
FLEX(1) FLEX(1)

NNAAMMEE
flex − fast lexical analyzer generator

SSYYNNOOPPSSIISS
ffl leexx [[−−bbccddffhhiil lnnppssttvvwwBBFFIILLTTVV7788++?? −−CC[[aaeeffFFmmrr]] −−oooouuttppuutt −−PPpprree--
ffi ixx −−SSsskkeelleettoonn]] [[−−−−hheellpp −−−−vveerrssiioonn]] _[_f_i_l_e_n_a_m_e _._._._]

OOVVEERRVVIIEEWW
This manual describes _ f_l_e_x_, a tool for generating programs
that perform pattern−matching on text. The manual
includes both tutorial and reference sections:

Description
a brief overview of the tool

Some Simple Examples

Format Of The Input File

Patterns
the extended regular expressions used by flex

How The Input Is Matched
the rules for determining what has been matched

Actions
how to specify what to do when a pattern is matched

The Generated Scanner
details regarding the scanner that flex produces;
how to control the input source

Start Conditions
introducing context into your scanners, and
managing "mini−scanners"

Multiple Input Buffers
how to manipulate multiple input sources; how to
scan from strings instead of files

End−of−file Rules
special rules for matching the end of the input

Miscellaneous Macros
a summary of macros available to the actions

Values Available To The User
a summary of values available to the actions

Interfacing With Yacc
connecting flex scanners together with yacc parsers

Options
flex command−line options, and the "%option"

Version 2.5 April 1995 1

FLEX(1) FLEX(1)

directive

Performance Considerations
how to make your scanner go as fast as possible

Generating C++ Scanners
the (experimental) facility for generating C++
scanner classes

Incompatibilities With Lex And POSIX
how flex differs from AT&T lex and the POSIX lex
standard

Diagnostics
those error messages produced by flex (or scanners
it generates) whose meanings might not be apparent

Files
files used by flex

Deficiencies / Bugs
known problems with flex

See Also
other documentation, related tools

Author
includes contact information

DDEESSCCRRIIPPTTIIOONN
_f_l_e_x is a tool for generating _ s_c_a_n_n_e_r_s_: programs which
recognized lexical patterns in text. _ f_l_e_x reads the given
input files, or its standard input if no file names are
given, for a description of a scanner to generate. The
description is in the form of pairs of regular expressions
and C code, called _ r_u_l_e_s_. _f_l_e_x generates as output a C
source file, l leexx..yyyy..cc,, which defines a routine y yyylleexx(())..
This file is compiled and linked with the − −llf fl l library to
produce an executable. When the executable is run, it
analyzes its input for occurrences of the regular expres-
sions. Whenever it finds one, it executes the correspond-
ing C code.

SSOOMMEE SSIIMMPPLLEE EEXXAAMMPPLLEESS
First some simple examples to get the flavor of how one
uses _f_l_e_x_. The following _ f_l_e_x input specifies a scanner
which whenever it encounters the string "username" will
replace it with the user’s login name:

%%
username printf("%s", getlogin());

By default, any text not matched by a _ f_l_e_x scanner is

Version 2.5 April 1995 2

FLEX(1) FLEX(1)

copied to the output, so the net effect of this scanner is
to copy its input file to its output with each occurrence
of "username" expanded. In this input, there is just one
rule. "username" is the _ p_a_t_t_e_r_n and the "printf" is the
_a_c_t_i_o_n_. The "%%" marks the beginning of the rules.

Here’s another simple example:

int num_lines = 0, num_chars = 0;

%%
\n ++num_lines; ++num_chars;
. ++num_chars;

%%
main()

{
yylex();
printf("# of lines = %d, # of chars = %d\n",

num_lines, num_chars);
}

This scanner counts the number of characters and the num-
ber of lines in its input (it produces no output other
than the final report on the counts). The first line
declares two globals, "num_lines" and "num_chars", which
are accessible both inside y yyylleexx(()) and in the m maaiinn(()) rou-
tine declared after the second "%%". There are two rules,
one which matches a newline ("\n") and increments both the
line count and the character count, and one which matches
any character other than a newline (indicated by the "."
regular expression).

A somewhat more complicated example:

/* scanner for a toy Pascal−like language */

%{
/* need this for the call to atof() below */
#include <math.h>
%}

DIGIT [0−9]
ID [a−z][a−z0−9]*

%%

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,

atoi(yytext));
}

{DIGIT}+"."{DIGIT}* {
printf("A float: %s (%g)\n", yytext,

Version 2.5 April 1995 3

FLEX(1) FLEX(1)

atof(yytext));
}

if|then|begin|end|procedure|function {
printf("A keyword: %s\n", yytext);
}

{ID} printf("An identifier: %s\n", yytext);

"+"|"−"|"*"|"/" printf("An operator: %s\n", yytext);

"{"[^}\n]*"}" /* eat up one−line comments */

[\t\n]+ /* eat up whitespace */

. printf("Unrecognized character: %s\n", yytext);

%%

main(argc, argv)
int argc;
char **argv;

{
++argv, −−argc; /* skip over program name */
if (argc > 0)

yyin = fopen(argv[0], "r");
else

yyin = stdin;

yylex();
}

This is the beginnings of a simple scanner for a language
like Pascal. It identifies different types of _ t_o_k_e_n_s and
reports on what it has seen.

The details of this example will be explained in the fol-
lowing sections.

FFOORRMMAATT OOFF TTHHEE IINNPPUUTT FFIILLEE
The _ f_l_e_x input file consists of three sections, separated
by a line with just % %%% in it:

definitions
%%
rules
%%
user code

The _d_e_f_i_n_i_t_i_o_n_s section contains declarations of simple
_n_a_m_e definitions to simplify the scanner specification,
and declarations of _ s_t_a_r_t _c_o_n_d_i_t_i_o_n_s_, which are explained
in a later section.

Version 2.5 April 1995 4

FLEX(1) FLEX(1)

Name definitions have the form:

name definition

The "name" is a word beginning with a letter or an under-
score (’_’) followed by zero or more letters, digits, ’_’,
or ’−’ (dash). The definition is taken to begin at the
first non−white−space character following the name and
continuing to the end of the line. The definition can
subsequently be referred to using "{name}", which will
expand to "(definition)". For example,

DIGIT [0−9]
ID [a−z][a−z0−9]*

defines "DIGIT" to be a regular expression which matches a
single digit, and "ID" to be a regular expression which
matches a letter followed by zero−or−more letters−or−dig-
its. A subsequent reference to

{DIGIT}+"."{DIGIT}*

is identical to

([0−9])+"."([0−9])*

and matches one−or−more digits followed by a ’.’ followed
by zero−or−more digits.

The _ r_u_l_e_s section of the _ f_l_e_x input contains a series of
rules of the form:

pattern action

where the pattern must be unindented and the action must
begin on the same line.

See below for a further description of patterns and
actions.

Finally, the user code section is simply copied to
lleexx..yyyy..cc verbatim. It is used for companion routines
which call or are called by the scanner. The presence of
this section is optional; if it is missing, the second % %%%
in the input file may be skipped, too.

In the definitions and rules sections, any _ i_n_d_e_n_t_e_d text
or text enclosed in % %{{ and % %}} is copied verbatim to the
output (with the %{}’s removed). The %{}’s must appear
unindented on lines by themselves.

In the rules section, any indented or %{} text appearing
before the first rule may be used to declare variables
which are local to the scanning routine and (after the

Version 2.5 April 1995 5

FLEX(1) FLEX(1)

declarations) code which is to be executed whenever the
scanning routine is entered. Other indented or %{} text
in the rule section is still copied to the output, but its
meaning is not well−defined and it may well cause compile−
time errors (this feature is present for _ P_O_S_I_X compliance;
see below for other such features).

In the definitions section (but not in the rules section),
an unindented comment (i.e., a line beginning with "/*")
is also copied verbatim to the output up to the next "*/".

PPAATTTTEERRNNSS
The patterns in the input are written using an extended
set of regular expressions. These are:

x match the character ’x’
. any character (byte) except newline
[xyz] a "character class"; in this case, the pattern

matches either an ’x’, a ’y’, or a ’z’
[abj−oZ] a "character class" with a range in it; matches

an ’a’, a ’b’, any letter from ’j’ through ’o’,
or a ’Z’

[^A−Z] a "negated character class", i.e., any character
but those in the class. In this case, any
character EXCEPT an uppercase letter.

[^A−Z\n] any character EXCEPT an uppercase letter or
a newline

r* zero or more r’s, where r is any regular expression
r+ one or more r’s
r? zero or one r’s (that is, "an optional r")
r{2,5} anywhere from two to five r’s
r{2,} two or more r’s
r{4} exactly 4 r’s
{name} the expansion of the "name" definition

(see above)
"[xyz]\"foo"

the literal string: [xyz]"foo
\X if X is an ’a’, ’b’, ’f’, ’n’, ’r’, ’t’, or ’v’,

then the ANSI−C interpretation of \x.
Otherwise, a literal ’X’ (used to escape
operators such as ’*’)

\0 a NUL character (ASCII code 0)
\123 the character with octal value 123
\x2a the character with hexadecimal value 2a
(r) match an r; parentheses are used to override

precedence (see below)

rs the regular expression r followed by the
regular expression s; called "concatenation"

r|s either an r or an s

Version 2.5 April 1995 6

FLEX(1) FLEX(1)

r/s an r but only if it is followed by an s. The
text matched by s is included when determining
whether this rule is the "longest match",
but is then returned to the input before
the action is executed. So the action only
sees the text matched by r. This type
of pattern is called trailing context".
(There are some combinations of r/s that flex
cannot match correctly; see notes in the
Deficiencies / Bugs section below regarding
"dangerous trailing context".)

^r an r, but only at the beginning of a line (i.e.,
which just starting to scan, or right after a
newline has been scanned).

r$ an r, but only at the end of a line (i.e., just
before a newline). Equivalent to "r/\n".

Note that flex’s notion of "newline" is exactly
whatever the C compiler used to compile flex
interprets ’\n’ as; in particular, on some DOS
systems you must either filter out \r’s in the
input yourself, or explicitly use r/\r\n for "r$".

<s>r an r, but only in start condition s (see
below for discussion of start conditions)

<s1,s2,s3>r
same, but in any of start conditions s1,

s2, or s3
<*>r an r in any start condition, even an exclusive one.

<<EOF>> an end−of−file
<s1,s2><<EOF>>

an end−of−file when in start condition s1 or s2

Note that inside of a character class, all regular expres-
sion operators lose their special meaning except escape
(’\’) and the character class operators, ’−’, ’]’, and, at
the beginning of the class, ’^’.

The regular expressions listed above are grouped according
to precedence, from highest precedence at the top to low-
est at the bottom. Those grouped together have equal
precedence. For example,

foo|bar*

is the same as

(foo)|(ba(r*))

since the ’*’ operator has higher precedence than concate-
nation, and concatenation higher than alternation (’|’).

Version 2.5 April 1995 7

FLEX(1) FLEX(1)

This pattern therefore matches _ e_i_t_h_e_r the string "foo" _ o_r
the string "ba" followed by zero−or−more r’s. To match
"foo" or zero−or−more "bar"’s, use:

foo|(bar)*

and to match zero−or−more "foo"’s−or−"bar"’s:

(foo|bar)*

In addition to characters and ranges of characters, char-
acter classes can also contain character class _ e_x_p_r_e_s_-
_s_i_o_n_s_. These are expressions enclosed inside [[:: and : :]]
delimiters (which themselves must appear between the ’[’
and ’]’ of the character class; other elements may occur
inside the character class, too). The valid expressions
are:

[:alnum:] [:alpha:] [:blank:]
[:cntrl:] [:digit:] [:graph:]
[:lower:] [:print:] [:punct:]
[:space:] [:upper:] [:xdigit:]

These expressions all designate a set of characters equiv-
alent to the corresponding standard C i issXXXXXX function. For
example, [[::aallnnuumm::]] designates those characters for which
iissaallnnuumm(()) returns true − i.e., any alphabetic or numeric.
Some systems don’t provide i issbbllaannkk(()),, so flex defines
[[::bbllaannkk::]] as a blank or a tab.

For example, the following character classes are all
equivalent:

[[:alnum:]]
[[:alpha:][:digit:]
[[:alpha:]0−9]
[a−zA−Z0−9]

If your scanner is case−insensitive (the − −ii flag), then
[[::uuppppeerr::]] and [[::l loowweerr::]] are equivalent to [[::aallpphhaa::]]..

Some notes on patterns:

− A negated character class such as the example "[^A−
Z]" above _ w_i_l_l _ m_a_t_c_h _a _n_e_w_l_i_n_e unless "\n" (or an
equivalent escape sequence) is one of the charac-
ters explicitly present in the negated character
class (e.g., "[^A−Z\n]"). This is unlike how many
other regular expression tools treat negated char-
acter classes, but unfortunately the inconsistency
is historically entrenched. Matching newlines
means that a pattern like [^"]* can match the
entire input unless there’s another quote in the

Version 2.5 April 1995 8

FLEX(1) FLEX(1)

input.

− A rule can have at most one instance of trailing
context (the ’/’ operator or the ’$’ operator).
The start condition, ’^’, and "<<EOF>>" patterns
can only occur at the beginning of a pattern, and,
as well as with ’/’ and ’$’, cannot be grouped
inside parentheses. A ’^’ which does not occur at
the beginning of a rule or a ’$’ which does not
occur at the end of a rule loses its special prop-
erties and is treated as a normal character.

The following are illegal:

foo/bar$
<sc1>foo<sc2>bar

Note that the first of these, can be written
"foo/bar\n".

The following will result in ’$’ or ’^’ being
treated as a normal character:

foo|(bar$)
foo|^bar

If what’s wanted is a "foo" or a bar−followed−by−a−
newline, the following could be used (the special
’|’ action is explained below):

foo |
bar$ /* action goes here */

A similar trick will work for matching a foo or a
bar−at−the−beginning−of−a−line.

HHOOWW TTHHEE IINNPPUUTT IISS MMAATTCCHHEEDD
When the generated scanner is run, it analyzes its input
looking for strings which match any of its patterns. If
it finds more than one match, it takes the one matching
the most text (for trailing context rules, this includes
the length of the trailing part, even though it will then
be returned to the input). If it finds two or more
matches of the same length, the rule listed first in the
_f_l_e_x input file is chosen.

Once the match is determined, the text corresponding to
the match (called the _ t_o_k_e_n_) is made available in the
global character pointer y yyytteexxtt,, and its length in the
global integer y yyylleenngg.. The _ a_c_t_i_o_n corresponding to the
matched pattern is then executed (a more detailed descrip-
tion of actions follows), and then the remaining input is
scanned for another match.

Version 2.5 April 1995 9

FLEX(1) FLEX(1)

If no match is found, then the _ d_e_f_a_u_l_t _r_u_l_e is executed:
the next character in the input is considered matched and
copied to the standard output. Thus, the simplest legal
_f_l_e_x input is:

%%

which generates a scanner that simply copies its input
(one character at a time) to its output.

Note that y yyytteexxtt can be defined in two different ways:
either as a character _ p_o_i_n_t_e_r or as a character _ a_r_r_a_y_.
You can control which definition _ f_l_e_x uses by including
one of the special directives % %ppooiinntteerr or % %aarrrraayy in the
first (definitions) section of your flex input. The
default is % %ppooiinntteerr,, unless you use the − −ll lex compatibil-
ity option, in which case y yyytteexxtt will be an array. The
advantage of using % %ppooiinntteerr is substantially faster scan-
ning and no buffer overflow when matching very large
tokens (unless you run out of dynamic memory). The disad-
vantage is that you are restricted in how your actions can
modify y yyytteexxtt (see the next section), and calls to the
uunnppuutt(()) function destroys the present contents of y yyytteexxtt,,
which can be a considerable porting headache when moving
between different _ l_e_x versions.

The advantage of % %aarrrraayy is that you can then modify y yyytteexxtt
to your heart’s content, and calls to u unnppuutt(()) do not
destroy y yyytteexxtt (see below). Furthermore, existing _ l_e_x
programs sometimes access y yyytteexxtt externally using declara-
tions of the form:

extern char yytext[];
This definition is erroneous when used with % %ppooiinntteerr,, but
correct for % %aarrrraayy..

%%aarrrraayy defines y yyytteexxtt to be an array of Y YYYLLMMAAXX characters,
which defaults to a fairly large value. You can change
the size by simply #define’ing Y YYYLLMMAAXX to a different value
in the first section of your _ f_l_e_x input. As mentioned
above, with % %ppooiinntteerr yytext grows dynamically to accommo-
date large tokens. While this means your % %ppooiinntteerr scanner
can accommodate very large tokens (such as matching entire
blocks of comments), bear in mind that each time the scan-
ner must resize y yyytteexxtt it also must rescan the entire
token from the beginning, so matching such tokens can
prove slow. y yyytteexxtt presently does _ n_o_t dynamically grow if
a call to u unnppuutt(()) results in too much text being pushed
back; instead, a run−time error results.

Also note that you cannot use % %aarrrraayy with C++ scanner
classes (the c c++++ option; see below).

AACCTTIIOONNSS
Each pattern in a rule has a corresponding action, which

Version 2.5 April 1995 10

FLEX(1) FLEX(1)

can be any arbitrary C statement. The pattern ends at the
first non−escaped whitespace character; the remainder of
the line is its action. If the action is empty, then when
the pattern is matched the input token is simply dis-
carded. For example, here is the specification for a pro-
gram which deletes all occurrences of "zap me" from its
input:

%%
"zap me"

(It will copy all other characters in the input to the
output since they will be matched by the default rule.)

Here is a program which compresses multiple blanks and
tabs down to a single blank, and throws away whitespace
found at the end of a line:

%%
[\t]+ putchar(’ ’);
[\t]+$ /* ignore this token */

If the action contains a ’{’, then the action spans till
the balancing ’}’ is found, and the action may cross mul-
tiple lines. _ f_l_e_x knows about C strings and comments and
won’t be fooled by braces found within them, but also
allows actions to begin with % %{{ and will consider the
action to be all the text up to the next % %}} (regardless of
ordinary braces inside the action).

An action consisting solely of a vertical bar (’|’) means
"same as the action for the next rule." See below for an
illustration.

Actions can include arbitrary C code, including r reettuurrnn
statements to return a value to whatever routine called
yyyylleexx(()).. Each time y yyylleexx(()) is called it continues pro-
cessing tokens from where it last left off until it either
reaches the end of the file or executes a return.

Actions are free to modify y yyytteexxtt except for lengthening
it (adding characters to its end−−these will overwrite
later characters in the input stream). This however does
not apply when using % %aarrrraayy (see above); in that case,
yyyytteexxtt may be freely modified in any way.

Actions are free to modify y yyylleenngg except they should not
do so if the action also includes use of y yyymmoorree(()) (see
below).

There are a number of special directives which can be
included within an action:

Version 2.5 April 1995 11

FLEX(1) FLEX(1)

− E ECCHHOO copies yytext to the scanner’s output.

− B BEEGGIINN followed by the name of a start condition
places the scanner in the corresponding start con-
dition (see below).

− R REEJJEECCTT directs the scanner to proceed on to the
"second best" rule which matched the input (or a
prefix of the input). The rule is chosen as
described above in "How the Input is Matched", and
yyyytteexxtt and y yyylleenngg set up appropriately. It may
either be one which matched as much text as the
originally chosen rule but came later in the _ f_l_e_x
input file, or one which matched less text. For
example, the following will both count the words in
the input and call the routine special() whenever
"frob" is seen:

int word_count = 0;
%%

frob special(); REJECT;
[^ \t\n]+ ++word_count;

Without the R REEJJEECCTT,, any "frob"’s in the input would
not be counted as words, since the scanner normally
executes only one action per token. Multiple
RREEJJEECCTT’’ss are allowed, each one finding the next
best choice to the currently active rule. For
example, when the following scanner scans the token
"abcd", it will write "abcdabcaba" to the output:

%%
a |
ab |
abc |
abcd ECHO; REJECT;
.|\n /* eat up any unmatched character */

(The first three rules share the fourth’s action
since they use the special ’|’ action.) R REEJJEECCTT is
a particularly expensive feature in terms of scan-
ner performance; if it is used in _ a_n_y of the scan-
ner’s actions it will slow down _ a_l_l of the scan-
ner’s matching. Furthermore, R REEJJEECCTT cannot be used
with the _ −_C_f or _ −_C_F options (see below).

Note also that unlike the other special actions,
RREEJJEECCTT is a _ b_r_a_n_c_h_; code immediately following it
in the action will _ n_o_t be executed.

− y yyymmoorree(()) tells the scanner that the next time it
matches a rule, the corresponding token should be
_a_p_p_e_n_d_e_d onto the current value of y yyytteexxtt rather

Version 2.5 April 1995 12

FLEX(1) FLEX(1)

than replacing it. For example, given the input
"mega−kludge" the following will write "mega−mega−
kludge" to the output:

%%
mega− ECHO; yymore();
kludge ECHO;

First "mega−" is matched and echoed to the output.
Then "kludge" is matched, but the previous "mega−"
is still hanging around at the beginning of y yyytteexxtt
so the E ECCHHOO for the "kludge" rule will actually
write "mega−kludge".

Two notes regarding use of y yyymmoorree(()).. First, y yyymmoorree(())
depends on the value of _ y_y_l_e_n_g correctly reflecting the
size of the current token, so you must not modify _ y_y_l_e_n_g
if you are using y yyymmoorree(()).. Second, the presence of
yyyymmoorree(()) in the scanner’s action entails a minor perfor-
mance penalty in the scanner’s matching speed.

− y yyylleessss((nn)) returns all but the first _ n characters of
the current token back to the input stream, where
they will be rescanned when the scanner looks for
the next match. y yyytteexxtt and y yyylleenngg are adjusted
appropriately (e.g., y yyylleenngg will now be equal to _ n
). For example, on the input "foobar" the follow-
ing will write out "foobarbar":

%%
foobar ECHO; yyless(3);
[a−z]+ ECHO;

An argument of 0 to y yyylleessss will cause the entire
current input string to be scanned again. Unless
you’ve changed how the scanner will subsequently
process its input (using B BEEGGIINN,, for example), this
will result in an endless loop.

Note that y yyylleessss is a macro and can only be used in the
flex input file, not from other source files.

− u unnppuutt((cc)) puts the character _ c back onto the input
stream. It will be the next character scanned.
The following action will take the current token
and cause it to be rescanned enclosed in parenthe-
ses.

{
int i;
/* Copy yytext because unput() trashes yytext */
char *yycopy = strdup(yytext);
unput(’)’);
for (i = yyleng − 1; i >= 0; −−i)

Version 2.5 April 1995 13

FLEX(1) FLEX(1)

unput(yycopy[i]);
unput(’(’);
free(yycopy);
}

Note that since each u unnppuutt(()) puts the given charac-
ter back at the _ b_e_g_i_n_n_i_n_g of the input stream,
pushing back strings must be done back−to−front.

An important potential problem when using u unnppuutt(()) is that
if you are using % %ppooiinntteerr (the default), a call to u unnppuutt(())
_d_e_s_t_r_o_y_s the contents of _ y_y_t_e_x_t_, starting with its right-
most character and devouring one character to the left
with each call. If you need the value of yytext preserved
after a call to u unnppuutt(()) (as in the above example), you
must either first copy it elsewhere, or build your scanner
using %%aarrrraayy instead (see How The Input Is Matched).

Finally, note that you cannot put back E EOOFF to attempt to
mark the input stream with an end−of−file.

− i innppuutt(()) reads the next character from the input
stream. For example, the following is one way to
eat up C comments:

%%
"/*" {

register int c;

for (; ;)
{
while ((c = input()) != ’*’ &&

c != EOF)
; /* eat up text of comment */

if (c == ’*’)
{
while ((c = input()) == ’*’)

;
if (c == ’/’)

break; /* found the end */
}

if (c == EOF)
{
error("EOF in comment");
break;
}

}
}

(Note that if the scanner is compiled using C C++++,,
then i innppuutt(()) is instead referred to as y yyyiinnppuutt(()),,
in order to avoid a name clash with the C C++++ stream

Version 2.5 April 1995 14

FLEX(1) FLEX(1)

by the name of _ i_n_p_u_t_._)

− Y YYY__FFLLUUSSHH__BBUUFFFFEERR flushes the scanner’s internal
buffer so that the next time the scanner attempts
to match a token, it will first refill the buffer
using Y YYY__IINNPPUUTT (see The Generated Scanner, below).
This action is a special case of the more general
yyyy__ffl luusshh__bbuuffffeerr(()) function, described below in the
section Multiple Input Buffers.

− y yyytteerrmmiinnaattee(()) can be used in lieu of a return
statement in an action. It terminates the scanner
and returns a 0 to the scanner’s caller, indicating
"all done". By default, y yyytteerrmmiinnaattee(()) is also
called when an end−of−file is encountered. It is a
macro and may be redefined.

TTHHEE GGEENNEERRAATTEEDD SSCCAANNNNEERR
The output of _ f_l_e_x is the file l leexx..yyyy..cc,, which contains
the scanning routine y yyylleexx(()),, a number of tables used by
it for matching tokens, and a number of auxiliary routines
and macros. By default, y yyylleexx(()) is declared as follows:

int yylex()
{
... various definitions and the actions in here ...
}

(If your environment supports function prototypes, then it
will be "int yylex(void)".) This definition may be
changed by defining the "YY_DECL" macro. For example, you
could use:

#define YY_DECL float lexscan(a, b) float a, b;

to give the scanning routine the name _ l_e_x_s_c_a_n_, returning a
float, and taking two floats as arguments. Note that if
you give arguments to the scanning routine using a K&R−
style/non−prototyped function declaration, you must termi-
nate the definition with a semi−colon (;).

Whenever yyyylleexx(()) is called, it scans tokens from the
global input file _ y_y_i_n (which defaults to stdin). It con-
tinues until it either reaches an end−of−file (at which
point it returns the value 0) or one of its actions exe-
cutes a _ r_e_t_u_r_n statement.

If the scanner reaches an end−of−file, subsequent calls
are undefined unless either _ y_y_i_n is pointed at a new input
file (in which case scanning continues from that file), or
yyyyrreessttaarrtt(()) is called. y yyyrreessttaarrtt(()) takes one argument, a
FFIILLEE ** pointer (which can be nil, if you’ve set up
YYYY__IINNPPUUTT to scan from a source other than _ y_y_i_n_)_, and ini-
tializes _ y_y_i_n for scanning from that file. Essentially

Version 2.5 April 1995 15

FLEX(1) FLEX(1)

there is no difference between just assigning _ y_y_i_n to a
new input file or using y yyyrreessttaarrtt(()) to do so; the latter
is available for compatibility with previous versions of
_f_l_e_x_, and because it can be used to switch input files in
the middle of scanning. It can also be used to throw away
the current input buffer, by calling it with an argument
of _y_y_i_n_; but better is to use Y YYY__FFLLUUSSHH__BBUUFFFFEERR (see above).
Note that y yyyrreessttaarrtt(()) does _ n_o_t reset the start condition
to I INNIITTIIAALL (see Start Conditions, below).

If y yyylleexx(()) stops scanning due to executing a _ r_e_t_u_r_n state-
ment in one of the actions, the scanner may then be called
again and it will resume scanning where it left off.

By default (and for purposes of efficiency), the scanner
uses block−reads rather than simple _ g_e_t_c_(_) calls to read
characters from _ y_y_i_n_. The nature of how it gets its input
can be controlled by defining the Y YYY__IINNPPUUTT macro.
YY_INPUT’s calling sequence is
"YY_INPUT(buf,result,max_size)". Its action is to place
up to _ m_a_x___s_i_z_e characters in the character array _ b_u_f and
return in the integer variable _ r_e_s_u_l_t either the number of
characters read or the constant YY_NULL (0 on Unix sys-
tems) to indicate EOF. The default YY_INPUT reads from
the global file−pointer "yyin".

A sample definition of YY_INPUT (in the definitions sec-
tion of the input file):

%{
#define YY_INPUT(buf,result,max_size) \

{ \
int c = getchar(); \
result = (c == EOF) ? YY_NULL : (buf[0] = c, 1); \
}

%}

This definition will change the input processing to occur
one character at a time.

When the scanner receives an end−of−file indication from
YY_INPUT, it then checks the y yyywwrraapp(()) function. If
yyyywwrraapp(()) returns false (zero), then it is assumed that the
function has gone ahead and set up _ y_y_i_n to point to
another input file, and scanning continues. If it returns
true (non−zero), then the scanner terminates, returning 0
to its caller. Note that in either case, the start condi-
tion remains unchanged; it does _ n_o_t revert to I INNIITTIIAALL..

If you do not supply your own version of y yyywwrraapp(()),, then
you must either use % %oopptti ioonn nnooyyyywwrraapp (in which case the
scanner behaves as though y yyywwrraapp(()) returned 1), or you
must link with − −llf fl l to obtain the default version of the
routine, which always returns 1.

Version 2.5 April 1995 16

FLEX(1) FLEX(1)

Three routines are available for scanning from in−memory
buffers rather than files: y yyy__ssccaann__ssttrriinngg(()),,
yyyy__ssccaann__bbyytteess(()),, and y yyy__ssccaann__bbuuffffeerr(()).. See the discussion
of them below in the section Multiple Input Buffers.

The scanner writes its E ECCHHOO output to the _ y_y_o_u_t global
(default, stdout), which may be redefined by the user sim-
ply by assigning it to some other F FIILLEE pointer.

SSTTAARRTT CCOONNDDIITTIIOONNSS
_f_l_e_x provides a mechanism for conditionally activating
rules. Any rule whose pattern is prefixed with "<sc>"
will only be active when the scanner is in the start con-
dition named "sc". For example,

<STRING>[^"]* { /* eat up the string body ... */
...
}

will be active only when the scanner is in the "STRING"
start condition, and

<INITIAL,STRING,QUOTE>\. { /* handle an escape ... */
...
}

will be active only when the current start condition is
either "INITIAL", "STRING", or "QUOTE".

Start conditions are declared in the definitions (first)
section of the input using unindented lines beginning with
either % %ss or % %xx followed by a list of names. The former
declares _ i_n_c_l_u_s_i_v_e start conditions, the latter _ e_x_c_l_u_s_i_v_e
start conditions. A start condition is activated using
the B BEEGGIINN action. Until the next B BEEGGIINN action is exe-
cuted, rules with the given start condition will be active
and rules with other start conditions will be inactive.
If the start condition is _ i_n_c_l_u_s_i_v_e_, then rules with no
start conditions at all will also be active. If it is
_e_x_c_l_u_s_i_v_e_, then _ o_n_l_y rules qualified with the start condi-
tion will be active. A set of rules contingent on the
same exclusive start condition describe a scanner which is
independent of any of the other rules in the _ f_l_e_x input.
Because of this, exclusive start conditions make it easy
to specify "mini−scanners" which scan portions of the
input that are syntactically different from the rest
(e.g., comments).

If the distinction between inclusive and exclusive start
conditions is still a little vague, here’s a simple exam-
ple illustrating the connection between the two. The set
of rules:

%s example

Version 2.5 April 1995 17

FLEX(1) FLEX(1)

%%

<example>foo do_something();

bar something_else();

is equivalent to

%x example
%%

<example>foo do_something();

<INITIAL,example>bar something_else();

Without the < <IINNIITTIIAALL,,eexxaammppllee>> qualifier, the _ b_a_r pattern
in the second example wouldn’t be active (i.e., couldn’t
match) when in start condition e exxaammppllee.. If we just used
<<eexxaammppllee>> to qualify _ b_a_r_, though, then it would only be
active in e exxaammppllee and not in I INNIITTIIAALL,, while in the first
example it’s active in both, because in the first example
the e exxaammppllee startion condition is an _ i_n_c_l_u_s_i_v_e ((%%ss)) start
condition.

Also note that the special start−condition specifier < <**>>
matches every start condition. Thus, the above example
could also have been written;

%x example
%%

<example>foo do_something();

<*>bar something_else();

The default rule (to E ECCHHOO any unmatched character) remains
active in start conditions. It is equivalent to:

<*>.|\n ECHO;

BBEEGGIINN((00)) returns to the original state where only the
rules with no start conditions are active. This state can
also be referred to as the start−condition "INITIAL", so
BBEEGGIINN((IINNIITTIIAALL)) is equivalent to B BEEGGIINN((00)).. (The parenthe-
ses around the start condition name are not required but
are considered good style.)

BBEEGGIINN actions can also be given as indented code at the
beginning of the rules section. For example, the follow-
ing will cause the scanner to enter the "SPECIAL" start
condition whenever y yyylleexx(()) is called and the global vari-
able _ e_n_t_e_r___s_p_e_c_i_a_l is true:

Version 2.5 April 1995 18

FLEX(1) FLEX(1)

int enter_special;

%x SPECIAL
%%

if (enter_special)
BEGIN(SPECIAL);

<SPECIAL>blahblahblah
...more rules follow...

To illustrate the uses of start conditions, here is a
scanner which provides two different interpretations of a
string like "123.456". By default it will treat it as
three tokens, the integer "123", a dot (’.’), and the
integer "456". But if the string is preceded earlier in
the line by the string "expect−floats" it will treat it as
a single token, the floating−point number 123.456:

%{
#include <math.h>
%}
%s expect

%%
expect−floats BEGIN(expect);

<expect>[0−9]+"."[0−9]+ {
printf("found a float, = %f\n",

atof(yytext));
}

<expect>\n {
/* that’s the end of the line, so

* we need another "expect−number"
* before we’ll recognize any more
* numbers
*/

BEGIN(INITIAL);
}

[0−9]+ {
printf("found an integer, = %d\n",

atoi(yytext));
}

"." printf("found a dot\n");

Here is a scanner which recognizes (and discards) C com-
ments while maintaining a count of the current input line.

%x comment
%%

int line_num = 1;

Version 2.5 April 1995 19

FLEX(1) FLEX(1)

"/*" BEGIN(comment);

<comment>[^*\n]* /* eat anything that’s not a ’*’ */
<comment>"*"+[^*/\n]* /* eat up ’*’s not followed by ’/’s */
<comment>\n ++line_num;
<comment>"*"+"/" BEGIN(INITIAL);

This scanner goes to a bit of trouble to match as much
text as possible with each rule. In general, when
attempting to write a high−speed scanner try to match as
much possible in each rule, as it’s a big win.

Note that start−conditions names are really integer values
and can be stored as such. Thus, the above could be
extended in the following fashion:

%x comment foo
%%

int line_num = 1;
int comment_caller;

"/*" {
comment_caller = INITIAL;
BEGIN(comment);
}

...

<foo>"/*" {
comment_caller = foo;
BEGIN(comment);
}

<comment>[^*\n]* /* eat anything that’s not a ’*’ */
<comment>"*"+[^*/\n]* /* eat up ’*’s not followed by ’/’s */
<comment>\n ++line_num;
<comment>"*"+"/" BEGIN(comment_caller);

Furthermore, you can access the current start condition
using the integer−valued Y YYY__SSTTAARRTT macro. For example, the
above assignments to _ c_o_m_m_e_n_t___c_a_l_l_e_r could instead be writ-
ten

comment_caller = YY_START;

Flex provides Y YYYSSTTAATTEE as an alias for Y YYY__SSTTAARRTT (since that
is what’s used by AT&T _ l_e_x_)_.

Note that start conditions do not have their own name−
space; %s’s and %x’s declare names in the same fashion as
#define’s.

Finally, here’s an example of how to match C−style quoted
strings using exclusive start conditions, including

Version 2.5 April 1995 20

FLEX(1) FLEX(1)

expanded escape sequences (but not including checking for
a string that’s too long):

%x str

%%
char string_buf[MAX_STR_CONST];
char *string_buf_ptr;

\" string_buf_ptr = string_buf; BEGIN(str);

<str>\" { /* saw closing quote − all done */
BEGIN(INITIAL);
*string_buf_ptr = ’\0’;
/* return string constant token type and

* value to parser
*/

}

<str>\n {
/* error − unterminated string constant */
/* generate error message */
}

<str>\\[0−7]{1,3} {
/* octal escape sequence */
int result;

(void) sscanf(yytext + 1, "%o", &result);

if (result > 0xff)
/* error, constant is out−of−bounds */

*string_buf_ptr++ = result;
}

<str>\\[0−9]+ {
/* generate error − bad escape sequence; something

* like ’\48’ or ’\0777777’
*/

}

<str>\\n *string_buf_ptr++ = ’\n’;
<str>\\t *string_buf_ptr++ = ’\t’;
<str>\\r *string_buf_ptr++ = ’\r’;
<str>\\b *string_buf_ptr++ = ’\b’;
<str>\\f *string_buf_ptr++ = ’\f’;

<str>\\(.|\n) *string_buf_ptr++ = yytext[1];

<str>[^\\\n\"]+ {
char *yptr = yytext;

Version 2.5 April 1995 21

FLEX(1) FLEX(1)

while (*yptr)
*string_buf_ptr++ = *yptr++;

}

Often, such as in some of the examples above, you wind up
writing a whole bunch of rules all preceded by the same
start condition(s). Flex makes this a little easier and
cleaner by introducing a notion of start condition _ s_c_o_p_e_.
A start condition scope is begun with:

<SCs>{

where _ S_C_s is a list of one or more start conditions.
Inside the start condition scope, every rule automatically
has the prefix _ <_S_C_s_> applied to it, until a _ ’_}_’ which
matches the initial _ ’_{_’_. So, for example,

<ESC>{
"\\n" return ’\n’;
"\\r" return ’\r’;
"\\f" return ’\f’;
"\\0" return ’\0’;

}

is equivalent to:

<ESC>"\\n" return ’\n’;
<ESC>"\\r" return ’\r’;
<ESC>"\\f" return ’\f’;
<ESC>"\\0" return ’\0’;

Start condition scopes may be nested.

Three routines are available for manipulating stacks of
start conditions:

vvooiidd yyyy__ppuusshh__ssttaattee((iinntt nneeww__ssttaattee))
pushes the current start condition onto the top of
the start condition stack and switches to _ n_e_w___s_t_a_t_e
as though you had used B BEEGGIINN nneeww__ssttaattee (recall that
start condition names are also integers).

vvooiidd yyyy__ppoopp__ssttaattee(())
pops the top of the stack and switches to it via
BBEEGGIINN..

iinntt y yyy__ttoopp__ssttaattee(())
returns the top of the stack without altering the
stack’s contents.

The start condition stack grows dynamically and so has no
built−in size limitation. If memory is exhausted, program
execution aborts.

Version 2.5 April 1995 22

FLEX(1) FLEX(1)

To use start condition stacks, your scanner must include a
%%oopptti ioonn ssttaacckk directive (see Options below).

MMUULLTTIIPPLLEE IINNPPUUTT BBUUFFFFEERRSS
Some scanners (such as those which support "include"
files) require reading from several input streams. As
_f_l_e_x scanners do a large amount of buffering, one cannot
control where the next input will be read from by simply
writing a Y YYY__IINNPPUUTT which is sensitive to the scanning con-
text. Y YYY__IINNPPUUTT is only called when the scanner reaches
the end of its buffer, which may be a long time after
scanning a statement such as an "include" which requires
switching the input source.

To negotiate these sorts of problems, _ f_l_e_x provides a
mechanism for creating and switching between multiple
input buffers. An input buffer is created by using:

YY_BUFFER_STATE yy_create_buffer(FILE *file, int size)

which takes a _ F_I_L_E pointer and a size and creates a buffer
associated with the given file and large enough to hold
_s_i_z_e characters (when in doubt, use Y YYY__BBUUFF__SSIIZZEE for the
size). It returns a Y YYY__BBUUFFFFEERR__SSTTAATTEE handle, which may
then be passed to other routines (see below). The
YYYY__BBUUFFFFEERR__SSTTAATTEE type is a pointer to an opaque s sttrruucctt
yyyy__bbuuffffeerr__ssttaattee structure, so you may safely initialize
YY_BUFFER_STATE variables to ((((YYYY__BBUUFFFFEERR__SSTTAATTEE)) 00)) if you
wish, and also refer to the opaque structure in order to
correctly declare input buffers in source files other than
that of your scanner. Note that the _ F_I_L_E pointer in the
call to y yyy__ccrreeaattee__bbuuffffeerr is only used as the value of _ y_y_i_n
seen by Y YYY__IINNPPUUTT;; if you redefine Y YYY__IINNPPUUTT so it no longer
uses _y_y_i_n_, then you can safely pass a nil _ F_I_L_E pointer to
yyyy__ccrreeaattee__bbuuffffeerr.. You select a particular buffer to scan
from using:

void yy_switch_to_buffer(YY_BUFFER_STATE new_buffer)

switches the scanner’s input buffer so subsequent tokens
will come from _ n_e_w___b_u_f_f_e_r_. Note that
yyyy__sswwiit tcchh__ttoo__bbuuffffeerr(()) may be used by yywrap() to set
things up for continued scanning, instead of opening a new
file and pointing _ y_y_i_n at it. Note also that switching
input sources via either y yyy__sswwiit tcchh__ttoo__bbuuffffeerr(()) or y yyywwrraapp(())
does _n_o_t change the start condition.

void yy_delete_buffer(YY_BUFFER_STATE buffer)

is used to reclaim the storage associated with a buffer.
(b buuffffeerr can be nil, in which case the routine does noth-
ing.) You can also clear the current contents of a buffer
using:

Version 2.5 April 1995 23

FLEX(1) FLEX(1)

void yy_flush_buffer(YY_BUFFER_STATE buffer)

This function discards the buffer’s contents, so the next
time the scanner attempts to match a token from the
buffer, it will first fill the buffer anew using Y YYY__IINNPPUUTT..

yyyy__nneeww__bbuuffffeerr(()) is an alias for y yyy__ccrreeaattee__bbuuffffeerr(()),, pro-
vided for compatibility with the C++ use of _ n_e_w and _d_e_l_e_t_e
for creating and destroying dynamic objects.

Finally, the Y YYY__CCUURRRREENNTT__BBUUFFFFEERR macro returns a
YYYY__BBUUFFFFEERR__SSTTAATTEE handle to the current buffer.

Here is an example of using these features for writing a
scanner which expands include files (the < <<<EEOOFF>>>> feature
is discussed below):

/* the "incl" state is used for picking up the name
* of an include file
*/

%x incl

%{
#define MAX_INCLUDE_DEPTH 10
YY_BUFFER_STATE include_stack[MAX_INCLUDE_DEPTH];
int include_stack_ptr = 0;
%}

%%
include BEGIN(incl);

[a−z]+ ECHO;
[^a−z\n]*\n? ECHO;

<incl>[\t]* /* eat the whitespace */
<incl>[^ \t\n]+ { /* got the include file name */

if (include_stack_ptr >= MAX_INCLUDE_DEPTH)
{
fprintf(stderr, "Includes nested too deeply");
exit(1);
}

include_stack[include_stack_ptr++] =
YY_CURRENT_BUFFER;

yyin = fopen(yytext, "r");

if (! yyin)
error(...);

yy_switch_to_buffer(
yy_create_buffer(yyin, YY_BUF_SIZE));

BEGIN(INITIAL);

Version 2.5 April 1995 24

FLEX(1) FLEX(1)

}

<<EOF>> {
if (−−include_stack_ptr < 0)

{
yyterminate();
}

else
{
yy_delete_buffer(YY_CURRENT_BUFFER);
yy_switch_to_buffer(

include_stack[include_stack_ptr]);
}

}

Three routines are available for setting up input buffers
for scanning in−memory strings instead of files. All of
them create a new input buffer for scanning the string,
and return a corresponding Y YYY__BBUUFFFFEERR__SSTTAATTEE handle (which
you should delete with y yyy__ddeelleettee__bbuuffffeerr(()) when done with
it). They also switch to the new buffer using
yyyy__sswwiit tcchh__ttoo__bbuuffffeerr(()),, so the next call to y yyylleexx(()) will
start scanning the string.

yyyy__ssccaann__ssttrriinngg((ccoonnsstt c chhaarr * *ssttrr))
scans a NUL−terminated string.

yyyy__ssccaann__bbyytteess((ccoonnsstt c chhaarr * *bbyytteess,, i inntt l leenn))
scans _ l_e_n bytes (including possibly NUL’s) starting
at location _ b_y_t_e_s_.

Note that both of these functions create and scan a _ c_o_p_y
of the string or bytes. (This may be desirable, since
yyyylleexx(()) modifies the contents of the buffer it is scan-
ning.) You can avoid the copy by using:

yyyy__ssccaann__bbuuffffeerr((cchhaarr * *bbaassee,, y yyy__ssiizzee__tt s siizzee))
which scans in place the buffer starting at _ b_a_s_e_,
consisting of _ s_i_z_e bytes, the last two bytes of
which _ m_u_s_t be Y YYY__EENNDD__OOFF__BBUUFFFFEERR__CCHHAARR (ASCII NUL).
These last two bytes are not scanned; thus, scan-
ning consists of b baassee[[00]] through b baassee[[ssiizzee−−22]],,
inclusive.

If you fail to set up _ b_a_s_e in this manner (i.e.,
forget the final two Y YYY__EENNDD__OOFF__BBUUFFFFEERR__CCHHAARR bytes),
then y yyy__ssccaann__bbuuffffeerr(()) returns a nil pointer instead
of creating a new input buffer.

The type y yyy__ssiizzee__tt is an integral type to which you
can cast an integer expression reflecting the size
of the buffer.

Version 2.5 April 1995 25

FLEX(1) FLEX(1)

EENNDD−−OOFF−−FFIILLEE RRUULLEESS
The special rule "<<EOF>>" indicates actions which are to
be taken when an end−of−file is encountered and yywrap()
returns non−zero (i.e., indicates no further files to pro-
cess). The action must finish by doing one of four
things:

− assigning _ y_y_i_n to a new input file (in previous
versions of flex, after doing the assignment you
had to call the special action Y YYY__NNEEWW__FFIILLEE;; this is
no longer necessary);

− executing a _ r_e_t_u_r_n statement;

− executing the special y yyytteerrmmiinnaattee(()) action;

− or, switching to a new buffer using
yyyy__sswwiit tcchh__ttoo__bbuuffffeerr(()) as shown in the example
above.

<<EOF>> rules may not be used with other patterns; they
may only be qualified with a list of start conditions. If
an unqualified <<EOF>> rule is given, it applies to _ a_l_l
start conditions which do not already have <<EOF>>
actions. To specify an <<EOF>> rule for only the initial
start condition, use

<INITIAL><<EOF>>

These rules are useful for catching things like unclosed
comments. An example:

%x quote
%%

...other rules for dealing with quotes...

<quote><<EOF>> {
error("unterminated quote");
yyterminate();
}

<<EOF>> {
if (*++filelist)

yyin = fopen(*filelist, "r");
else

yyterminate();
}

MMIISSCCEELLLLAANNEEOOUUSS MMAACCRROOSS
The macro Y YYY__UUSSEERR__AACCTTIIOONN can be defined to provide an
action which is always executed prior to the matched
rule’s action. For example, it could be #define’d to call

Version 2.5 April 1995 26

FLEX(1) FLEX(1)

a routine to convert yytext to lower−case. When
YYYY__UUSSEERR__AACCTTIIOONN is invoked, the variable _ y_y___a_c_t gives the
number of the matched rule (rules are numbered starting
with 1). Suppose you want to profile how often each of
your rules is matched. The following would do the trick:

#define YY_USER_ACTION ++ctr[yy_act]

where _c_t_r is an array to hold the counts for the different
rules. Note that the macro Y YYY__NNUUMM__RRUULLEESS gives the total
number of rules (including the default rule, even if you
use −−ss)),, so a correct declaration for _ c_t_r is:

int ctr[YY_NUM_RULES];

The macro Y YYY__UUSSEERR__IINNIITT may be defined to provide an action
which is always executed before the first scan (and before
the scanner’s internal initializations are done). For
example, it could be used to call a routine to read in a
data table or open a logging file.

The macro y yyy__sseett__iinntteerraacctti ivvee((iiss__iinntteerraacctti ivvee)) can be used
to control whether the current buffer is considered _ i_n_t_e_r_-
_a_c_t_i_v_e_. An interactive buffer is processed more slowly,
but must be used when the scanner’s input source is indeed
interactive to avoid problems due to waiting to fill
buffers (see the discussion of the − −II flag below). A non−
zero value in the macro invocation marks the buffer as
interactive, a zero value as non−interactive. Note that
use of this macro overrides % %oopptti ioonn aallwwaayyss−−iinntteerraacctti ivvee or
%%oopptti ioonn n neevveerr−−iinntteerraacctti ivvee (see Options below).
yyyy__sseett__iinntteerraacctti ivvee(()) must be invoked prior to beginning to
scan the buffer that is (or is not) to be considered
interactive.

The macro y yyy__sseett__bbooll((aatt__bbooll)) can be used to control
whether the current buffer’s scanning context for the next
token match is done as though at the beginning of a line.
A non−zero macro argument makes rules anchored with

The macro Y YYY__AATT__BBOOLL(()) returns true if the next token
scanned from the current buffer will have ’^’ rules
active, false otherwise.

In the generated scanner, the actions are all gathered in
one large switch statement and separated using Y YYY__BBRREEAAKK,,
which may be redefined. By default, it is simply a
"break", to separate each rule’s action from the following
rule’s. Redefining Y YYY__BBRREEAAKK allows, for example, C++
users to #define YY_BREAK to do nothing (while being very
careful that every rule ends with a "break" or a
"return"!) to avoid suffering from unreachable statement
warnings where because a rule’s action ends with "return",

Version 2.5 April 1995 27

FLEX(1) FLEX(1)

the YYYY__BBRREEAAKK is inaccessible.

VVAALLUUEESS AAVVAAIILLAABBLLEE TTOO TTHHEE UUSSEERR
This section summarizes the various values available to
the user in the rule actions.

− c chhaarr * *yyyytteexxtt holds the text of the current token.
It may be modified but not lengthened (you cannot
append characters to the end).

If the special directive % %aarrrraayy appears in the
first section of the scanner description, then
yyyytteexxtt is instead declared c chhaarr y yyytteexxtt[[YYYYLLMMAAXX]],,
where Y YYYLLMMAAXX is a macro definition that you can
redefine in the first section if you don’t like the
default value (generally 8KB). Using % %aarrrraayy
results in somewhat slower scanners, but the value
of y yyytteexxtt becomes immune to calls to _ i_n_p_u_t_(_) and
_u_n_p_u_t_(_)_, which potentially destroy its value when
yyyytteexxtt is a character pointer. The opposite of
%%aarrrraayy is % %ppooiinntteerr,, which is the default.

You cannot use % %aarrrraayy when generating C++ scanner
classes (the − −++ flag).

− i inntt y yyylleenngg holds the length of the current token.

− F FIILLEE * *yyyyiinn is the file which by default _ f_l_e_x reads
from. It may be redefined but doing so only makes
sense before scanning begins or after an EOF has
been encountered. Changing it in the midst of
scanning will have unexpected results since _ f_l_e_x
buffers its input; use y yyyrreessttaarrtt(()) instead. Once
scanning terminates because an end−of−file has been
seen, you can assign _ y_y_i_n at the new input file and
then call the scanner again to continue scanning.

− v vooiidd y yyyrreessttaarrtt((F FIILLEE **nneeww__ffi il lee)) may be called to
point _ y_y_i_n at the new input file. The switch−over
to the new file is immediate (any previously
buffered−up input is lost). Note that calling
yyyyrreessttaarrtt(()) with _ y_y_i_n as an argument thus throws
away the current input buffer and continues scan-
ning the same input file.

− F FIILLEE * *yyyyoouutt is the file to which E ECCHHOO actions are
done. It can be reassigned by the user.

− Y YYY__CCUURRRREENNTT__BBUUFFFFEERR returns a Y YYY__BBUUFFFFEERR__SSTTAATTEE handle
to the current buffer.

− Y YYY__SSTTAARRTT returns an integer value corresponding to
the current start condition. You can subsequently
use this value with B BEEGGIINN to return to that start

Version 2.5 April 1995 28

FLEX(1) FLEX(1)

condition.

IINNTTEERRFFAACCIINNGG WWIITTHH YYAACCCC
One of the main uses of _ f_l_e_x is as a companion to the _ y_a_c_c
parser−generator. _ y_a_c_c parsers expect to call a routine
named yyyylleexx(()) to find the next input token. The routine
is supposed to return the type of the next token as well
as putting any associated value in the global y yyyllvvaall. . To
use _f_l_e_x with _ y_a_c_c_, one specifies the − −dd option to _ y_a_c_c to
instruct it to generate the file y y..ttaabb..hh containing defi-
nitions of all the % %ttookkeennss appearing in the _ y_a_c_c input.
This file is then included in the _ f_l_e_x scanner. For exam-
ple, if one of the tokens is "TOK_NUMBER", part of the
scanner might look like:

%{
#include "y.tab.h"
%}

%%

[0−9]+ yylval = atoi(yytext); return TOK_NUMBER;

OOPPTTIIOONNSS
_f_l_e_x has the following options:

−−bb Generate backing−up information to _ l_e_x_._b_a_c_k_u_p_.
This is a list of scanner states which require
backing up and the input characters on which they
do so. By adding rules one can remove backing−up
states. If _ a_l_l backing−up states are eliminated
and − −CCff or − −CCFF is used, the generated scanner will
run faster (see the − −pp flag). Only users who wish
to squeeze every last cycle out of their scanners
need worry about this option. (See the section on
Performance Considerations below.)

−−cc is a do−nothing, deprecated option included for
POSIX compliance.

−−dd makes the generated scanner run in _ d_e_b_u_g mode.
Whenever a pattern is recognized and the global
yyyy__ffl leexx__ddeebbuugg is non−zero (which is the default),
the scanner will write to _ s_t_d_e_r_r a line of the
form:

−−accepting rule at line 53 ("the matched text")

The line number refers to the location of the rule
in the file defining the scanner (i.e., the file
that was fed to flex). Messages are also generated
when the scanner backs up, accepts the default
rule, reaches the end of its input buffer (or

Version 2.5 April 1995 29

FLEX(1) FLEX(1)

encounters a NUL; at this point, the two look the
same as far as the scanner’s concerned), or reaches
an end−of−file.

−−ff specifies _ f_a_s_t _ s_c_a_n_n_e_r_. No table compression is
done and stdio is bypassed. The result is large
but fast. This option is equivalent to − −CCffrr (see
below).

−−hh generates a "help" summary of _ f_l_e_x_’_s options to
_s_t_d_o_u_t and then exits. − −?? and − −−−hheellpp are synonyms
for − −hh..

−−ii instructs _ f_l_e_x to generate a _ c_a_s_e_−_i_n_s_e_n_s_i_t_i_v_e scan-
ner. The case of letters given in the _ f_l_e_x input
patterns will be ignored, and tokens in the input
will be matched regardless of case. The matched
text given in _ y_y_t_e_x_t will have the preserved case
(i.e., it will not be folded).

−−ll turns on maximum compatibility with the original
AT&T _l_e_x implementation. Note that this does not
mean _f_u_l_l compatibility. Use of this option costs
a considerable amount of performance, and it cannot
be used with the − −++,, −−ff,, −−FF,, −−CCff,, or − −CCFF options.
For details on the compatibilities it provides, see
the section "Incompatibilities With Lex And POSIX"
below. This option also results in the name
YYYY__FFLLEEXX__LLEEXX__CCOOMMPPAATT being #define’d in the generated
scanner.

−−nn is another do−nothing, deprecated option included
only for POSIX compliance.

−−pp generates a performance report to stderr. The
report consists of comments regarding features of
the _ f_l_e_x input file which will cause a serious loss
of performance in the resulting scanner. If you
give the flag twice, you will also get comments
regarding features that lead to minor performance
losses.

Note that the use of R REEJJEECCTT,, %%oopptti ioonn yyyylli inneennoo,, and
variable trailing context (see the Deficiencies /
Bugs section below) entails a substantial perfor-
mance penalty; use of _ y_y_m_o_r_e_(_)_, the ^ ^ operator, and
the − −II flag entail minor performance penalties.

−−ss causes the _ d_e_f_a_u_l_t _ r_u_l_e (that unmatched scanner
input is echoed to _ s_t_d_o_u_t_) to be suppressed. If
the scanner encounters input that does not match
any of its rules, it aborts with an error. This
option is useful for finding holes in a scanner’s
rule set.

Version 2.5 April 1995 30

FLEX(1) FLEX(1)

−−tt instructs _ f_l_e_x to write the scanner it generates to
standard output instead of l leexx..yyyy..cc..

−−vv specifies that _ f_l_e_x should write to _ s_t_d_e_r_r a sum-
mary of statistics regarding the scanner it gener-
ates. Most of the statistics are meaningless to
the casual _ f_l_e_x user, but the first line identifies
the version of _ f_l_e_x (same as reported by − −VV)),, and
the next line the flags used when generating the
scanner, including those that are on by default.

−−ww suppresses warning messages.

−−BB instructs _ f_l_e_x to generate a _ b_a_t_c_h scanner, the
opposite of _ i_n_t_e_r_a_c_t_i_v_e scanners generated by − −II
(see below). In general, you use − −BB when you are
_c_e_r_t_a_i_n that your scanner will never be used inter-
actively, and you want to squeeze a _ l_i_t_t_l_e more
performance out of it. If your goal is instead to
squeeze out a _ l_o_t more performance, you should be
using the − −CCff or − −CCFF options (discussed below),
which turn on − −BB automatically anyway.

−−FF specifies that the _ f_a_s_t scanner table representa-
tion should be used (and stdio bypassed). This
representation is about as fast as the full table
representation ((−−ff)),, and for some sets of patterns
will be considerably smaller (and for others,
larger). In general, if the pattern set contains
both "keywords" and a catch−all, "identifier" rule,
such as in the set:

"case" return TOK_CASE;
"switch" return TOK_SWITCH;
...
"default" return TOK_DEFAULT;
[a−z]+ return TOK_ID;

then you’re better off using the full table repre-
sentation. If only the "identifier" rule is pre-
sent and you then use a hash table or some such to
detect the keywords, you’re better off using − −FF..

This option is equivalent to − −CCFFrr (see below). It
cannot be used with − −++..

−−II instructs _ f_l_e_x to generate an _ i_n_t_e_r_a_c_t_i_v_e scanner.
An interactive scanner is one that only looks ahead
to decide what token has been matched if it abso-
lutely must. It turns out that always looking one
extra character ahead, even if the scanner has
already seen enough text to disambiguate the cur-
rent token, is a bit faster than only looking ahead
when necessary. But scanners that always look

Version 2.5 April 1995 31

FLEX(1) FLEX(1)

ahead give dreadful interactive performance; for
example, when a user types a newline, it is not
recognized as a newline token until they enter
_a_n_o_t_h_e_r token, which often means typing in another
whole line.

_F_l_e_x scanners default to _ i_n_t_e_r_a_c_t_i_v_e unless you use
the − −CCff or − −CCFF table−compression options (see
below). That’s because if you’re looking for high−
performance you should be using one of these
options, so if you didn’t, _ f_l_e_x assumes you’d
rather trade off a bit of run−time performance for
intuitive interactive behavior. Note also that you
_c_a_n_n_o_t use − −II in conjunction with − −CCff or − −CCFF..
Thus, this option is not really needed; it is on by
default for all those cases in which it is allowed.

You can force a scanner to _ n_o_t be interactive by
using − −BB (see above).

−−LL instructs _ f_l_e_x not to generate # #lli innee directives.
Without this option, _ f_l_e_x peppers the generated
scanner with #line directives so error messages in
the actions will be correctly located with respect
to either the original _ f_l_e_x input file (if the
errors are due to code in the input file), or
lleexx..yyyy..cc (if the errors are _ f_l_e_x_’_s fault −− you
should report these sorts of errors to the email
address given below).

−−TT makes _ f_l_e_x run in _ t_r_a_c_e mode. It will generate a
lot of messages to _ s_t_d_e_r_r concerning the form of
the input and the resultant non−deterministic and
deterministic finite automata. This option is
mostly for use in maintaining _ f_l_e_x_.

−−VV prints the version number to _ s_t_d_o_u_t and exits.
−−−−vveerrssiioonn is a synonym for − −VV..

−−77 instructs _ f_l_e_x to generate a 7−bit scanner, i.e.,
one which can only recognized 7−bit characters in
its input. The advantage of using − −77 is that the
scanner’s tables can be up to half the size of
those generated using the − −88 option (see below).
The disadvantage is that such scanners often hang
or crash if their input contains an 8−bit charac-
ter.

Note, however, that unless you generate your scan-
ner using the − −CCff or − −CCFF table compression options,
use of − −77 will save only a small amount of table
space, and make your scanner considerably less
portable. _ F_l_e_x_’_s default behavior is to generate
an 8−bit scanner unless you use the − −CCff or − −CCFF,, in

Version 2.5 April 1995 32

FLEX(1) FLEX(1)

which case _ f_l_e_x defaults to generating 7−bit scan-
ners unless your site was always configured to gen-
erate 8−bit scanners (as will often be the case
with non−USA sites). You can tell whether flex
generated a 7−bit or an 8−bit scanner by inspecting
the flag summary in the − −vv output as described
above.

Note that if you use − −CCffee or − −CCFFee (those table com-
pression options, but also using equivalence
classes as discussed see below), flex still
defaults to generating an 8−bit scanner, since usu-
ally with these compression options full 8−bit
tables are not much more expensive than 7−bit
tables.

−−88 instructs _ f_l_e_x to generate an 8−bit scanner, i.e.,
one which can recognize 8−bit characters. This
flag is only needed for scanners generated using
−−CCff or − −CCFF,, as otherwise flex defaults to generat-
ing an 8−bit scanner anyway.

See the discussion of − −77 above for flex’s default
behavior and the tradeoffs between 7−bit and 8−bit
scanners.

−−++ specifies that you want flex to generate a C++
scanner class. See the section on Generating C++
Scanners below for details.

−−CC[[aaeeffFFmmrr]]
controls the degree of table compression and, more
generally, trade−offs between small scanners and
fast scanners.

−−CCaa ("align") instructs flex to trade off larger
tables in the generated scanner for faster perfor-
mance because the elements of the tables are better
aligned for memory access and computation. On some
RISC architectures, fetching and manipulating long-
words is more efficient than with smaller−sized
units such as shortwords. This option can double
the size of the tables used by your scanner.

−−CCee directs _ f_l_e_x to construct _ e_q_u_i_v_a_l_e_n_c_e _c_l_a_s_s_e_s_,
i.e., sets of characters which have identical lexi-
cal properties (for example, if the only appearance
of digits in the _ f_l_e_x input is in the character
class "[0−9]" then the digits ’0’, ’1’, ..., ’9’
will all be put in the same equivalence class).
Equivalence classes usually give dramatic reduc-
tions in the final table/object file sizes (typi-
cally a factor of 2−5) and are pretty cheap perfor-
mance−wise (one array look−up per character

Version 2.5 April 1995 33

FLEX(1) FLEX(1)

scanned).

−−CCff specifies that the _ f_u_l_l scanner tables should
be generated − _ f_l_e_x should not compress the tables
by taking advantages of similar transition func-
tions for different states.

−−CCFF specifies that the alternate fast scanner rep-
resentation (described above under the − −FF flag)
should be used. This option cannot be used with
−−++..

−−CCmm directs _ f_l_e_x to construct _ m_e_t_a_−_e_q_u_i_v_a_l_e_n_c_e
_c_l_a_s_s_e_s_, which are sets of equivalence classes (or
characters, if equivalence classes are not being
used) that are commonly used together. Meta−equiv-
alence classes are often a big win when using com-
pressed tables, but they have a moderate perfor-
mance impact (one or two "if" tests and one array
look−up per character scanned).

−−CCrr causes the generated scanner to _ b_y_p_a_s_s use of
the standard I/O library (stdio) for input.
Instead of calling f frreeaadd(()) or g geettcc(()),, the scanner
will use the r reeaadd(()) system call, resulting in a
performance gain which varies from system to sys-
tem, but in general is probably negligible unless
you are also using − −CCff or − −CCFF.. Using − −CCrr can cause
strange behavior if, for example, you read from
_y_y_i_n using stdio prior to calling the scanner
(because the scanner will miss whatever text your
previous reads left in the stdio input buffer).

−−CCrr has no effect if you define Y YYY__IINNPPUUTT (see The
Generated Scanner above).

A lone − −CC specifies that the scanner tables should
be compressed but neither equivalence classes nor
meta−equivalence classes should be used.

The options − −CCff or − −CCFF and − −CCmm do not make sense
together − there is no opportunity for meta−equiva-
lence classes if the table is not being compressed.
Otherwise the options may be freely mixed, and are
cumulative.

The default setting is − −CCeemm,, which specifies that
_f_l_e_x should generate equivalence classes and meta−
equivalence classes. This setting provides the
highest degree of table compression. You can trade
off faster−executing scanners at the cost of larger
tables with the following generally being true:

slowest & smallest

Version 2.5 April 1995 34

FLEX(1) FLEX(1)

−Cem
−Cm
−Ce
−C
−C{f,F}e
−C{f,F}
−C{f,F}a

fastest & largest

Note that scanners with the smallest tables are
usually generated and compiled the quickest, so
during development you will usually want to use the
default, maximal compression.

−−CCffee is often a good compromise between speed and
size for production scanners.

−−oooouuttppuutt
directs flex to write the scanner to the file o ouutt--
ppuutt instead of l leexx..yyyy..cc.. If you combine − −oo with
the − −tt option, then the scanner is written to _ s_t_d_-
_o_u_t but its # #lli innee directives (see the − −LL option
above) refer to the file o ouuttppuutt..

−−PPpprreeffi ixx
changes the default _ y_y prefix used by _ f_l_e_x for all
globally−visible variable and function names to
instead be _ p_r_e_f_i_x_. For example, − −PPffoooo changes the
name of y yyytteexxtt to f fooootteexxtt.. It also changes the
name of the default output file from l leexx..yyyy..cc to
lleexx..ffoooo..cc.. Here are all of the names affected:

yy_create_buffer
yy_delete_buffer
yy_flex_debug
yy_init_buffer
yy_flush_buffer
yy_load_buffer_state
yy_switch_to_buffer
yyin
yyleng
yylex
yylineno
yyout
yyrestart
yytext
yywrap

(If you are using a C++ scanner, then only y yyywwrraapp
and yyyyFFlleexxLLeexxeerr are affected.) Within your scanner
itself, you can still refer to the global variables
and functions using either version of their name;
but externally, they have the modified name.

Version 2.5 April 1995 35

FLEX(1) FLEX(1)

This option lets you easily link together multiple
_f_l_e_x programs into the same executable. Note,
though, that using this option also renames
yyyywwrraapp(()),, so you now _ m_u_s_t either provide your own
(appropriately−named) version of the routine for
your scanner, or use % %oopptti ioonn nnooyyyywwrraapp,, as linking
with − −llf fl l no longer provides one for you by
default.

−−SSsskkeelleettoonn__ffi il lee
overrides the default skeleton file from which _ f_l_e_x
constructs its scanners. You’ll never need this
option unless you are doing _ f_l_e_x maintenance or
development.

_f_l_e_x also provides a mechanism for controlling options
within the scanner specification itself, rather than from
the flex command−line. This is done by including % %oopptti ioonn
directives in the first section of the scanner specifica-
tion. You can specify multiple options with a single
%%oopptti ioonn directive, and multiple directives in the first
section of your flex input file.

Most options are given simply as names, optionally pre-
ceded by the word "no" (with no intervening whitespace) to
negate their meaning. A number are equivalent to flex
flags or their negation:

7bit −7 option
8bit −8 option
align −Ca option
backup −b option
batch −B option
c++ −+ option

caseful or
case−sensitive opposite of −i (default)

case−insensitive or
caseless −i option

debug −d option
default opposite of −s option
ecs −Ce option
fast −F option
full −f option
interactive −I option
lex−compat −l option
meta−ecs −Cm option
perf−report −p option
read −Cr option
stdout −t option
verbose −v option
warn opposite of −w option

Version 2.5 April 1995 36

FLEX(1) FLEX(1)

(use "%option nowarn" for −w)

array equivalent to "%array"
pointer equivalent to "%pointer" (default)

Some %%oopptti ioonn’’ss provide features otherwise not available:

aallwwaayyss−−iinntteerraacctti ivvee
instructs flex to generate a scanner which always
considers its input "interactive". Normally, on
each new input file the scanner calls i issaattttyy(()) in
an attempt to determine whether the scanner’s input
source is interactive and thus should be read a
character at a time. When this option is used,
however, then no such call is made.

mmaaiinn directs flex to provide a default m maaiinn(()) program
for the scanner, which simply calls y yyylleexx(()).. This
option implies n nooyyyywwrraapp (see below).

nneevveerr−−iinntteerraacctti ivvee
instructs flex to generate a scanner which never
considers its input "interactive" (again, no call
made to i issaattttyy(()))).. This is the opposite of a allwwaayyss−−
iinntteerraacctti ivvee..

ssttaacckk enables the use of start condition stacks (see
Start Conditions above).

ssttddiinniit t
if set (i.e., % %oopptti ioonn ssttddiinniit t)) initializes _ y_y_i_n and
_y_y_o_u_t to _ s_t_d_i_n and _ s_t_d_o_u_t_, instead of the default
of _ n_i_l_. Some existing _ l_e_x programs depend on this
behavior, even though it is not compliant with ANSI
C, which does not require _ s_t_d_i_n and _ s_t_d_o_u_t to be
compile−time constant.

yyyylli inneennoo
directs _ f_l_e_x to generate a scanner that maintains
the number of the current line read from its input
in the global variable y yyylli inneennoo.. This option is
implied by % %oopptti ioonn l leexx−−ccoommppaatt..

yyyywwrraapp if unset (i.e., % %oopptti ioonn nnooyyyywwrraapp)),, makes the scan-
ner not call y yyywwrraapp(()) upon an end−of−file, but sim-
ply assume that there are no more files to scan
(until the user points _ y_y_i_n at a new file and calls
yyyylleexx(()) again).

_f_l_e_x scans your rule actions to determine whether you use
the RREEJJEECCTT or y yyymmoorree(()) features. The r reejjeecctt and y yyymmoorree
options are available to override its decision as to
whether you use the options, either by setting them (e.g.,
%%oopptti ioonn rreejjeecctt)) to indicate the feature is indeed used, or

Version 2.5 April 1995 37

FLEX(1) FLEX(1)

unsetting them to indicate it actually is not used (e.g.,
%%oopptti ioonn nnooyyyymmoorree))..

Three options take string−delimited values, offset with
’=’:

%option outfile="ABC"

is equivalent to − −ooAABBCC,, and

%option prefix="XYZ"

is equivalent to − −PPXXYYZZ.. Finally,

%option yyclass="foo"

only applies when generating a C++ scanner (− −++ option).
It informs _ f_l_e_x that you have derived f foooo as a subclass of
yyyyFFlleexxLLeexxeerr,, so _ f_l_e_x will place your actions in the member
function f foooo::::yyyylleexx(()) instead of y yyyFFlleexxLLeexxeerr::::yyyylleexx(()).. It
also generates a y yyyFFlleexxLLeexxeerr::::yyyylleexx(()) member function that
emits a run−time error (by invoking y yyyFFlleexxLLeexxeerr::::LLeexxeerr--
EErrrroorr(()))) if called. See Generating C++ Scanners, below,
for additional information.

A number of options are available for lint purists who
want to suppress the appearance of unneeded routines in
the generated scanner. Each of the following, if unset
(e.g., % %oopptti ioonn nnoouunnppuutt), results in the corresponding
routine not appearing in the generated scanner:

input, unput
yy_push_state, yy_pop_state, yy_top_state
yy_scan_buffer, yy_scan_bytes, yy_scan_string

(though y yyy__ppuusshh__ssttaattee(()) and friends won’t appear anyway
unless you use % %oopptti ioonn ssttaacckk))..

PPEERRFFOORRMMAANNCCEE CCOONNSSIIDDEERRAATTIIOONNSS
The main design goal of _ f_l_e_x is that it generate high−per-
formance scanners. It has been optimized for dealing well
with large sets of rules. Aside from the effects on scan-
ner speed of the table compression − −CC options outlined
above, there are a number of options/actions which degrade
performance. These are, from most expensive to least:

REJECT
%option yylineno
arbitrary trailing context

pattern sets that require backing up
%array
%option interactive
%option always−interactive

Version 2.5 April 1995 38

FLEX(1) FLEX(1)

’^’ beginning−of−line operator
yymore()

with the first three all being quite expensive and the
last two being quite cheap. Note also that u unnppuutt(()) is
implemented as a routine call that potentially does quite
a bit of work, while y yyylleessss(()) is a quite−cheap macro; so
if just putting back some excess text you scanned, use
yyyylleessss(())..

RREEJJEECCTT should be avoided at all costs when performance is
important. It is a particularly expensive option.

Getting rid of backing up is messy and often may be an
enormous amount of work for a complicated scanner. In
principal, one begins by using the − −bb flag to generate a
_l_e_x_._b_a_c_k_u_p file. For example, on the input

%%
foo return TOK_KEYWORD;
foobar return TOK_KEYWORD;

the file looks like:

State #6 is non−accepting −
associated rule line numbers:

2 3
out−transitions: [o]
jam−transitions: EOF [\001−n p−\177]

State #8 is non−accepting −
associated rule line numbers:

3
out−transitions: [a]
jam−transitions: EOF [\001−‘ b−\177]

State #9 is non−accepting −
associated rule line numbers:

3
out−transitions: [r]
jam−transitions: EOF [\001−q s−\177]

Compressed tables always back up.

The first few lines tell us that there’s a scanner state
in which it can make a transition on an ’o’ but not on any
other character, and that in that state the currently
scanned text does not match any rule. The state occurs
when trying to match the rules found at lines 2 and 3 in
the input file. If the scanner is in that state and then
reads something other than an ’o’, it will have to back up
to find a rule which is matched. With a bit of head-
scratching one can see that this must be the state it’s in
when it has seen "fo". When this has happened, if

Version 2.5 April 1995 39

FLEX(1) FLEX(1)

anything other than another ’o’ is seen, the scanner will
have to back up to simply match the ’f’ (by the default
rule).

The comment regarding State #8 indicates there’s a problem
when "foob" has been scanned. Indeed, on any character
other than an ’a’, the scanner will have to back up to
accept "foo". Similarly, the comment for State #9 con-
cerns when "fooba" has been scanned and an ’r’ does not
follow.

The final comment reminds us that there’s no point going
to all the trouble of removing backing up from the rules
unless we’re using − −CCff or − −CCFF,, since there’s no perfor-
mance gain doing so with compressed scanners.

The way to remove the backing up is to add "error" rules:

%%
foo return TOK_KEYWORD;
foobar return TOK_KEYWORD;

fooba |
foob |
fo {

/* false alarm, not really a keyword */
return TOK_ID;
}

Eliminating backing up among a list of keywords can also
be done using a "catch−all" rule:

%%
foo return TOK_KEYWORD;
foobar return TOK_KEYWORD;

[a−z]+ return TOK_ID;

This is usually the best solution when appropriate.

Backing up messages tend to cascade. With a complicated
set of rules it’s not uncommon to get hundreds of mes-
sages. If one can decipher them, though, it often only
takes a dozen or so rules to eliminate the backing up
(though it’s easy to make a mistake and have an error rule
accidentally match a valid token. A possible future _ f_l_e_x
feature will be to automatically add rules to eliminate
backing up).

It’s important to keep in mind that you gain the benefits
of eliminating backing up only if you eliminate _ e_v_e_r_y
instance of backing up. Leaving just one means you gain
nothing.

Version 2.5 April 1995 40

FLEX(1) FLEX(1)

_V_a_r_i_a_b_l_e trailing context (where both the leading and
trailing parts do not have a fixed length) entails almost
the same performance loss as R REEJJEECCTT (i.e., substantial).
So when possible a rule like:

%%
mouse|rat/(cat|dog) run();

is better written:

%%
mouse/cat|dog run();
rat/cat|dog run();

or as

%%
mouse|rat/cat run();
mouse|rat/dog run();

Note that here the special ’|’ action does _ n_o_t provide any
savings, and can even make things worse (see Deficiencies
/ Bugs below).

Another area where the user can increase a scanner’s per-
formance (and one that’s easier to implement) arises from
the fact that the longer the tokens matched, the faster
the scanner will run. This is because with long tokens
the processing of most input characters takes place in the
(short) inner scanning loop, and does not often have to go
through the additional work of setting up the scanning
environment (e.g., y yyytteexxtt)) for the action. Recall the
scanner for C comments:

%x comment
%%

int line_num = 1;

"/*" BEGIN(comment);

<comment>[^*\n]*
<comment>"*"+[^*/\n]*
<comment>\n ++line_num;
<comment>"*"+"/" BEGIN(INITIAL);

This could be sped up by writing it as:

%x comment
%%

int line_num = 1;

"/*" BEGIN(comment);

<comment>[^*\n]*

Version 2.5 April 1995 41

FLEX(1) FLEX(1)

<comment>[^*\n]*\n ++line_num;
<comment>"*"+[^*/\n]*
<comment>"*"+[^*/\n]*\n ++line_num;
<comment>"*"+"/" BEGIN(INITIAL);

Now instead of each newline requiring the processing of
another action, recognizing the newlines is "distributed"
over the other rules to keep the matched text as long as
possible. Note that _ a_d_d_i_n_g rules does _ n_o_t slow down the
scanner! The speed of the scanner is independent of the
number of rules or (modulo the considerations given at the
beginning of this section) how complicated the rules are
with regard to operators such as ’*’ and ’|’.

A final example in speeding up a scanner: suppose you want
to scan through a file containing identifiers and key-
words, one per line and with no other extraneous charac-
ters, and recognize all the keywords. A natural first
approach is:

%%
asm |
auto |
break |
... etc ...
volatile |
while /* it’s a keyword */

.|\n /* it’s not a keyword */

To eliminate the back−tracking, introduce a catch−all
rule:

%%
asm |
auto |
break |
... etc ...
volatile |
while /* it’s a keyword */

[a−z]+ |
.|\n /* it’s not a keyword */

Now, if it’s guaranteed that there’s exactly one word per
line, then we can reduce the total number of matches by a
half by merging in the recognition of newlines with that
of the other tokens:

%%
asm\n |
auto\n |
break\n |
... etc ...

Version 2.5 April 1995 42

FLEX(1) FLEX(1)

volatile\n |
while\n /* it’s a keyword */

[a−z]+\n |
.|\n /* it’s not a keyword */

One has to be careful here, as we have now reintroduced
backing up into the scanner. In particular, while _ w_e know
that there will never be any characters in the input
stream other than letters or newlines, _ f_l_e_x can’t figure
this out, and it will plan for possibly needing to back up
when it has scanned a token like "auto" and then the next
character is something other than a newline or a letter.
Previously it would then just match the "auto" rule and be
done, but now it has no "auto" rule, only a "auto\n" rule.
To eliminate the possibility of backing up, we could
either duplicate all rules but without final newlines, or,
since we never expect to encounter such an input and
therefore don’t how it’s classified, we can introduce one
more catch−all rule, this one which doesn’t include a new-
line:

%%
asm\n |
auto\n |
break\n |
... etc ...
volatile\n |
while\n /* it’s a keyword */

[a−z]+\n |
[a−z]+ |
.|\n /* it’s not a keyword */

Compiled with − −CCff,, this is about as fast as one can get a
_f_l_e_x scanner to go for this particular problem.

A final note: _ f_l_e_x is slow when matching NUL’s, particu-
larly when a token contains multiple NUL’s. It’s best to
write rules which match _ s_h_o_r_t amounts of text if it’s
anticipated that the text will often include NUL’s.

Another final note regarding performance: as mentioned
above in the section How the Input is Matched, dynamically
resizing y yyytteexxtt to accommodate huge tokens is a slow pro-
cess because it presently requires that the (huge) token
be rescanned from the beginning. Thus if performance is
vital, you should attempt to match "large" quantities of
text but not "huge" quantities, where the cutoff between
the two is at about 8K characters/token.

GGEENNEERRAATTIINNGG CC++++ SSCCAANNNNEERRSS
_f_l_e_x provides two different ways to generate scanners for
use with C++. The first way is to simply compile a

Version 2.5 April 1995 43

FLEX(1) FLEX(1)

scanner generated by _ f_l_e_x using a C++ compiler instead of
a C compiler. You should not encounter any compilations
errors (please report any you find to the email address
given in the Author section below). You can then use C++
code in your rule actions instead of C code. Note that
the default input source for your scanner remains _ y_y_i_n_,
and default echoing is still done to _ y_y_o_u_t_. Both of these
remain _ F_I_L_E _* variables and not C++ _ s_t_r_e_a_m_s_.

You can also use _ f_l_e_x to generate a C++ scanner class,
using the − −++ option (or, equivalently, % %oopptti ioonn cc++++)),, which
is automatically specified if the name of the flex exe-
cutable ends in a ’+’, such as _ f_l_e_x_+_+_. When using this
option, flex defaults to generating the scanner to the
file l leexx..yyyy..cccc instead of l leexx..yyyy..cc.. The generated scanner
includes the header file _ F_l_e_x_L_e_x_e_r_._h_, which defines the
interface to two C++ classes.

The first class, F FlleexxLLeexxeerr,, provides an abstract base
class defining the general scanner class interface. It
provides the following member functions:

ccoonnsstt c chhaarr** YYYYTTeexxtt(())
returns the text of the most recently matched
token, the equivalent of y yyytteexxtt..

iinntt YYYYLLeenngg(())
returns the length of the most recently matched
token, the equivalent of y yyylleenngg..

iinntt l li inneennoo(()) ccoonnsstt
returns the current input line number (see % %oopptti ioonn
yyyylli inneennoo)),, or 1 1 if % %oopptti ioonn yyyylli inneennoo was not used.

vvooiidd sseett__ddeebbuugg((i inntt f fl laagg))
sets the debugging flag for the scanner, equivalent
to assigning to y yyy__ffl leexx__ddeebbuugg (see the Options sec-
tion above). Note that you must build the scanner
using %%oopptti ioonn ddeebbuugg to include debugging informa-
tion in it.

iinntt ddeebbuugg(()) ccoonnsstt
returns the current setting of the debugging flag.

Also provided are member functions equivalent to
yyyy__sswwiit tcchh__ttoo__bbuuffffeerr(()),, y yyy__ccrreeaattee__bbuuffffeerr(()) (though the
first argument is an i issttrreeaamm** object pointer and not a
FFIILLEE**)),, y yyy__ffl luusshh__bbuuffffeerr(()),, y yyy__ddeelleettee__bbuuffffeerr(()),, and
yyyyrreessttaarrtt(()) (again, the first argument is a i issttrreeaamm**
object pointer).

The second class defined in _ F_l_e_x_L_e_x_e_r_._h is y yyyFFlleexxLLeexxeerr,,
which is derived from F FlleexxLLeexxeerr.. It defines the following
additional member functions:

Version 2.5 April 1995 44

FLEX(1) FLEX(1)

yyyyFFlleexxLLeexxeerr((i issttrreeaamm** aarrgg__yyyyiinn == 00,, oossttrreeaamm** aarrgg__yyyyoouutt == 00
))
constructs a y yyyFFlleexxLLeexxeerr object using the given
streams for input and output. If not specified,
the streams default to c ciinn and c coouutt,, respectively.

vviirrttuuaall i inntt y yyylleexx(())
performs the same role is y yyylleexx(()) does for ordinary
flex scanners: it scans the input stream, consuming
tokens, until a rule’s action returns a value. If
you derive a subclass S S from y yyyFFlleexxLLeexxeerr and want
to access the member functions and variables of S S
inside y yyylleexx(()),, then you need to use % %oopptti ioonn
yyyyccllaassss==""SS"" to inform _ f_l_e_x that you will be using
that subclass instead of y yyyFFlleexxLLeexxeerr.. In this
case, rather than generating y yyyFFlleexxLLeexxeerr::::yyyylleexx(()),,
_f_l_e_x generates S S::::yyyylleexx(()) (and also generates a
dummy y yyyFFlleexxLLeexxeerr::::yyyylleexx(()) that calls
yyyyFFlleexxLLeexxeerr::::LLeexxeerrEErrrroorr(()) if called).

vviirrttuuaall v vooiidd sswwiit tcchh__ssttrreeaammss((iissttrreeaamm** nneeww__iinn == 00,,
oossttrreeaamm** nneeww__oouutt == 00)) reassigns y yyyiinn to n neeww__iinn (if
non−nil) and y yyyoouutt to n neeww__oouutt (ditto), deleting the
previous input buffer if y yyyiinn is reassigned.

iinntt y yyylleexx((i issttrreeaamm** nneeww__iinn,, oossttrreeaamm** nneeww__oouutt == 00))
first switches the input streams via
sswwiit tcchh__ssttrreeaammss((n neeww__iinn,, nneeww__oouutt)) and then returns
the value of y yyylleexx(())..

In addition, y yyyFFlleexxLLeexxeerr defines the following protected
virtual functions which you can redefine in derived
classes to tailor the scanner:

vviirrttuuaall i inntt LLeexxeerrIInnppuutt((cchhaarr** bbuuff,, i inntt mmaaxx__ssiizzee))
reads up to m maaxx__ssiizzee characters into b buuff and
returns the number of characters read. To indicate
end−of−input, return 0 characters. Note that
"interactive" scanners (see the − −BB and −−II flags)
define the macro Y YYY__IINNTTEERRAACCTTIIVVEE.. If you redefine
LLeexxeerrIInnppuutt(()) and need to take different actions
depending on whether or not the scanner might be
scanning an interactive input source, you can test
for the presence of this name via # #iif fddeeff..

vviirrttuuaall v vooiidd LLeexxeerrOOuuttppuutt((ccoonnsstt c chhaarr** bbuuff,, i inntt s siizzee))
writes out s siizzee characters from the buffer b buuff,,
which, while NUL−terminated, may also contain
"internal" NUL’s if the scanner’s rules can match
text with NUL’s in them.

vviirrttuuaall v vooiidd LLeexxeerrEErrrroorr((ccoonnsstt c chhaarr** mmssgg))
reports a fatal error message. The default version
of this function writes the message to the stream

Version 2.5 April 1995 45

FLEX(1) FLEX(1)

cceerrrr and exits.

Note that a y yyyFFlleexxLLeexxeerr object contains its _ e_n_t_i_r_e scan-
ning state. Thus you can use such objects to create reen-
trant scanners. You can instantiate multiple instances of
the same y yyyFFlleexxLLeexxeerr class, and you can also combine mul-
tiple C++ scanner classes together in the same program
using the − −PP option discussed above.

Finally, note that the % %aarrrraayy feature is not available to
C++ scanner classes; you must use % %ppooiinntteerr (the default).

Here is an example of a simple C++ scanner:

// An example of using the flex C++ scanner class.

%{
int mylineno = 0;
%}

string \"[^\n"]+\"

ws [\t]+

alpha [A−Za−z]
dig [0−9]
name ({alpha}|{dig}|\$)({alpha}|{dig}|[_.\−/$])*
num1 [−+]?{dig}+\.?([eE][−+]?{dig}+)?
num2 [−+]?{dig}*\.{dig}+([eE][−+]?{dig}+)?
number {num1}|{num2}

%%

{ws} /* skip blanks and tabs */

"/*" {
int c;

while((c = yyinput()) != 0)
{
if(c == ’\n’)

++mylineno;

else if(c == ’*’)
{
if((c = yyinput()) == ’/’)

break;
else

unput(c);
}

}
}

{number} cout << "number " << YYText() << ’\n’;

Version 2.5 April 1995 46

FLEX(1) FLEX(1)

\n mylineno++;

{name} cout << "name " << YYText() << ’\n’;

{string} cout << "string " << YYText() << ’\n’;

%%

int main(int /* argc */, char** /* argv */)
{
FlexLexer* lexer = new yyFlexLexer;
while(lexer−>yylex() != 0)

;
return 0;
}

If you want to create multiple (different) lexer classes,
you use the − −PP flag (or the p prreeffi ixx== option) to rename each
yyyyFFlleexxLLeexxeerr to some other x xxxFFlleexxLLeexxeerr.. You then can
include < <FFlleexxLLeexxeerr..hh>> in your other sources once per lexer
class, first renaming y yyyFFlleexxLLeexxeerr as follows:

#undef yyFlexLexer
#define yyFlexLexer xxFlexLexer
#include <FlexLexer.h>

#undef yyFlexLexer
#define yyFlexLexer zzFlexLexer
#include <FlexLexer.h>

if, for example, you used % %oopptti ioonn pprreeffi ixx==""xxxx"" for one of
your scanners and % %oopptti ioonn pprreeffi ixx==""zzzz"" for the other.

IMPORTANT: the present form of the scanning class is
_e_x_p_e_r_i_m_e_n_t_a_l and may change considerably between major
releases.

IINNCCOOMMPPAATTIIBBIILLIITTIIEESS WWIITTHH LLEEXX AANNDD PPOOSSIIXX
_f_l_e_x is a rewrite of the AT&T Unix _ l_e_x tool (the two
implementations do not share any code, though), with some
extensions and incompatibilities, both of which are of
concern to those who wish to write scanners acceptable to
either implementation. Flex is fully compliant with the
POSIX _l_e_x specification, except that when using % %ppooiinntteerr
(the default), a call to u unnppuutt(()) destroys the contents of
yyyytteexxtt,, which is counter to the POSIX specification.

In this section we discuss all of the known areas of
incompatibility between flex, AT&T lex, and the POSIX
specification.

_f_l_e_x_’_s −−ll option turns on maximum compatibility with the
original AT&T _ l_e_x implementation, at the cost of a major
loss in the generated scanner’s performance. We note
below which incompatibilities can be overcome using the − −ll

Version 2.5 April 1995 47

FLEX(1) FLEX(1)

option.

_f_l_e_x is fully compatible with _ l_e_x with the following
exceptions:

− The undocumented _ l_e_x scanner internal variable
yyyylli inneennoo is not supported unless − −ll or % %oopptti ioonn
yyyylli inneennoo is used.

yyyylli inneennoo should be maintained on a per−buffer
basis, rather than a per−scanner (single global
variable) basis.

yyyylli inneennoo is not part of the POSIX specification.

− The i innppuutt(()) routine is not redefinable, though it
may be called to read characters following whatever
has been matched by a rule. If i innppuutt(()) encounters
an end−of−file the normal y yyywwrraapp(()) processing is
done. A ‘‘real’’ end−of−file is returned by
iinnppuutt(()) as _ E_O_F_.

Input is instead controlled by defining the
YYYY__IINNPPUUTT macro.

The _ f_l_e_x restriction that i innppuutt(()) cannot be rede-
fined is in accordance with the POSIX specifica-
tion, which simply does not specify any way of con-
trolling the scanner’s input other than by making
an initial assignment to _ y_y_i_n_.

− The u unnppuutt(()) routine is not redefinable. This
restriction is in accordance with POSIX.

− _ f_l_e_x scanners are not as reentrant as _ l_e_x scanners.
In particular, if you have an interactive scanner
and an interrupt handler which long−jumps out of
the scanner, and the scanner is subsequently called
again, you may get the following message:

fatal flex scanner internal error−−end of buffer missed

To reenter the scanner, first use

yyrestart(yyin);

Note that this call will throw away any buffered
input; usually this isn’t a problem with an inter-
active scanner.

Also note that flex C++ scanner classes _ a_r_e reen-
trant, so if using C++ is an option for you, you
should use them instead. See "Generating C++ Scan-
ners" above for details.

Version 2.5 April 1995 48

FLEX(1) FLEX(1)

− o ouuttppuutt(()) is not supported. Output from the E ECCHHOO
macro is done to the file−pointer _ y_y_o_u_t (default
_s_t_d_o_u_t_)_.

oouuttppuutt(()) is not part of the POSIX specification.

− _ l_e_x does not support exclusive start conditions
(%x), though they are in the POSIX specification.

− When definitions are expanded, _ f_l_e_x encloses them
in parentheses. With lex, the following:

NAME [A−Z][A−Z0−9]*
%%
foo{NAME}? printf("Found it\n");
%%

will not match the string "foo" because when the
macro is expanded the rule is equivalent to "foo[A−
Z][A−Z0−9]*?" and the precedence is such that the
’?’ is associated with "[A−Z0−9]*". With _ f_l_e_x_, the
rule will be expanded to "foo([A−Z][A−Z0−9]*)?" and
so the string "foo" will match.

Note that if the definition begins with ^ ^ or ends
with $ $ then it is _ n_o_t expanded with parentheses, to
allow these operators to appear in definitions
without losing their special meanings. But the
<<ss>>,, / /,, and < <<<EEOOFF>>>> operators cannot be used in a
_f_l_e_x definition.

Using − −ll results in the _ l_e_x behavior of no paren-
theses around the definition.

The POSIX specification is that the definition be
enclosed in parentheses.

− Some implementations of _ l_e_x allow a rule’s action
to begin on a separate line, if the rule’s pattern
has trailing whitespace:

%%
foo|bar<space here>

{ foobar_action(); }

_f_l_e_x does not support this feature.

− The _ l_e_x %%rr (generate a Ratfor scanner) option is
not supported. It is not part of the POSIX speci-
fication.

− After a call to u unnppuutt(()),, _y_y_t_e_x_t is undefined until
the next token is matched, unless the scanner was
built using % %aarrrraayy.. This is not the case with _ l_e_x

Version 2.5 April 1995 49

FLEX(1) FLEX(1)

or the POSIX specification. The − −ll option does
away with this incompatibility.

− The precedence of the { {}} (numeric range) operator
is different. _ l_e_x interprets "abc{1,3}" as "match
one, two, or three occurrences of ’abc’", whereas
_f_l_e_x interprets it as "match ’ab’ followed by one,
two, or three occurrences of ’c’". The latter is
in agreement with the POSIX specification.

− The precedence of the ^ ^ operator is different. _ l_e_x
interprets "^foo|bar" as "match either ’foo’ at the
beginning of a line, or ’bar’ anywhere", whereas
_f_l_e_x interprets it as "match either ’foo’ or ’bar’
if they come at the beginning of a line". The lat-
ter is in agreement with the POSIX specification.

− The special table−size declarations such as % %aa sup-
ported by _ l_e_x are not required by _ f_l_e_x scanners;
_f_l_e_x ignores them.

− The name FLEX_SCANNER is #define’d so scanners may
be written for use with either _ f_l_e_x or _ l_e_x_. Scan-
ners also include Y YYY__FFLLEEXX__MMAAJJOORR__VVEERRSSIIOONN and
YYYY__FFLLEEXX__MMIINNOORR__VVEERRSSIIOONN indicating which version of
_f_l_e_x generated the scanner (for example, for the
2.5 release, these defines would be 2 and 5 respec-
tively).

The following _ f_l_e_x features are not included in _ l_e_x or the
POSIX specification:

C++ scanners
%option
start condition scopes
start condition stacks
interactive/non−interactive scanners
yy_scan_string() and friends
yyterminate()
yy_set_interactive()
yy_set_bol()
YY_AT_BOL()
<<EOF>>
<*>
YY_DECL
YY_START
YY_USER_ACTION
YY_USER_INIT
#line directives
%{}’s around actions
multiple actions on a line

plus almost all of the flex flags. The last feature in
the list refers to the fact that with _ f_l_e_x you can put

Version 2.5 April 1995 50

FLEX(1) FLEX(1)

multiple actions on the same line, separated with semi−
colons, while with _ l_e_x_, the following

foo handle_foo(); ++num_foos_seen;

is (rather surprisingly) truncated to

foo handle_foo();

_f_l_e_x does not truncate the action. Actions that are not
enclosed in braces are simply terminated at the end of the
line.

DDIIAAGGNNOOSSTTIICCSS
_w_a_r_n_i_n_g_, _ r_u_l_e _c_a_n_n_o_t _b_e _m_a_t_c_h_e_d indicates that the given
rule cannot be matched because it follows other rules that
will always match the same text as it. For example, in
the following "foo" cannot be matched because it comes
after an identifier "catch−all" rule:

[a−z]+ got_identifier();
foo got_foo();

Using RREEJJEECCTT in a scanner suppresses this warning.

_w_a_r_n_i_n_g_, − −ss _ o_p_t_i_o_n _g_i_v_e_n _b_u_t _d_e_f_a_u_l_t _r_u_l_e _c_a_n _b_e _m_a_t_c_h_e_d
means that it is possible (perhaps only in a particular
start condition) that the default rule (match any single
character) is the only one that will match a particular
input. Since − −ss was given, presumably this is not
intended.

_r_e_j_e_c_t___u_s_e_d___b_u_t___n_o_t___d_e_t_e_c_t_e_d _ u_n_d_e_f_i_n_e_d or
_y_y_m_o_r_e___u_s_e_d___b_u_t___n_o_t___d_e_t_e_c_t_e_d _u_n_d_e_f_i_n_e_d _− These errors can
occur at compile time. They indicate that the scanner
uses RREEJJEECCTT or y yyymmoorree(()) but that _ f_l_e_x failed to notice the
fact, meaning that _ f_l_e_x scanned the first two sections
looking for occurrences of these actions and failed to
find any, but somehow you snuck some in (via a #include
file, for example). Use % %oopptti ioonn rreejjeecctt or % %oopptti ioonn yyyymmoorree
to indicate to flex that you really do use these features.

_f_l_e_x _ s_c_a_n_n_e_r _ j_a_m_m_e_d _− a scanner compiled with − −ss has
encountered an input string which wasn’t matched by any of
its rules. This error can also occur due to internal
problems.

_t_o_k_e_n _t_o_o _l_a_r_g_e_, _e_x_c_e_e_d_s _Y_Y_L_M_A_X _− your scanner uses % %aarrrraayy
and one of its rules matched a string longer than the Y YYYLL--
MMAAXX constant (8K bytes by default). You can increase the
value by #define’ing Y YYYLLMMAAXX in the definitions section of
your _ f_l_e_x input.

_s_c_a_n_n_e_r _r_e_q_u_i_r_e_s _−_8 _f_l_a_g _t_o _u_s_e _t_h_e _c_h_a_r_a_c_t_e_r _’_x_’ _ − Your

Version 2.5 April 1995 51

FLEX(1) FLEX(1)

scanner specification includes recognizing the 8−bit char-
acter _ ’_x_’ and you did not specify the −8 flag, and your
scanner defaulted to 7−bit because you used the − −CCff or − −CCFF
table compression options. See the discussion of the − −77
flag for details.

_f_l_e_x _s_c_a_n_n_e_r _p_u_s_h_−_b_a_c_k _o_v_e_r_f_l_o_w _− you used u unnppuutt(()) to push
back so much text that the scanner’s buffer could not hold
both the pushed−back text and the current token in y yyytteexxtt..
Ideally the scanner should dynamically resize the buffer
in this case, but at present it does not.

_i_n_p_u_t _ b_u_f_f_e_r _o_v_e_r_f_l_o_w_, _c_a_n_’_t _e_n_l_a_r_g_e _b_u_f_f_e_r _b_e_c_a_u_s_e _s_c_a_n_-
_n_e_r _u_s_e_s _R_E_J_E_C_T _− the scanner was working on matching an
extremely large token and needed to expand the input
buffer. This doesn’t work with scanners that use R REEJJEECCTT..

_f_a_t_a_l _ f_l_e_x _s_c_a_n_n_e_r _i_n_t_e_r_n_a_l _ e_r_r_o_r_−_−_e_n_d _o_f _b_u_f_f_e_r _m_i_s_s_e_d _−
This can occur in an scanner which is reentered after a
long−jump has jumped out (or over) the scanner’s activa-
tion frame. Before reentering the scanner, use:

yyrestart(yyin);

or, as noted above, switch to using the C++ scanner class.

_t_o_o _m_a_n_y _ s_t_a_r_t _ c_o_n_d_i_t_i_o_n_s _i_n _<_> _c_o_n_s_t_r_u_c_t_! _− you listed
more start conditions in a <> construct than exist (so you
must have listed at least one of them twice).

FFIILLEESS
−−llf fl l library with which scanners must be linked.

_l_e_x_._y_y_._c
generated scanner (called _ l_e_x_y_y_._c on some systems).

_l_e_x_._y_y_._c_c
generated C++ scanner class, when using − −++..

_<_F_l_e_x_L_e_x_e_r_._h_>
header file defining the C++ scanner base class,
FFlleexxLLeexxeerr,, and its derived class, y yyyFFlleexxLLeexxeerr..

_f_l_e_x_._s_k_l
skeleton scanner. This file is only used when
building flex, not when flex executes.

_l_e_x_._b_a_c_k_u_p
backing−up information for − −bb flag (called _ l_e_x_._b_c_k
on some systems).

DDEEFFIICCIIEENNCCIIEESS // BBUUGGSS
Some trailing context patterns cannot be properly matched
and generate warning messages ("dangerous trailing

Version 2.5 April 1995 52

FLEX(1) FLEX(1)

context"). These are patterns where the ending of the
first part of the rule matches the beginning of the second
part, such as "zx*/xy*", where the ’x*’ matches the ’x’ at
the beginning of the trailing context. (Note that the
POSIX draft states that the text matched by such patterns
is undefined.)

For some trailing context rules, parts which are actually
fixed−length are not recognized as such, leading to the
abovementioned performance loss. In particular, parts
using ’|’ or {n} (such as "foo{3}") are always considered
variable−length.

Combining trailing context with the special ’|’ action can
result in _ f_i_x_e_d trailing context being turned into the
more expensive _ v_a_r_i_a_b_l_e trailing context. For example, in
the following:

%%
abc |
xyz/def

Use of u unnppuutt(()) invalidates yytext and yyleng, unless the
%%aarrrraayy directive or the − −ll option has been used.

Pattern−matching of NUL’s is substantially slower than
matching other characters.

Dynamic resizing of the input buffer is slow, as it
entails rescanning all the text matched so far by the cur-
rent (generally huge) token.

Due to both buffering of input and read−ahead, you cannot
intermix calls to <stdio.h> routines, such as, for exam-
ple, g geettcchhaarr(()),, with _ f_l_e_x rules and expect it to work.
Call i innppuutt(()) instead.

The total table entries listed by the − −vv flag excludes the
number of table entries needed to determine what rule has
been matched. The number of entries is equal to the num-
ber of DFA states if the scanner does not use R REEJJEECCTT,, and
somewhat greater than the number of states if it does.

RREEJJEECCTT cannot be used with the − −ff or − −FF options.

The _f_l_e_x internal algorithms need documentation.

SSEEEE AALLSSOO
lex(1), yacc(1), sed(1), awk(1).

John Levine, Tony Mason, and Doug Brown, _ L_e_x _ & _Y_a_c_c_,
O’Reilly and Associates. Be sure to get the 2nd edition.

Version 2.5 April 1995 53

FLEX(1) FLEX(1)

M. E. Lesk and E. Schmidt, _ L_E_X _− _L_e_x_i_c_a_l _ A_n_a_l_y_z_e_r _ G_e_n_e_r_a_-
_t_o_r

Alfred Aho, Ravi Sethi and Jeffrey Ullman, _ C_o_m_p_i_l_e_r_s_:
_P_r_i_n_c_i_p_l_e_s_, _T_e_c_h_n_i_q_u_e_s _a_n_d _T_o_o_l_s_, Addison−Wesley (1986).
Describes the pattern−matching techniques used by _ f_l_e_x
(deterministic finite automata).

AAUUTTHHOORR
Vern Paxson, with the help of many ideas and much inspira-
tion from Van Jacobson. Original version by Jef
Poskanzer. The fast table representation is a partial
implementation of a design done by Van Jacobson. The
implementation was done by Kevin Gong and Vern Paxson.

Thanks to the many _ f_l_e_x beta−testers, feedbackers, and
contributors, especially Francois Pinard, Casey Leedom,
Robert Abramovitz, Stan Adermann, Terry Allen, David
Barker−Plummer, John Basrai, Neal Becker, Nelson H.F.
Beebe, benson@odi.com, Karl Berry, Peter A. Bigot, Simon
Blanchard, Keith Bostic, Frederic Brehm, Ian Brockbank,
Kin Cho, Nick Christopher, Brian Clapper, J.T. Conklin,
Jason Coughlin, Bill Cox, Nick Cropper, Dave Curtis, Scott
David Daniels, Chris G. Demetriou, Theo Deraadt, Mike Don-
ahue, Chuck Doucette, Tom Epperly, Leo Eskin, Chris Fay-
lor, Chris Flatters, Jon Forrest, Jeffrey Friedl, Joe
Gayda, Kaveh R. Ghazi, Wolfgang Glunz, Eric Goldman,
Christopher M. Gould, Ulrich Grepel, Peer Griebel, Jan
Hajic, Charles Hemphill, NORO Hideo, Jarkko Hietaniemi,
Scott Hofmann, Jeff Honig, Dana Hudes, Eric Hughes, John
Interrante, Ceriel Jacobs, Michal Jaegermann, Sakari Jalo-
vaara, Jeffrey R. Jones, Henry Juengst, Klaus Kaempf,
Jonathan I. Kamens, Terrence O Kane, Amir Katz,
ken@ken.hilco.com, Kevin B. Kenny, Steve Kirsch, Winfried
Koenig, Marq Kole, Ronald Lamprecht, Greg Lee, Rohan
Lenard, Craig Leres, John Levine, Steve Liddle, David Lof-
fredo, Mike Long, Mohamed el Lozy, Brian Madsen, Malte,
Joe Marshall, Bengt Martensson, Chris Metcalf, Luke Mew-
burn, Jim Meyering, R. Alexander Milowski, Erik Naggum,
G.T. Nicol, Landon Noll, James Nordby, Marc Nozell,
Richard Ohnemus, Karsten Pahnke, Sven Panne, Roland Pesch,
Walter Pelissero, Gaumond Pierre, Esmond Pitt, Jef
Poskanzer, Joe Rahmeh, Jarmo Raiha, Frederic Raimbault,
Pat Rankin, Rick Richardson, Kevin Rodgers, Kai Uwe Rom-
mel, Jim Roskind, Alberto Santini, Andreas Scherer, Dar-
rell Schiebel, Raf Schietekat, Doug Schmidt, Philippe Sch-
noebelen, Andreas Schwab, Larry Schwimmer, Alex Siegel,
Eckehard Stolz, Jan−Erik Strvmquist, Mike Stump, Paul Stu-
art, Dave Tallman, Ian Lance Taylor, Chris Thewalt,
Richard M. Timoney, Jodi Tsai, Paul Tuinenga, Gary Weik,
Frank Whaley, Gerhard Wilhelms, Kent Williams, Ken Yap,
Ron Zellar, Nathan Zelle, David Zuhn, and those whose
names have slipped my marginal mail−archiving skills but
whose contributions are appreciated all the same.

Version 2.5 April 1995 54

FLEX(1) FLEX(1)

Thanks to Keith Bostic, Jon Forrest, Noah Friedman, John
Gilmore, Craig Leres, John Levine, Bob Mulcahy, G.T.
Nicol, Francois Pinard, Rich Salz, and Richard Stallman
for help with various distribution headaches.

Thanks to Esmond Pitt and Earle Horton for 8−bit character
support; to Benson Margulies and Fred Burke for C++ sup-
port; to Kent Williams and Tom Epperly for C++ class sup-
port; to Ove Ewerlid for support of NUL’s; and to Eric
Hughes for support of multiple buffers.

This work was primarily done when I was with the Real Time
Systems Group at the Lawrence Berkeley Laboratory in
Berkeley, CA. Many thanks to all there for the support I
received.

Send comments to vern@ee.lbl.gov.

Version 2.5 April 1995 55

