Integration of Composite Structure and Class Diagrams

Gregor v. Bochmann

Department of Electrical Engineering and Computer Science
University of Ottawa, Canada
bochmann@uottawa.ca

Abstract. In order to smplify the consistent integration of different system
views, i.e. class diagrams, and composite structure diagrams, we propose that
ports should be UML Components (in some sense), and connectors be associa-
tions. Thisentailsthat all these properties can be described with one type of di-
agram including classes, associations, components and composite structures,
and the number of independent concepts in UML is reduced, thus simplifying
the language. The paper first reviews the relevant UML concepts with a very
simple example. Then the proposal is formulated by giving details about the
correspondence between the features of ports and components, and connectors
and associations, referring to the UML meta-model for this comparison.

1 I ntroduction

In the early times of UML, until around 2005, there was much discussion about how
best to represent software architecture modelsin UML, in particular, how to represent
the connections by which different software components are linked within an archi-
tecture [2, 3, 4]. While UML-1 had only limited facilities for representing such mod-
els, UML-2 introduced the new concepts of composite structure, ports and connectors
which provide much better facilities for this purpose. Ivers et a [5] discuss severa
options for representing connections in software architectures using UML concepts,
including UML connectors and associations. Bock [6] gives an informal explanation
of the meaning of composite structure diagrams and aso explains the meaning of
connectors in terms of associations.

If one can explain the meaning of UML connectors through the meaning of UML
associations, why is it necessary to introduce this new independent concept of “con-
nector” in UML-2? — Would it not be better to have fewer concepts in this modeling
language? After al, important criteria for language evauation include simplicity and
ease of learning.

The existing proliferation of conceptsin UML also givesrise to difficulties regard-
ing consistency between different views of the same system, for instance between
class diagrams and composite structure diagrams. In order to simplify the consistent
integration of system views defining properties of classes and associations with sys-
tem views describing properties relating to the composite structure, we propose (in
some sense) that ports are components, and connectors are associations (in the second
point following the spirit of [6] — note that [7] also says“ The natural choice for speci-

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

fying ADL connectors in UML is by stereotyping the standard UML Association
element.”). This entails that all these properties can be described with one type of
diagram including classes, associations, components and composite structures.

In this paper, we first review in Section 2 the relevant concepts of UML-2 using a
very simple example. In Section 3, we explain how ports can be considered as com-
ponents, and how associations can be used to represent the connections in composite
structures for which UML proposes the Connector concept. After an informal presen-
tation of this proposal, we provide some rational argumentsin its favor.

2 Review of some UML concepts and notations

Writing convention: In the following we write between “ ” the names that represent
concepts in the UML meta-model [1]. We write in italics the names that are part of
the example model s discussed in this paper.

The class diagram in Figure 1 contains three “classes’ Company, Employee and
Server. It represents a universe of object instances consisting of companies, employ-
ees and servers. The two aggregation “associations’ indicate that each employee has a
single employer which is a Company, and each server has an owner which is aso a
Company. In addition, there is the access “association” which states that each em-
ployee may access some servers and each server may be accessed by several employ-
ees. The words user and service stand for the end-points of the association and repre-
sent the roles that the “linked” class instances play in the context of the association.
Formally, each of these words is the “name” of a“memberEnd” of the access “associ-
ation” which isin fact a“property” of the linked class instance (see [1], Figure 7.12).
A “property” of a“class’ is either an attribute (such as the name of the Employee), the
end-point of an “association” (asin the case discussed here), or a“port” or some other
property. We note that one sometimes uses a similar notation for association end-
points as for attributes, for instance, the access association could be represented as an
attribute of Employee written as “service: Server [*]”.

Company
employer
[1..10

Employee | -+ access d

Employee [1..10] Server [*]
name

name

Fig. 1. A Class diagram Fig. 2: Corresponding composite structure diagram

It isimportant to note that in the model of Figure 1, the access association may be
such that an employee may access a server where the owner of the server is different
from the employer of the employee. If that is not desirable, we may consider the fol-
lowing constraint:

Server-Protection: An employee can only access servers that are owned by his
employer. - - This constraint can be expressed in OCL asfollows:

context access: self.user.employer = self.service.owner

Composite Structures

Figure 2 shows a UML Composite Structure diagram where the company “class’
contains two kinds of component classes: Employee and Server. The multiplicities are
the same as in Figure 1. The line between the two component classesis a“ connector”
which has the same “name” and multiplicities as the access “association” in Figure 1.
The semantics is the same as the Class diagram of Figure 1 including the Server-
Protection constraint defined above. As explained in Section 9.3.13 of [1], the class
instances depicted in a Composite Structure diagram within a given composite class
represent only those instances that are related to a particular instance of the composite
class - in Figure 2, to a particular instance of Company. Note: We ignore in this
paper the distinction between composition and aggregation relationships for the com-
posite class with its components, as shown in Figure 9.20 of [1].

In the meta-model of UML, a “connector” has two “connectorEnds’. Each “con-
nectorEnd” has a “role” that points to “connectableElement” which is normally a
“class’, such as Employee or Server in our example. A “connectorEnd” may also
have a*“partWithPort” which pointsto a“port”.

The concept of a“port” is useful when one wants to describe objects that have sev-
eral interaction points through which different kinds of interactions take place. Figure
3(a) is an extension of Figure 2 where a server interacts not only with the users, but
also with the support staff. This diagram does not use ports since the details of the
interactions are not specified. Figure 3(b) shows the same situation, and two “ports’
are distinguished for the server instances. The interactions through the user port are
different than the interactions through the staff port. In general, a “port” represents
two kinds of “interfaces’: “provided” and “required”. An “interface” defines “attrib-
utes” and “operations’. By default, a “class’ has a “provided” interface that defines
the visible attributes of the class instances and the operations that may be invoked on
an instance. Similarly, the attributes and operations defined by a “provided” interface
of a“port” will be made available by the object instance to which the port belongs.
On the other hand, it is assumed that this object instance will require having access
(through the same port) to the attributes and operations defined by the “required”
interface of the port. In Figure 3(b), the staff port of the servers is associated with a
“port type” MaintenancePort (using the notation shown in [1], Figure 9.16) and the
port type of the corresponding port of the support staff has the “ conjugated” port type
(indicated by the “~" symbol) which means that the “provided” and “required” inter-
faces are interchanged. In our example, the MaintenancePort port type could have a
“provided” interface that provides access to an attribute CPUutilisation and an opera
tion performanceTest, and a “required” interface that supports the execution of an
alarm operation.

Figure 3(c) shows a situation similar to Figure 3(b), except that the support staff is
not part of the company. Here the company has a port m of type MaintenancePort
through which the support staff has access to the servers of the company. The “con-
nector” between the staff port of the servers and the m port of the company is a*“con-
nector” of kind “delegation”, since the requests arriving on the m port will be del egat-

ed to the staff port, and inversely. The other connectors on this diagram are of kind
“assembly”.

Company Company

Employee | - Access = | resources: Employea | = BCCOSS
[1..10] Server [*] [1..10]

name name

maintenance

Support
staff

Fig. 3. Composite structure including support staff — (a) without ports - (b) with ports.
Figure 3(b) may be considered a refinement of Figure 3(a).

Company I—l
Person

Company

Employee | - sccesz . [resources: K Employ Bccess « - resources:
[1..10] Server [* [1..10] user |_Server [*]
shopping name L]

name stalf staff

T @
MaintenancePort
Support
Support

Fig. 3. (c): with external support staff. Fig. 4: Classdiagram with composite structures

AOURIUIELY

3 I ntegration of component structure with class diagrams

We propose an integration of the conceptsin UML Class diagrams and UML Compo-
nent Structure diagrams by reducing the number of different concepts involved. Spe-
cificaly, we propose the following: (a) To consider that ports are components. (b) To
use the concept of associations instead of connectors for defining the interconnections
in composite structures. (c) To extend UML Class diagrams to include classes with
ports and hierarchical structures for aggregation or composition. In principle, such a
proposal requires a revision of the definition of UML and its meta-model. Since this
would be adifficult undertaking, we take here an informal approach. We propose:

1. Ports are components, and as such have provided and required interfaces. If a be-
havior is specified for such a component, it represents a specification (sometimes
called “protocol”) that defines constraints on the order of interactions occurring at
its interfaces. The realization of a conforming behavior is left to the component to
which the port belongs.

2. The instance names of components within a composite structure are the same as
the corresponding “memberEnd” of the implicit aggregation association between
the component and the composite classifier. See, for instance, the name “re-
sources’ in Figures 1 and 2.

3. Connectors within a hierarchical structure are represented by specia kinds of asso-
ciations, where the endpoints of an association correspond to the “ConnectorEnds’
of the corresponding connector. Associations between ports may be of kind “as-

sembly” or “delegation”, and one may also distinguish between operation call or

message transmission associations. As naming conventions for these associations,

we suggest the following.

(a) The name of the association isthe same as the connector, if any.

(b) For “assembly” connectors, the names of the association ends are the same as
the names of the connected ports. Note, however, that these names change their
position in the hierarchical structure diagram — the port name is located close to
the port symbol, while the name of the association end would normally be lo-
cated at the other end of the association. If port names are present, there is no
need for the names of the association ends. Compare Figure 1 and 4.

(c) For “delegation” connectors, the corresponding association between the portsis
in a sense a refinement of the implicit aggregation association between the compo-
site structure and the contained component.

(d) Asusud, interfaces of ports can be shown in diagrams as lollipops.

4. Following the points (1) to (3) above, mixed UML diagrams, such as Figure 4 (in-
cluding classes with hierarchical composite structures and components with ports)
obtain a clear semantics. Note that such mixed diagrams are aready allowed ac-
cording to UML (see[1], page 694).

Thefollowing are somerational argumentsfor this proposal.
A port is a component. Considering a “port” to be a kind of “component” can be
justified by the following similarities between these two concepts:

1. A port isapart of a StructuredClassifier ([1], see “ownedPort” in Fig. 9.4) and sim-
ilarly components are “part” of StructuredClassifiers (see[1], Fig. 9.2).

2. Ports and components have provided and required “interfaces’ ([1], Figs. 9.4, 8.2)

3. Both can be associated with a dynamic behavior that imposes constraints on the
order of interactions at the associated interfaces.

4. In UML, both concepts, “ports’ and “components’, can be linked by “connectors”.

5. Note that “port” is not a“classifier” in UML. Making it a“component” (whichisa
“classifier”) alows portsto be linked by associations.

Associations are used to link parts of a Structured Classifier. Using an “associa-
tion” to represent a connector between the components within a software architecture
has been considered by severa authors (see for instance [6]). This approach can be
justified by the following similarities between these two concepts:

1. An association has two or more endpoints which are “properties’ of some “class’
(see “memberEnd” in [1] Fig. 7.12). Similarly, a “connector” has two “connect-
orEnds’, each having a “withPort” which also is a “property” of some “class’ or
has a“role” which isusually a“component” (see[1] Fig. 8.3).

2. An “association” is used to link “classes’. Since “components’ are “classes’ they
can be linked by “associations. If ports are components (see above) then also ports
can belinked by “associations’.

One of the issues discussed in [5] was the representation of connections that have
more complex behavior, such as message |oss or transmission delays, or other behav-

iors, and the use of three-way associations or classes was proposed for this purpose.
We think that it is more natural to represent such a connection by a class with two
ports that would be linked to the two endpoints of the original connection.

We aso note that a single port may be connected (associated) to ports of different
components thus allowing the routing of messages or operation calls to the appropri-
ate component (as supported by the channelsin SDL [8]).

4 Conclusions

We have proposed in Section 3.1 changes to UML in which ports would become
components and connectors would be associations, given the similarity of their se-
mantics. This has the advantage that UML becomes simpler, since the number of
independent concepts is reduced, and that the consistency between different view-
points, such as expressed by UML Class and CompositeStructure diagrams, is easier
to establish. We plan to integrate this approach into an extension of Umple [9] for
supporting composite structures.

Another question of simplification, not discussed in this paper, is the similarity be-
tween UML Components and StructuredClassifiers. A component is a black-box view
of a Classifier, however, it also needs a behavior specification. A component is simi-
lar to an SDL block [8] which can be refined by providing a state machine behavior or
some hierarchical sub-component structure.

Acknowledgements: We thank Dorina Petriu and Tim Lethbridge for their comments
References

1. OMG Unified Modeling Language (OMG UML), Superstructure UML, Version 2.4.1,
http://www.omg.org/spec/UML/2.4.1/

2. C. Kobryn, Modeling components and frameworks with UML, Communications of the
ACM, Vol. 43, 10, Oct 2000, pp. 31-38.

3. D. Garlan, A. J. Kompanek, Reconciling the needs of architectural description with object-
modeling notations, in Proc. Int. Conf. UML 2000, Springer LNCS (2003), pp. 498-512.

4. C. Kobryn, Modeling components and frameworks with UML, Communications of the
ACM, Vol. 43, 10, Oct 2000, pp. 31-38.

5. lvers, J,, Clements, P., Garlan, D., Nord, R., Schmerl, B., Silva, J.: Documenting Compo-
nent and Connector Views with UML 2.0. Technica Report CMU/SEI-2004-TR-008,
Sofware Engineering Institute, Carnegie Mellon University (2004)

6. C. Bock: "UML 2 Composition Model", in Journal of Object Technology, vol. 3, no. 10,
2004, pp. 47-73, http://www.jot.fm/issues/issue_2004_11/column5

7. V. Issarny, A. Zarras, Software architecture and dependability, in Formal Methods for
Software Architctures, Springer LNS 2804 (2003), pp. 259-286.

8. Specification and Description Language (SDL), see for instance http://www.sdl-
forum.org/SDL/Overview_of SDL.pdf

9. M Garzon, H Aljamaan, TC Lethbridge, Umple: A Framework for Model Driven Devel-
opment of Object-Oriented Systems, in Proc. of Software Analysis, Evolution and Reengi-
neering (SANER), 2015, | EEE, pp. 494-498. See also http://cruise.eecs.uottawa.calumple/

