect
end UML Cla
r aggregation
definition of U
e take here an

ch have provi
mponent, it re
onstraints on t
a conforming

ents within a
” of the impli
site classifier

structure are r
an association
Associations

nnectors on th

f – (a) without
nement of Figu

Class diagram w

ure with cla

ML Class diagr
of different c

der that ports
tors for defini
ass diagrams
or compositio

UML and its
informal appr

ided and requ
epresents a sp
the order of in
behavior is le

composite str
icit aggregatio
r. See, for in

represented by
n correspond t

between port

his diagram ar

ports - (b) wit
ure 3(a).

with composite

ass diagram

rams and UML
concepts invol
are componen
ing the interco
to include cla
on. In princip
meta-model.
roach. We pro

uired interface
pecification (s
nteractions oc
eft to the com

ructure are th
on association
nstance, the n

y special kind
to the “Conne
ts may be of

re of kind

th ports.

 structures

ms

L Compo-
lved. Spe-
nts. (b) To
onnections
asses with
ple, such a
Since this

opose:

es. If a be-
sometimes
ccurring at
mponent to

e same as
n between
name “re-

ds of asso-
ectorEnds”
f kind “as-

sembly” or “delegation”, and one may also distinguish between operation call or
message transmission associations. As naming conventions for these associations,
we suggest the following.
(a) The name of the association is the same as the connector, if any.
(b) For “assembly” connectors, the names of the association ends are the same as

the names of the connected ports. Note, however, that these names change their
position in the hierarchical structure diagram – the port name is located close to
the port symbol, while the name of the association end would normally be lo-
cated at the other end of the association. If port names are present, there is no
need for the names of the association ends. Compare Figure 1 and 4.

(c) For “delegation” connectors, the corresponding association between the ports is
in a sense a refinement of the implicit aggregation association between the compo-
site structure and the contained component.

(d) As usual, interfaces of ports can be shown in diagrams as lollipops.
4. Following the points (1) to (3) above, mixed UML diagrams, such as Figure 4 (in-

cluding classes with hierarchical composite structures and components with ports)
obtain a clear semantics. Note that such mixed diagrams are already allowed ac-
cording to UML (see [1], page 694).

The following are some rational arguments for this proposal.
A port is a component. Considering a “port” to be a kind of “component” can be
justified by the following similarities between these two concepts:

1. A port is a part of a StructuredClassifier ([1], see “ownedPort” in Fig. 9.4) and sim-
ilarly components are “part” of StructuredClassifiers (see [1], Fig. 9.2).

2. Ports and components have provided and required “interfaces” ([1], Figs. 9.4, 8.2)
3. Both can be associated with a dynamic behavior that imposes constraints on the

order of interactions at the associated interfaces.
4. In UML, both concepts, “ports” and “components”, can be linked by “connectors”.
5. Note that “port” is not a “classifier” in UML. Making it a “component” (which is a

“classifier”) allows ports to be linked by associations.

Associations are used to link parts of a Structured Classifier. Using an “associa-
tion” to represent a connector between the components within a software architecture
has been considered by several authors (see for instance [6]). This approach can be
justified by the following similarities between these two concepts:

1. An association has two or more endpoints which are “properties” of some “class”
(see “memberEnd” in [1] Fig. 7.12). Similarly, a “connector” has two “connect-
orEnds”, each having a “withPort” which also is a “property” of some “class” or
has a “role” which is usually a “component” (see [1] Fig. 8.3).

2. An “association” is used to link “classes”. Since “components” are “classes” they
can be linked by “associations. If ports are components (see above) then also ports
can be linked by “associations”.

One of the issues discussed in [5] was the representation of connections that have
more complex behavior, such as message loss or transmission delays, or other behav-

iors, and the use of three-way associations or classes was proposed for this purpose.
We think that it is more natural to represent such a connection by a class with two
ports that would be linked to the two endpoints of the original connection.

We also note that a single port may be connected (associated) to ports of different
components thus allowing the routing of messages or operation calls to the appropri-
ate component (as supported by the channels in SDL [8]).

4 Conclusions

We have proposed in Section 3.1 changes to UML in which ports would become
components and connectors would be associations, given the similarity of their se-
mantics. This has the advantage that UML becomes simpler, since the number of
independent concepts is reduced, and that the consistency between different view-
points, such as expressed by UML Class and CompositeStructure diagrams, is easier
to establish. We plan to integrate this approach into an extension of Umple [9] for
supporting composite structures.

Another question of simplification, not discussed in this paper, is the similarity be-
tween UML Components and StructuredClassifiers. A component is a black-box view
of a Classifier, however, it also needs a behavior specification. A component is simi-
lar to an SDL block [8] which can be refined by providing a state machine behavior or
some hierarchical sub-component structure.

Acknowledgements: We thank Dorina Petriu and Tim Lethbridge for their comments

References

1. OMG Unified Modeling Language (OMG UML), Superstructure UML, Version 2.4.1,
http://www.omg.org/spec/UML/2.4.1/

2. C. Kobryn, Modeling components and frameworks with UML, Communications of the
ACM, Vol. 43, 10, Oct 2000, pp. 31-38.

3. D. Garlan, A. J. Kompanek, Reconciling the needs of architectural description with object-
modeling notations, in Proc. Int. Conf. UML 2000, Springer LNCS (2003), pp. 498-512.

4. C. Kobryn, Modeling components and frameworks with UML, Communications of the
ACM, Vol. 43, 10, Oct 2000, pp. 31-38.

5. Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B., Silva, J.: Documenting Compo-
nent and Connector Views with UML 2.0. Technical Report CMU/SEI-2004-TR-008,
Sofware Engineering Institute, Carnegie Mellon University (2004)

6. C. Bock: "UML 2 Composition Model", in Journal of Object Technology, vol. 3, no. 10,
2004, pp. 47-73, http://www.jot.fm/issues/issue_2004_11/column5

7. V. Issarny, A. Zarras, Software architecture and dependability, in Formal Methods for
Software Architctures, Springer LNS 2804 (2003), pp. 259-286.

8. Specification and Description Language (SDL), see for instance http://www.sdl-
forum.org/SDL/Overview_of_SDL.pdf

9. M Garzon, H Aljamaan, TC Lethbridge, Umple: A Framework for Model Driven Devel-
opment of Object-Oriented Systems, in Proc. of Software Analysis, Evolution and Reengi-
neering (SANER), 2015, IEEE, pp. 494-498. See also http://cruise.eecs.uottawa.ca/umple/

