
Go T o S t a t e m e n t C o n s i d e r e d H a r m f u l

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24

EDITOR :

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all "higher level" programming
languages (i.e. everything except, perhaps, plain machine Code).
At'that time I did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer's activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the "making" of the corresponding process is dele-
gated to the machine.

My second remark is that our intellectual powers are rather
geared to master static relations and that our powers to visualize
processes evolving in time are relatively poorly developed. For
that reason we should do (as wise programmers aware of our
limitations) our utmost to shorten the conceptual gap between
the static program and the dynamic process, to make the cor-
respondence between the program (spread out in text space) and
the process (spread out in time) as trivial as possible.

Let us now consider how we can characterize the progress of a
process. (You may think about this question in a very concrete
manner: suppose that a process, considered as a time succession
of actions, is stopped after an arbitrary action, what data do we
have to fix in order that we can redo the process until the very
same point?) If the program text is a pure concatenation of, say,
assignment statements (for the purpose of this discussion regarded
as the descriptions of single actions) it is sufficient to point in the
program text to a point between two successive action descrip-
tions. (In the absence of go to statements I can permit myself the
syntactic ambiguity in the last three words of the previous sen-
tence: if we parse them as "successive (action descriptions)" we
mean successive in text space; if we parse as "(successive action)
descriptions" we mean successive in time.) Let us call such a
pointer to a suitable place in the text a "textual index."

When we include conditional clauses (if B then A), alternative
clauses (if B then AZ else A2), choice clauses as introduced by
C. A. R. Hoare (case[i] of(At, A2, ... , An)), or conditional expres-
sions as introduced by J. McCarthy (Bi -~ El, B2 --~ E2, ... ,
Bn ---~ En), the fact remains that the progress of the process re-
mains characterized by a single textual index.

As soon as we include in our language procedures we must admit
that a single textual index is no longer sufficient. In the case that
a textual index points to the interior of a procedure body the

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don't wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as "induction"
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however , we can associate a so-called "dy-
namic index," inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process Can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices.

The main point is that the values of these indices are outside
programmer's control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which
to describe the progress of the process.

Why do we need such independent coordinates? The reason
is--and this seems to be inherent to sequentiM processes--that
we can interpret the value of a variable only with respect to the
progress of the process. If we wish to count the number, n say, of
people in an initially empty room, we can achieve this by increas-
ing n by one whenever we see Someone entering the room. In the
in-between moment that we have observed someone entering the
room but have not yet performed the subsequent increase of n,
its value equals the number of people in the room minus one!

The unbridled use of the go to statement has an immediate
consequence that it becomes terribly hard to find a meaningful set
of coordinates in which to describe the process progress. Usually,
people take into account as well the values of some well chosen
variables, but this is out of the question because it is relative to
the progress that the meaning of these values is to be understood l
With the go to statement one can, of course, still describe the
progress uniquely by a counter counting the number of actions
performed since program start (viz. a kind of normalized clock).
The difficulty is that such a coordinate, although unique, is utterly
unhelpful. In such a coordinate system it becomes an extremely
complicated affair to define all those points of progress where,
say, n equals the number of persons in the room minus onet

The go to statement as it stands is just too primitive; i t is too
much an invitation to make a mess of one's program. One can
regard and appreciate the clauses considered as bridling its use. I
do not claim that the clauses mentioned are exhaustive in the sense
tha t /hey will satisfy all needs, but whatever clauses are suggested
(e.g. abortion clauses) they should satisfy the requirement that a
programmer independent coordinate system can be maintained to
describe the process in a helpful and manageable way.

I t is hard to end this with a fair acknowledgment. Am I to

Volume 11 / Number 3 / March, 1968 Communieations of the ACM I47

judge by whom my thinking has been influenced? It is fairly
obvious that I am not uninfluenced by Peter Landh~ a~d Chris~
topher Strachey. Finally I s~muld like to record (as I remember i~
quite distinctly)how Heinz Zema:~ek a~ the pre-A~c~-oL meeting
in early !959 in Copenhagen quite explicitly expressed his doubts
whether the go to statement should be treated on equM syntactic
footing with the ~s ignment statement. Tn a modest extent t
blame myself for not having then drawn ~he eor~sequenees of his
remark.

The remark about the undesirability of the go to statement is
far from new. I remember having read the explicit recoam~enda*
~[on ~o restrict the use of the go to statement to alarm exits, but
I have not been able to trace it; presumably, it has been made by
C. A. R. Hoare. In {t, See. 3.Z1.] Wirth and Hoare together
make a remark in the same direetion in motivating the case
eonstruetion: "Like the conditional, it mirrors die dynamic
structure of a program more eleaHy than go to statements a~d
switches, sad it eliminates the need for introducing a large number
of labels i~ the program."

In !2] Guiseppe aaeopini seems to have proved the (togieM)
superfluousness of the go to statement. The exercise to translate
an arbitrary flow diagram more or tess meehanicMty into a jmnp-
less one, however, is not to be recommended. The~ the resulting
flow diagram cannot be expected to be more transparent than the
originM one.

}'~g FNRE NCES :
1. WIaT~L N~KL.-~'S~ Axe> }{O.~a~, C A. R A contribution to the

developmen~ of ALGOL. ('cram. A(\~.[9 (June 19~i), 413-432.
2. B{JIH)d~ CORNADO, .aN[)J-kkCOP[N[, GUqSEPeE,. Flow diagrams,

Turing macNnes and languages with only two formation
>ties, Commo ACM ,9 (May lg@}), 3(~->-371.

EDSGER Wo I)UKSTRA
Technogogicag University
Eindhoven, The NegheHa~ds

l a n g u a g e P r o t e c t i o n b y T r a d e m a r k I l l - a d v i s e d

Key Words and Phrsaes: TRAC languages, procedure-oriented
language, proprietary software, protection of software, trade~
marks, copyright protection,patent protection, standardization,
lice~sing, Mooers doctrb~e

C[~' Categories: 212, 2.2, 4.0, 42

}:n~Toa :
I would like to comment on a policy published 25 August 1967

by the Rockford Research Insti tute Inc., for trademark control
of ~he T}~Ac language "originated by Calvin N. Mooers of that
eorp,ratio>.": "I~ is ~.he belief at Rockford t~meareh that an
aggresaive cour:~e of action can and should be taker~ to protect the
i~tegrity of its carefully desig~ed targuages." Mr. Mooers believes
that "well-drawn standards are not enough to prevent irrespon.-
sib~e deviatio~v~ in computer ta~guages," and that. there%re
"Rnekford Research shall insist ~ha~. all software and supporting
services for its T:r{.~e languages arid related services be furnished
for a price by Rockford~ or by sources licensed and authorized by
Rockford in a cow, tract ar rangement" Mooers' policy, which
applies in academic hastitutions ~s well as commercial ~sem,
includes ":authorized use of the algorithm and prbnitives of a
specific T-~ae language; authorization for experimentatior~ with
the language , 2'

I ~hir~k that ~his attempt ~o protect a ia~guage a~d its software
by eoatrotlb~g ffhe name is very ill-advised. Orm is remi~ded of
the C o ~ r tz, ngaage, whose develo~:~r~ (under V. Yngve) reetrieted

its sourcedevel distribution. As a result, that efforl5 was bypassed
by the people at Bell Laboratories who developed Srvonou This
latter Ianguage and its software were iacvitM)ly superior, and
were immediately available to every~me, b~eluding the right to
make exte~sio~s. Later versions benefitted from "meritorious
extra,siena" by "irrepressible young people" at universities, with
the result that Sxo~o~, today is an important and prominent
language, while Coast enjoys relative obscurity.

Mr. Mooers will find that; new Ta~cdike languages will appear
whose documentatimb because of the trademark restriction, can.
not mention Tm~c. Textbook references will be similarly inhibited.
It is unfortunate.

B~:RNaeD A. G a L ~
UaiversiQl of Michigag
Ann Arbor, Mich. 4810~

Mr. Manet's Reply

EDITOR: I~
Professor GMter's let.tar, commenting ca our Rockford Research sl

policy statement on software protection of 25 August 1967, opens t~
the discussion of what may be a very significant developmeat to p
our computing profession. This policy statement applies to our
TIRAC CFM) computer-controlling languages. The statement in.
eludes a new doctrine of software protection which may be gen. tl
erally applicable to a variety of different kinds of complex corn- i~
purer systems, computer services, languages, and software, a
Already it is evident that this doctrine has a number of interesting
legal and commercial implications. It is accordingly appropriate d
that it be subiect to critical discussion.

The doctrine is very simple. For speeifieity, I shall describe it
in regard to the Tm~c languages which we have developed: (1)
Rockford Research has designated itself as the sole authority for
the development and publication of authentic standards and
specifications for our TRAC languages; and (2) we have adopted
Taac as our commercial trademark (and service mark) for use in
connection with our eoraputer-eontrolling languages, our publica-
tions providing standards for the languages and any other related
goods or services, i

The power of this doctrine derives from the unique manner in
whieh :it serves the interests of the consuming public--the people K
who wilt be using computer services. The visible and recognized
Te.~c trademark informs this public--the engineers, the soeiol0gy
professors, the business systems people, and the nonprogrammers
everywhere--that the language or computer capability identified I!
by this trademark adheres authentieMly and exactly to a carefully * !i
drawn Rockford Research standard for one of our TR:~c languages 'i
or some related service. This is in accord with a long commercial ~t
and legal tradition.

The evils of the present situation and the need to find a suitable ~l
remedy are well known. An adequate basis for proprietary soft- ~
ware development and marketing is urgently needed, particularly
in view of the doubdul capabilities of copyright, patent, or "trade
secret" methods when applied to software. Developers of vMuable
systems--including languages-~-deserve to have some vehicle to
give them a return. On the user side the nonexistence of standards
in the computer systems area is a continuing nuisance. The
proliferation of dialects ou wduabte languages (e.g. SNOR0~ or
f' O~Tr~ ~.X) iS sheer madness. The layman user (read "nonprogram"
mer") who now has access to any of several dozen computer
facilities (each with incompatible systems and diMects) needs
relief. It is my opinion that this new doctrirm of autonomous
sta~dardizativm eoupled with resort to eontmereiat trademark can
provide a substangiM contribution to remedying a variety of our
problems ia this area.

Several points of Professor Galter's tatter deserve specific
comment Ih::, full impact of our Rockford Research policy (and

t 4 8 C o m m u n i e a t l o ~ s ~)f the ACid| Vo lume 11 / N u m b e r 3 / March, 1698

J

indeed of this doctrine applied to other developments) upon
academic activities cannot be set forth in just a few words (cf.
Rockford Memo V-202). It is my firm belief that academic ex-
perimentation must be encouraged--indeed it cannot be stopped.
Nevertheless, the aberrant or even possibly improved products
coming from the academic halls must not be permitted to confuse
or mislead the consuming public. Careful use of, and respect for,
trademark can ensure that this does not occur.

~NOBOL was mentioned as illustrating a presumably desirable
situation regarding innovation. Yet according to the Snobol
BuIlelin No. 3 (November 1967), we find already a deep concern
regarding serious incompatibilities among the many "home-made"
implementations of this language. In addition, there are serious
complaints over the profound lack of "upward compatibility"
between the latest "SNOBOLS." The consequent inability of the
users to exchange or publish useful algorithms is cited. These are
exactly some of the problems that our policy hopes to avoid.

The future of our computing technology lies in service to the
layman users. Our present chaos in interfaces, formats, lack of
standards, proliferation of needless dialects, unreliable documen-
tation, and all the other hazards and incompatibilities is com-
pletely intolerable to the users. The users know it. It is about time
we knew it too.

I believe that this doctrine of autonomous standardization and
trademark identification is a long step forward in service to the
user public, and thus is in the right direction. According to the
almost uniformly favorable response we have received to date,
many others seem to think the same way. I expec t to see the
doctrine have wide application.

CALVIN N . MOOERS
Rockford Research Institute Inc.
Cambridge, Mass. 02138

No T r o u b l e w i t h A t l a s ! P a g e - T u r n i n g

M e c h a n i s m

Key Words and Phrases: Atlas I, page-turning procedures
CR Categories: 4.2, 4.22

EDITOR :
The editorial on "The European Computer Gap," Comm. ACM

10 (April 1967), 203, tells of "paper designs that Could never be
converted into operational systems," and among these includes
"the page-turning procedures proposed with the original design
of the Atlas."

Not merely does this do injustice to Atlas, but it is in fact quite
wrong. The Atlas I machine we have here has a one-level store
made up of 48K words of 2gs cores and 96K words on drums. The
paging and page-turning mechanism have worked without any
trouble at all almost from the beginning--so well that it is some-
thing we hardly ever think about. To give an idea of how in-
tensively the system is used let me say that since 1964 we have
been running a service for research workers in all British uni-
versities with a very mixed load of programs in all the major
languages. We put about 2500 jobs through the machine each.
week, and the system efficiency is around 70 percent. By this last
figure I mean that, of all the instructions obeyed by the machine
over a long period, 70 percent goes into either the compiling or
execution of users' programs. The figure can rise to over 90 per-
cent with a favorable job-mix.

J. HOWLE'rT
Atlas Computer Laboratory
Chilton, Didcot
Berkshire, England

O n P r a c t i c a l i t y o f S i e v i n g T e c h n i q u e s vs. t h e
S i e v i n g A l g o r i t h m

Key Words and Phrases: prime numbers, sieving algorithms,
sieving techniques, indexing techniques

CR Categories: 3.15, 5.39

EDITOR:
After reading the remarks on the sieving algorithms in the Sep-

tember 1967 issue of Communications of the ACM [p. 569], i should
like to point out the fact that these algorithms are presented
in ALGOL solely for the purpose of communicating the idea of the
algorithm, and that the published running times for the sieving
algorithms are not representative of the sieving process.

For practical use these algorithms are usually implemented in
assembly language on machines with high speed index registers,
since the sieving technique is essentially an indexing technique.
For example, an algorithm which, when given an array of length
n, sieves between p and p+2n was implemented in the assembly
language for an IBM 360 model 40. This algorithm assumes only
that the even numbers between p and p+2n have already been
crossed out; it does not incorporate any of the special features of
Algorithms 310 and 311. The time required to compute the first m
primes is given !n the following table.

m Time (see)

10,O00 7
100,000 87
500,000 525

1,000,000 1149
1,250,(100 1487

The value of n used in preparing the above table was n = 16,(100.
The average time for sieving over an interval of length 32,000 was
2.46see.

Thus, while it may appear that the sieving algorithms are too
slow to be practical when implemented ill a compiler language, the
above times indicate that the sieving technique can be practical
when implemented in an assembly language.

JOHN E. HOWLAND
University of Oklahoma
Norman, Oklahoma 78069

D e a l i n g w i t h N e e l y ' s A l g o r i t h m s

Key Words and Phrases: algorithm, computation of statistics,
truncation error, Neely's comparisons

CR Categories: 4.0, 5.5, 5.11

EDITOR :
When we decided to use the method of Welford [1] in

our FORTRAN programs we made some comparisons, but arrived
at a conclusion which contradicts Peter Neely's [2]. This was an
invitation to us to scrutinize Neely's work. His remark, "The
inaccuracy noted for M2 may be due to IBM-FORTRAN, which does
not compile a floating round," is one pointer to the source of
inaccuracy. Indeed, with a compiler which does compile a floating
round, Welford's method gives results equivalent to those ob-
tained with the two-pass method recommended by Neely. If a
floating round is not compiled, the use of Kahan's trick [3] will
give excellent results even on those machines, such as an IBM
1620 which truncates before normalizing a floating point sum.

Another source of inaccuracy, however, is due to the way Wel-
ford's formulas are programmed. In particular we found that the
formulas as given by Welford and programmed by Neely are not
the best available.

11 / Number 3 / March, 1968 Communicat ions of the ACM 149

The best versions for programming purposes seem to be the
following:

m0 = 0; mi = mi-t + (x i -mi -O/ i , i = 1, n; M~= m,, (1)

so = 0; si = si-~ + (xl--m~-O a - - (zi-m~-~)Vi, i = 1, n;

and Pa similar to (2). Of these equations (1) is most important and
addition using Kahan's trick will give an error-free answer.

Not using Kahan's trick will give results for variable z,,~ no~
as good as those obtained with the two-pass method, but since
we thit~k this kind of variable is not likely to occur in practical
work, we recommend (1) and (;2) for calculation of the mea~ and
corrected sum of squares, Since we found that from (1) and (2)
Zx and Zx ~ are more accurately retrieved than when computed
directly, we think that (1) can be used in numerical integration
too, if the result afterwards is multiplied by the number of in-
tervals.

I:~,EFERE NCES:

1. W~Lr'O~n, B.P . Note on a method for calculating corrected
sums of squares and products. Technomeb~ics IV (H~2),
419-420.

2. N~ELY, PF~TnR M. Comparison of several algorithms for
computation of means, standard deviations and correlation
coefficients, Comm, A CM 9, 7 (July I~2~), 4%-4{N.

3, KaHaN, W. Further remark on reducing truncation errors.
Comm. ACM 8, 1 (Jan, 1%5), 40.

A. J. van REEKEN
Reke-ncen~rum
Ka~hoIieke Hogeseheol
Tilburg, The :Ve~hertands

A b b r e v i a t i o n s for C o m p u t e r a n d M e m o r y S izes

Key Words and Phrases: memory, thousand
CR Categories: 2.44, 6.34

EDITOa:
The fact, that 2 ~ and 10 ~ are almr~t but mot quite equM creates

a log of trivial confusion in the computing world and around its
periphery. One hears, for example, of doubling the size of a 32K
memory and getting a 65K (not. 64K) memory, Doubling again
yields a 131K (not 130K) memory. People who use powers of two
all the time know that these are approximations to a number they
could eompute exactly if they wanted ~o, but they seldom take
the trouble, In conversations with outsiders, much time is waisted
explaining that we really can do simple arithmetic and we didn%
mean exactly what we said.

The confusion arises beeause we use K, which traditionally
means 1000, as an approximation for 1024. If we had a handy name
for 1024, we wouldn'g have to approximate, I suggest ghag

(kappa) be w~ed for this pu~r~ose. Thus a 32~ memory means one
with exactly 32,768 words. Doubling it pr{aduces a ~N~ memory
which is to say one with exactly 65,536 words. As memories get
larger and go into the rni/lior~s of words, o~e car~ speak of a 32~ ~
(33,5&i,432-word) memory and doubling it, wilt yield a64~ ~
(67,108,864-word) memory. Users of the language will need to have
at their fingertips only the first nine powers of 2 and wilt not need
to explain the discrepancies between what the)' ~aid and what the}"
m e a n t .

Do~a~rA> R~ M o ~ t s o ~
Camp~Nr Science, D@izion 5256
Sandia C~porati(m, Sandia Bane
A ~buquerque, N. Mew

1~0 Comrau~ieatious of the ACM

I n D e f e n s e o f L a n g d o n ' s A l g o r i t h m *

Key Wo~ls and Phra:aes: lexicographie permu{,ation
CR Categories: 5,~9

()rd-Smi~h {Letter ¢o ~he Editor, Cumin. ACM I0, 11 (Nov.
19W), (iS41 makes some impertinent remarks (m the subject 0f
t,angdon's Mgoritbm {tL The main poi~t of the letter "that there
does not appear ~o he an3 combinatorial advantage of circular
ordering over icxicographic ordering" is hardly relevant. The
problem attacked by Laagdon is no~ !~) fimt combinatorial ad.
vantage but rather compz~lagiona! advantage, which Langd0n's
Mgori~hm m<~st certainly provides.

Most of the score or no of A~x;o~ algorit hnls published in CAOM
on the subject of lexicographic successi~m have bee~ badly written;
they contain only the sketchiest of theoretical discussion, and
the obscurity of their construction masks their essentially simple
methodology. In contrast, Langdun gives a clear and eondse
theoretical discussion and logic diagram~ The relative brilliance
of Langdor~'s paper may be ~aken as an i~Mication that formal
papers and logic diagrams are a superior method for presentation
of this subtle type of arithmetic. The esse~tial point that 0rd.
Smith seems to have missedl is that t,a~gdo~'s algorithm uses
rotation rather than transposition as the l:~.i8 of iteration, thus,
taking adva~ta, ge of the hardware design of modern computers
which perform rotation much more eflieien fly than transposition.
The ALGOL language, however, d(~s not give the user access to the
rotation registers and hence will not implement this algorithm
efficiently with respect to running time, The fact that the trans.
posit ion methods give shorter running times indicates not superior
algorithms bug a fundamentM weakness of the AL(;OL language
for this type of numeric manipulation. Given access to the rota-
tion registers, Langdon's Mgorithm would be efficient in both
cc4ing compactness and running time.

REFERt~:NCN :

I. L~NaDOn, O. J. An algorithm for generating permutations.
Comm. ACM I0, 5 (May 1967), ~tg-299.

B. E. Rom~N
Defence Research Establishment
Tutor*go, Ontario, Canada

*DRET Technical Note No. g88

E n d o r s i n g t h e I l l ino i s Pos t M o r t e m D u m p

Key Worda ~rui Phrases: ALCOI~ p~m~ mortem dump
C.~ Categories: 4.12, 4A2

ED~rOR:
The author~u of "The ALCOR Illir~ois 70~K),/7(g3I P~st Mortem

Dump" {Cumin A CM I0, 12 (Dee. I967), 8i>i- 808] have presented
a techniq~m for producing post mortem &~mps which, in my
opiMon, sh,mtd be i~mor~x~rated i~ nil high level programming
languages. A similar techniq~tc hg~:4 bee~ b~ operati(m for several
yearn at Manchester {11 and has proved to be extremely useful,
esFg~ciatly for ~tudeat programmers,

~EFEgNNCE:

1. Br~ooN~:a, }L A., RuraL, J. 8 , a~) CLa}~, S. R. The main
features of A~:hk~ Amocode, Compare. J, 8 (Jan, 1956), 303-
3i0.

8~ fL C~a~K
Department ¢~f Computing Science
The Unit.:r~dty of Manitoba
Winnipeg, Canada

Yo|u~le ll / Number 3 March, 1968 :

