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For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the “making’ of the corresponding process is dele-
gated to the machine.

My second remark is that our intellectual powers are rather
geared to master static relations and that our powers to visualize
processes evolving in time are relatively poorly developed. For
that reason we should do (as wise programmers aware of our
limitations) our utmost to shorten the conceptual gap between
the static program and the dynamic process, to make the cor-
respondence between the program (spread out in text space) and
the process (spread out in time) as trivial as possible.

Let us now consider how we can characterize the progress of a
process. (You may think about this question in a very concrete
manner: suppose that a process, considered as a time succession
of actions, is stopped after an arbitrary action, what data do we
have to fix in order that we can redo the process until the very
same point?) If the program text is a pure concatenation of, say,
assignment statements (for the purpose of this discussion regarded
as the descriptions of single actions) it is sufficient to point in the
program text to a point between two successive action descrip-
tions. (In the absence of go to statements I can permit myself the
syntactic ambiguity in the last three words of the previous sen-
tence: if we parse them as “‘suecessive (action descriptions)” we
mean successive in text space; if we parse as ‘‘(successive action)
descriptions” we mean successive in time.) Let us call such a
pointer to a suitable place in the text a “‘textual index.”

When we include conditional clauses (if B then 4), alternative
clauses (if B then A1 else A2), choice clauses as introduced by
C. A. R. Hoare (case[i] of (41, A2, - -- , An)), or conditional expres-
sions as introduced by J. McCarthy (Bt — FEl, B2 — E2, --- |
Bn — En), the fact remains that the progress of the process re-
mains characterized by a single textual index.

As soon as we include in our language procedures we must admit
that a single textual index is no longer sufficient. In the case that
a textual index points to the interior of a procedure body the
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dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the sid of
recursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction”
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called “dy-
namic index,” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which
to describe the progress of the process. .

Why do we need such independent coordinates? The reason
is—and this seems to be inherent to sequential processes—that
we can interpret the value of a variable only with respect to the
progress of the process. If we wish to count the number, n say, of
people in an initially empty room, we can achieve this by increas-
ing 7 by one whenever we see someone entering the room. In the
in-between moment that we have observed someone entering the
room but have not yet performed the subsequent increase of n,
its value equals the number of people in the room minus one!

The unbridled use of the go to statement has an immediate
consequence that it becomes terribly hard to find a meaningful set
of coordinates in which to describe the process progress. Usually,
people take into account as well the values of some well chosen
variables, but this is out of the question because it is relative to
the progress that the meaning of these values is to be understood!
With the go to statement one can, of course, still describe the
progress uniquely by a counter counting the number of actions
performed since program start (viz. a kind of normalized clock).
The difficulty is that such a coordinate, although unique, is utterly
unhelpful. In such a coordinate system it becomes an extremely
complicated affair to define all those points of progress where,
say, n equals the number of persons in the room minus one!

The go to statement as it stands is just too primitive; it is too

" much an invitation to make a mess of one’s program. One can

regard and appreciate the clauses considered as bridling its use. I
do not claim that the clauses mentioned are exhaustive in the sense
that they will satisfy all needs, but whatever clauses are suggested
(e.g. abortion clauses) they should satisfy the requirement that a
programmer independent coordinate system can be maintained to
describe the process in a helpful and manageable way.

It is hard to end this with a fair acknowledgment. Am I to
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judge by whom my thinking has been influenced? It is fairly
obvious that I am not uninfluenced by Peter Landin and Chris-
topher Sirachey. Finally I should like 1o record {as I remember it
guite distinetly) how Heinz Zemanek at the pre-Avcorn meeting
in early 1959 in Copenhagen quite explicitly expressed his doubts
whether the go to statement should be treated on equal syntactic
footing with the assignment statement. To a modest extent I
blame myself for not having then drawn the consequences of his
remark.

The remark about the undesirability of the go to statement iz
far from new, I remember having read the explicit recommenda-
tion to restrict the use of the go to statemeni to alarm exits, but
1 have not been able to trace it; presumably, 1t has been made by
. A. R. Hoare. In {1, Sec. 3.2.1.] Wirth and Hoare together
make & remark in ihe same direction in motivating the case
eonstruetion: “Like the conditional, it mirrors the dynamic
structure of a program more clearly than go to statements and
switches, and it eliminates the nsed for introducing s large number
of labels in the program.”’

In 12} Guiseppe Jacopini seems to have proved the {logical)
superfluousness of the ge to statement. The exercise to transiate
an arbitrary flow diagram more or less mechanically into & jump-
less one, however, is not to be recommended, Then the resulting
flow disgram cannot be expected to be more transparent than the
original one.
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I would like to commment on & policy published 25 August 1967
by the Rockford Research Institute Inc., for trademark control
of the Trac language “originated by Calvin N. Mooers of that
eorporstion”: “It g the belief at Rockiord Regesrch that an
aggressive course of action can and should be taken to protect the
integrity of 1ts carefully designed languages.”” Mr. Mooers believes
that “well-drawn standards are not enough to prevent irrespon-
sible deviations in computer languages,”’ and that therefore
“Roekford Research shall insist that all software and supporting
services for its Taac languages and related services be furnished
for & price by Heckford, or by sources licensed snd suthorized by
Bockiord in a contract arrangement.”’ Mooers’ policy, which
applies 1o academic institutions ss well as commercial users,
ineludes “authorized use of the algorithm and primitives of a
specific Trac language; authorization {or experimentation with
the langoage . . 7

T think that this sttempt to protect » language and s software
by controlling the name i very ill-adviged. One is reminded of
the Courr langusge, whose developers (under V. Yngve) restricted
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its source-level distribution. As a result, that effort wag bypasey
by the people at Bell Laboratories who developed Swosox, Ty
latter language and its software were inevitably superior, gy
were immediately available to everyone, including the righ t,
make extensions. Later versions benefitted from “meritorioy
extensions” by “irrepressible voung people’ at universities, wig
the result that SzosoL today is an important and prominep
language, while CoMrr enjoys relative obscurity.

Mr. Moovers will find that new Trac-like languages will appear
whose documentation, beecause of the trademark restriction, eap.
not mention Trac. Texthook references will be similarly inhibiteg,
1t is unfortunate.

Bernaro A, Gatusp
University of Michigan
Ann Arbor, Mich. j810

Mr. Mooer’s Eeply

Ep1TOR:

Professor Galler’s letter, commenting on our Rockford Research
policy statement on software protection of 25 August 1967, opens
the discussion of what may be a very significant development to
our computing profession. This policy statement applies to our
TRAC (TM) computer-controlling languages. The statement in.
cludes a new doctrine of software protection which may be gen.
erally applicable to a variety of different kinds of complex com-
puter systems, computer services, languages, and software.
Already it is evident that this doctrine has a number of interesting
legal and commercial umplications. It is accordingly appropriste
that it be subject to critical discussion.

The doctrine is very simple. For specificity, I shall deseribeit
in regard to the Trac languages which we have developed: ()
Rockford Research has designated itself as the sole authority for
the development and publication of authentic standards and
specifications for our Trac languages; and (2) we have adopted
Trac as our commercial trademark (and service mark) for usein
conneciion with our computer-controlling languages, our publica-
tions providing standards for the languages and any other related
goods or services,

The power of this doctrine derives from the unique manner in
which it gerves the interests of the consuming public—the people
who will be using computer services. The visible and recognized
Trac trademark informs this public—the engineers, the sociology
professors, the business systems people, and the nonprogrammers
everywhere—that the language or computer capability identified
by this trademark adheres authentically and exactly to a carefully
drawn Rockford Research standard for one of our Trac languages
or sume related service. This is in accord with a long commercial
and legal tradition.

The evils of the present situation and the need to find a suitable
remedy are well known. An adequate basis for proprietary soft-
ware development and marketing is urgently needed, particularly
in view of the doubtful capabilities of copyright, patent, or “trade
secret’” methods when applied to software. Developers of valuable
systems—ineluding languages—deserve to have some vehicle 10
give them s return. On the user side the nonexistence of standards
in the compuier systems sarea is a continuing nuisance. The
proliferation of dialects on valuable languages (e.g. SNOBOL OF
Forrran) is sheer madness. The layman user {read “nonprogram-
mer’) who now has sccess to any of several dozen computer
facilities (each with incompatible systems and dialects) needs
relief. It is ray opinion that this new doctrine of autonomous
standardization soupled with resort to commercial trademark can
provide a substantial contribution to remedying a variety of oif
problems in this ares. '

Bevernl points of Professor Caller’s letter deserve gpecific
comment. The full impact of our Rockford Research policy (and
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indeed of this doctrine applied to other developments) upon
academic activities cannot be set forth in just a few words (cf.
Rockford Memo V-202). It is my firm belief that academic ex-
perimentation must be encouraged-—indeed it cannot be stopped.
Nevertheless, the aberrant or even possibly improved products
coming from the academic halls must not be permitted to confuse
or mislead the consuming public. Careful use of, and respect for,
trademark can ensure that this does not occur.

SwoBoL was mentioned as ilustrating a presumably desirable
gituation regarding innovation. Yet according to the Snobol
Bulletin No. 3 (November 1967), we find already a deep concern
regarding serious incompatibilities among the many ‘home-made”
implementations of this language. In addition, there are serious
complaints over the profound lack of “upward compatibility”
between the latest “Snosors.”” The consequent inability of the
users to exchange or publish useful algorithms is cited. These are
exactly some of the problems that our policy hopes to avoid.

The future of our computing technology lies in service to the
layman users. Our present chaos in interfaces, formats, lack of
standards, proliferation of needless dialects, unreliable documen-
tation, and all the other hazards and incompatibilities is com-
pletely intolerable to the users. The users know it. It is about time
we knew it too.

1 believe that this doctrine of autonomous standardization and
trademark identification is a long step forward in service to the
user public, and thus is in the right direction. According to the
almost uniformly favorable response we have received to date,
many others seem to think the same way. I expect to sce the
doctrine have wide application.

Cawvin N. MooERrs
Rockford Research Institute Inc.
Cambridge, Mass. 02138

No Trouble with Atlas I Page-Turning
Mechanism
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The editorial on “The European Computer Gap,” Comm. ACM
10 (April 1967), 203, tells of “paper designs that could never be
converted into operational systems,’” and among these includes
“the page-turning procedures proposed with the original design
of the Atlas.”

Not merely does this do injustice to Atlas, but it is in fact quite
wrong. The Atlas I machine we have here has a one-level store
made up of 48K words of 2us cores and 96K words on drums. The
paging and page-turning mechanism have worked without any
trouble at all almost from the begmmng——so well that it is some-
thing we hardly ever think about. To give an idea of how in-
tensively the system is used let me say that since 1964 we have
been running a service for research workers in all British uni-
versities with a very mixed load of programs in all the major
languages. We put about 2500 jobs through the machine eack
week, and the system efficiency is around 70 percent. By this last
ﬁgure I mean that, of all the instructions obeyed by the machine
over a long period, 70 percent goes into either the compiling or
execution of users’ programs. The figure can rise to over 90 per-
cent with a favorable job-mix. )

J. HowLETT

Atlas Computer Laboratory
Chilton, Didcot

Berkshire, England
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After reading the remarks on the sieving algorithms in the Sep-
tember 1967 issue of Communications of the ACM [p. 569], I should
like to point out the fact that these algorithms are presented
in ALcor solely for the purpose of communicating the idea of the
algorithm, and that the published running times for the sieving
algorithms are not representative of the sieving process.

For practical use these algorithms are usually implemented in
assembly language on machines with high speed index registers,
since the sieving technique is essentially an indexing technique.
For example, an algorithm which, when given an array of length
n, sieves between p and p-+2n was implemented in the assembly
language for an IBM 360 model 40. This algorithm assumes only
that the even numbers between p and p+2n have already been
crossed out; it does not incorporate any of the special features of
Algorithms 310 and 311. The time required to compute the first m
primes is given in the following table.

m Time (sec)
10,000 7
100,000 87
500,000 525
1,000,000 1149
1,250,000 1487

The value of n used in preparing the above table wasn = 16,000.
The average time for sieving over an interval of length 32,000 was
2.46sec.

Thus, while it may appear that the sieving algorithms are too
slow to be practical when implemented in a compiler language, the
above times indicate that the sieving technique can be practical
when implemented in an assembly language.

Joun E. HowLaND
Universily of Oklahoma
Norman, Oklahoma 73069
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When we decided to use the method of Welford {1] in
our FORTRAN programs we made some comparisons, but arrived
at a coneclusion which contradicts Peter Neely’s [2]. This was an
invitation to us to scrutinize Neely’s work. His remark, “The
inaccuracy noted for M may be due to IBM-ForTrAN, which does
not compile a floating round,” is one pointer to the source of
inaccuracy. Indeed, with a compiler which does compile a floating
round, Welford’s method gives results equivalent to those ob-
tained with the two-pass method recommended by Neely. If a
floating round is not compiled, the use of Kahan’s trick [3] will
give excellent results even on those machines, such as an IBM
1620 which truncates before normalizing a floating point sum.

Another source of inaccuracy, however, is due to the way Wel-
ford’s formulas are programmed. In particular we found that the
formulas as given by Welford and programmed by Neely are not
the best available. )
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The best versions for programming purposes seem to be the
following:
me = 0; my = muy + (@i—me)/t, 1= 1,ng My = om (1)
$iey F (Ti— )P — (Bi-meod¥, 4= 1 ag
!S$ == Ry (2)

i

8y = 0; B

and P;similar to (2). Of these equations {1) is most important and

addition using Kahan’s trick will give an error-free answer.

Not using Kahan's trick will give results for variable 7,50 not
as good as those obtained with the two-pass method, but since
we think this kind of variable is not likely to oceur in practical
work, we recommend (1) and (2) for caleulation of the mean and
corrected sum of squares. Since we found that from {1} and {2)
Iz and 2x* are more accurately retrieved than when computed
directly, we think that (1) can be used in numerical integration
too, if the result afterwards is multiplied by the number of in-
tervals.

REFERENCES:

1. Werrorp, B. P. Note on a method for caleulating corrected
sums of squares and products. Technomelrics IV {1962),
419-420.

2. Nmery, Perer M. Comparison of several algorithms for
computation of means, standard deviations and correlation
coefficients. Comm. ACM 8,7 {July 1966), 496458,

3. Kaman, W. Further remark on reducing truncation errors,
Comm. ACM 8, 1 {Jan. 1863), 40.

A. J. vax Reexex
Rekencentrum

Katholieke Hogeschool
Tilburg, The Netherlands

Abbreviations for Computer and Memory Sizes

Key Words and Phrases: memory, thousand
CR Categories: 2.44, 6.34

Ep1TOR:

The fact that 2'% and 10° are almost but not quite equal creates
a lot of trivial confusion in the computing world and around its
periphery. One hears, for example, of doubling the size of a 32K
memory and getting a 65K {(not 64K} memory. Doubling again
yvields a 131K (not 130K} memory. People who use powers of two
all the time know that these are approximations to a number they
eould compute exactly if they wanted to, but they seldom take
the trouble, In conversations with outsiders, much time iz wasted
explaining that we really can do simple arithmetic and we didn’t
mean sxactly what we said.

The confusion arizses because we use K, which traditionally
means 1000, as an approximation for 1024, I we had » handy same
for 1024, we wouldn’t have io approximate. I suggest that
x {kappa) be used for this purpose. Thus a 32« memory means one
with exactly 32,768 words. Doubling it produces a 64« memory
which i8 to say one with exactly 85,538 words. As memories get
larger and go into the millions of words, one can speak of a 32,2
(33,554,432-word) memory and doubling it will vield s84s
{67,108, 864-word ) memory. Users of the langnage will used to have
at their fingertips only the first nine powers of 2 sand will not need
to explain the discrepancies between what they said and what they
meant.

Doxawp B, Mornison
Compuler Science, Division 5258
Sandis Corporation, SBandia Bose
Albuguergue, N. Moz,
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In Defense of Langdon’s Algorithm™*
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Ord-8mith {Letter to the Editor, Comm. ACM 10, 11 (Nov.
10673, 684] makes some impertinent remarks on the subjec of
Langdon's algorithm {1]. The main point of the letter “that there
does not appear to be any combinatorial advantage of ciroyly
ordering over lexieographic ordering’ is hardly relevant, The
problem attacked by Langdon is not to find combinatorigl ad-
vantage but rather compulalional advantage, which Langdons
algorithm most certainly provides.

Most of the score or so of Avgon algorithms published in CAQH
on the subject of lexicographic succession have been badly written;
they contain only the sketchiest of theoretical discussion, and
the obscurity of their construction masks their essentially simple
methodology. In contrast, Langdon gives a clear and concige
theoretical discussion and logic dingram. The relative brilliance
of Langdon’s paper may be taken as an indication that formal
papers and logic diagrams are a superior method for presentation
of this subtle type of arithmetic. The essential point that On.
Bmith seems to have missed is thst Langdon’s algorithm uses
rotation rather than transposition as the basis of iteration, thys
taking advantage of the hardware design of modern computers
which perform rotation much more efficiently than transposition.
The Avcoulanguage, however, does not give the user access to the
rotation registers and hence will not implement this algorithm
efficiently with respect to running time. The fact that the trans
position methods give shorter running times indicates not superior
algorithms but s fundamental weakness of the Avcor language
for this type of numeric manipulation. Given access to the rota-
tion registers, Langdon’s algorithm would be efficient in both
coding compactness snd running time.
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Endorsing the Illinois Post Mortem Dump
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The suthors of “The ALCOR Hlinols 7000/7094 Post Morten
Dump” {Comm. ACM 10, 12 (Dec. 1967), 804-80B] have presented
a technique for producing post morterm dumps which, in my
opinion, should be incorporated in all high level programming
languages. A similar technique has been in operation for several
vears at Manchester {1} and has proved to be extremely useful,
especially for student programmers,
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Winnipeg, Cannda

VYolume 11 / Number 3 / March, 1968



