
DERIVING PROTOCOL SPECIFICATIONS FROM SERVICE
SPECIFICATIONS

Gregor van BOCHMANN, Reinhard GOTZHEIN
Departement d’lR0, Universite de Montreal, C.P. 6128, Succursale A

Montreal, Quebec, H3C 3J7, Canada

Abstract - The service concept has acquired

an increasing level of recognition by protocol

designers. Being an architectural concept, the

service concept influences the methodology

applied to service and protocol definition.

Since the protocol is seen as the logical

implementation of the service, one can ask the

question whether it is possible to formally

derive the specification of a protocol providing

a given service.

This paper addresses this question and
presents an algorithm for deriving a protocol
specification from a given service specifica-

tion. It is assumed that services are described

by expressions including operators for se-
quence, parallelism and alternatives and

primitive service interactions. The expression

defining the service is the basis for the

protocol derivation process. The presented
algorithm fully automates the derivation

process. Future work focuses on the inclusion

of parameters and the optimization of traffic

between protocol entities.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

1. INTRODUCTION

The service concept has acquired an increasing level

of recognition by protocol designers (see e.g. [ViLo85]).

Being an architectural concept, the service concept
influences the methodology applied to service and

protocol definition ([Chu84]). Since the protocol is seen

as the logical implementation of the service, one can

ask the question whether it is possible to formally

derive the specification of a protocol providing a given

service. Similar questions have been raised
concerning the derivation of synchronization code from

given specifications ([Lav79], [Mac83]).

A service definition is the specification with the highest

degree of abstraction. Therefore, it should not contain
explicit information associated with the protocol level.

Depending on the 0%layer being considered, this can

mean that no information about the places where

service primitives are to be executed is included.
However, this is important for the derivation of the

protocol entities and has to be added in our approach.

Further information is added during the derivation of

the protocol entities. An algorithm is developed for that

purpose which allows to fully automate the derivation

process. Services are described by expressions
including operators for sequence, parallelism and

alternatives and primitive service interactions. The

expression defining the service is the basis for the

protocol derivation process. Currently, we are working
on the inclusion of parameters which are not

considered in the algorithm presented in this paper.

0 1986 ACM 0-89791-201-2/86/0800-0148 759 148

Other approaches toward the synthesis of protocol

specifications can be found in [Zaf80], [Mer83] and

[Gou84]. All have in common that they make use of the
duality inherent in message exchange: For each

message sent by a protocol entity, there must be a

protocol entity prepared to receive it. Differences exist

concerning the assumed properties of the transmission

medium or the maximum number of protocol entities.

The approach described in [Zaf80] starts from partly

specified protocol entities and gives rules how to arrive

at complete specifications (‘complete’ with respect to
message reception). [Gou84] assumes the existence of

the specification of one protocol entity and constructs a

second one which remains in some sense

synchronous with the former. [Mer83] employs the

specification of n-l protocol entities and the service

specification for the synthesis of the remaining nth

protocol entity. The method introduced in this paper is

more general in that only the existence of the service

specification is required. In addition, an assignment of

the different primitive service interactions to a finite

number of service access points must be given, and the

method provides specifications for all the protocol

entities serving these access points.

The paper is composed as follows: Section 2

introduces concepts and notations on which our

algorithm is based. Section 3 presents the algorithm in
several steps, each representing successive
improvements. It also contains a complete example,

demonstrating some of the capabilities of the algorithm.

Section 4 mentions further extensions, such as the

inclusion of parameters and the optimization of traffic

between system components.

1. for each terminal symbol x E {a,b,...}: e + x

2. 83 e;e

3. e+ elle
4. e4 ele

The operator ‘;’ expresses that the service defined by

the left subexpression must be terminated completely

before execution of the service defined by the right
subexpression may be started. ‘I]’ expresses that the

services defined by the two subexpressions may be

executed in parallel. The meaning of ‘1’ is that either the

service defined by the left subexpression or by the right

subexpression is to be executed.

The services defined by such expressions have to be

augmented by information about the location where a

service primitive shall be executed. For this reason,

we introduce identifiers referring to interaction

points, called “places” in the following, and

associate service primitives with places: The notation
Qa41 means that the service primitive ‘a’ is to be

executed at place ‘4’.

We now can describe a constraint which applies to

production rule 4 in an informal way (a precise
definition is given in section 3.1.). In this case of

alternative subexpressions, a decision has to be made

which subexpression should be executed. We assume

that this decision is taken at one place without the
consultation of entities at other places (all actions at

one place are associated with one entity). Therefore,

we require that the places of the starting operations of

the two subexpression be the same.

3. THE DERIVATION ALGORITHM
2. CONCEPTS AND NOTATIONS

A service (see [BoSu80], [ViLo85]) in our approach is

defined by an expression, consisting of service

primitives and operators. The syntax of expressions is
defined by production rules of a context-free grammar,

where ‘e’ is a non-terminal (and also the starting)

symbol, and ‘{a,b,...} u {;,jj,j}’ is a finite set of terminal

symbols:

In this section, we introduce the derivation algorithm in

several steps thus incrementally arriving at the desired
result. For a given service specification (see section 2),

this algorithm produces the specifications of all protocol

entities.

The principle is to define the behavior of each protocol

entity to be the projection (see [Mer83]) of the service
specification onto the place (i.e. service access point)
serviced by the respective entity. This is augmented by

appropriate synchronization among the protocol

149

entities through the underlying communication medium

such that the possible temporal order of operations

being executed at different places satisfies the order

implied by the service specification. Note that each

protocol entity can determine directly only the order of

operations at the place which it services. Therefore,

communication among the protocol entities through an

underlying communication medium is required and has

to be introduced by the derivation algorithm.

Synchronization is required in all cases where the

operator ‘;’ is used in the service definition. Here, all

terminating operations of the left subexpression of ‘;’

have to send synchronization messages to all starting

operations of its right subexpression. Similarly, all

starting operations of the right subexpression have to

receive synchronization messages from all terminating
operations of the left subexpression.

In case of ‘I]‘, no synchronization is needed. Also, with

the constraint concerning the places of starting
operations in production rule 4 (see section 2), no

additional synchronization is required in case of ‘I’.

3.1. A first version of the derivation algorithm

In order to define the derivation algorithm, the

formalism of attribute grammars ([Boc76]) is used. From

the consecutive application of production rules 1 to 4,

starting from the non-terminal symbol ‘e’, we obtain a

syntax tree for each service expression ‘es’, where

service expressions only contain terminal symbols. For

each node in this tree, synthesized attributes pass

information upward (from the successor(s) of the node

toward the root), and inherited attributes pass

information downward. For the derivation algorithm, the
attributes provide information between which places

synchronization messages must be exchanged.

To define the attribute evaluation rules, we need a
clear distinction between the left and the right side of a

production rule and between the subexpressions on its

right side. Therefore, we introduce indices referring to

the number of a successor node. This notation does not
affect the applicability of production rules, i.e. if a rule is

applicable to the non-terminal symbol ‘e’, then it can

also be applied to ‘et’ or ‘ep’.

We rewrite the context-free grammar of section 2 as
follows:

1. for each terminal symbol x E {a’,bi,...}: e + x

2. e + el ; e2

3. e 3 el 11 e2

4. e + el 1 e2

where the starting operations of ‘el’ and ‘e2’

are located at one single place

The following attributes are defined for each node of a
syntax tree:

S (.) : send-operations associated with the

‘starting places’ (synthesized)

E (.) : receive-operations associated with the

‘ending places’ (synthesized)

P (.) : receive-operations from the ‘preceeding

places’ (inherited)

F (.) : send-operations to the ‘following places’

(inherited)

For production rule 1, the attributes S and E are

synthesized as follows:

S (e) := ‘1 ‘1 s place(x) for each terminal symbol

x E (at,bi,...]

E (e) := “f’placqx) for each terminal symbol

x E {ai,bi,...)

‘place’ is a function from the set {ai,bj,...} to the set of

places: place(xP):=p. The values of ‘place’ are
interpreted as strings. Subsequent strings are implicitly

concatenated. Thus, we get string values for the

attributes S and E which later are incorporated into

protocol expressions: “sp” or VP” means that a

synchronization message has to be Sent to, or Leceived

from, place ‘p’, respectively.

The heuristics for the attribute evaluation rule above is
the observation that synchronization messages have to

be transmitted to ‘place(x)’ from all ‘preceeding places’

and to be received by all ‘following places’. For the

other production rules, the attributes are evaluated as
follows:

150

production

rule S E

2 S(e) := S(el) E(e) := E(e2)

3 S(e) := S(et) “II” S(e2) E(e) := E(el) “II” E(e2)

4 S(e) := S(el) E(e) := E(el) “I” E(e2)

The heuristics for the attribute evaluation rules

concerning production rules 2 to 4 is just the same as

for production rute 1. In case of production rule 2, for

example, the send-operations associated with the

‘starting places’ for the father-node in the syntax tree

are the same as for the left subexpression of the

operator I;‘, the receive-operations associated with

‘ending-places’ are the same as for the right

subexpression.

We are now capable of precisely defining the constraint

for production rule 4:

e + ef 1 e2 where S(el) = S(e2) = “sp”

for some place ‘p’

This also explains why we can simplify the definition of

the attribute evaluation rule for S in this case.

After having synthesized attributes S and E, we can

now evaluate the inherited attributes P and F, starting
at the root. Initializing ‘P(e)’ and ‘F(e)’ as ‘empty’ at

the root, the following evaluation rules are used:

production P F

rule
1 P(x) := P(e) F(x) := F(e)

for all XE {a’,bi,...} for all xE{a’,bj,...}

2 P(el) := P(e) F(et) := S(e2)

P(e2) := E(el) F(e2) := F(e)

3 P(el) := P(e2) := P(e) F(el) := F(e2) := F(e)

4 P(el) := P(e2) := P(e) F(el) := F(e2) := F(e)

The heuristics is that we want to arrive at expressions

which define for each operation associated with a leaf

of the syntax tree which receptions have to be
performed before the execution of the operation

(attribute P) and which transmissions are necessary

afterwards (attribute F). This is done by making use of
the synthesized attributes S and E (see definition
covering production rule 2).

The attributes defined above can now be used to
derive, from a service specification, the specification of

the protocol entities. Let ‘p’ be an arbitrary place, then

the following rules, applied recursively to the syntax

tree of service expressions, provide a specification for

the entity serving the place ‘p’, which is given by ‘Tp’

applied to the root node of the service specification.

production rule 1 TP

1 Tp(e) := if place(x) = “p”
then P(x) “; x ;” F(x)

else “empty”

2

3

4

for all xe {a’,bi,...}

Tp(e) := Tp(el) “;” Tp(e2)

Tp(e) := Tp(el) “II” Tp(e2)
Tp(e) := Tp(el) “I” Tp(e2)

In order to obtain the specifications for all protocol

entities, ’ Tp’ has to be applied for each place ‘p’. Let

us consider a first example: the operations {a1,b2} and
the service expression ‘at; b2’. The syntax tree for

this service and its attributes can be depicted as follows

(,,-‘I represents “empty”):

E
!;’

. I 3

G-sYy
1 “St ”

I I 2 “Sl ‘I

3 “S2”
4 5 4

a1 b* 5

“‘2”

“‘1 I’

“‘2”

The derivation of the protocol specifications for the

places 1 and 2 leads to the fotlowing result:

Tt (es) = T1 (al; b2)

= TI (a’) “;” TI (b2)
= P(al) “; a1 ;” F(al) “; empty”

= “empty ; a1 ; 52 ; empty”
= “al ; s2”

T2(e,) = . . . = “empty ;” P(b2) “; b2 ;” F(b2)
= “rl ; b 211

151

This is obviously the result we were expecting: the

protocol entity at place ‘I’ first executes operation *aI’

and then sends a synchronization message ‘~2’ to

place ‘2’, while the protocol entity at place ‘2’ first

receives this message from place ‘1’ (see 71’) and

then executes operation ‘b2*.

It should be noted that certain simplifications of

expressions obtained during the process of derivation

are permitted. Semantically, the following expressions

are equivalent:

e ;empty = e

empty; e = e

el II e2 = e2 II el
elIempty= e

empty 1 empty = empty

for arbitrary expressions e, el and e2.

4’) Tp(e) = if (S(el) = Step) = “sp”)

then P(e) “; (” Tp(el) “I” Tp(e2) ‘I)”

else Tp(el) “I” Tp(e2)

The distinction made by the condition assures that the

attribute ‘P(e)’ is only included in the result of ‘Tp(e)’ if

the place of the starting operation of ‘el’ is ‘p’, i.e. the

place for which the specification of the protocol entity is

currently derived. By constraint, ‘S(el)’ and ‘S(e2)’

are identical (see production rule 4). In order not to get

the value for ‘P(e)’ a second time by applying

transformation rule 1 later in the derivation process, the

attribute evaluation rule for production 4 has to be

changed, too:

4’) P(e1) := P(e2) := “empty”

The reader may check that the changes lead to the

result T2’(e,).

3.2. Improvement of the derivation algorithm 3.3. Further improvements

The algorithm presented so far still contains some

flaws. One flaw can be illustrated by the following

example. The service expression

The revised algorithm of section 3.2. still has some

shortcomings which are illustrated by the following

examples:

% = (a11b1);(c21d2) leads to

Tl (es) = “(a1 ; 52) 1 (bl ; ~2)”

T2(es) = “WI I ‘1) ; c2) I (PI I ‘$1 ; d2)”

a) alternative
i) es = (al; b2) I (cl; d2) results in

Tl (es) = “(al; s2) \ (cl; ~2)” and

T2(e,) = “(rl; b2) I (rl; d2)”
In the case of Tl(e,), the result is exactly what one Thus the result is semantically equivalent to the
expects. In the case of T2(e,), it should be protocol derivation for the service

T2’(es) = “(t-1 I ‘1) ; (c2 I d2)”

which better reflects the fact that the choice between
UC21 and ‘d2’ is made on place ‘2’ after a reception

from place ‘I ‘. (This may also be seen as an

optimization.)

The information required is already contained in the

attribute P. Therefore, the following revised

transformation rule 4 could be applied:

ii) es’ = (a’1 cl) ; (b2 I d2) leading to
Tl(es’)= “(a’; s2) I (cl; ~2)” and

Q&J = “(‘1 I rl); (b2 I d2)”

The protocol derjved from es is obviously not

what one expects, since the sequence of oper-

ations defined in the service is not always main-

tained by the derived protocol.

b) parallelism

es = (all1 bl) ; (c2 II d2) results in

T1 (es)= “[a’; (9 I I ~211 I I 1 b1 ; (~2 I I sp)l” and
T#,)= “IO1 II ‘1); c21 II [(rl II rd; d21”
This allows e.g. c2 to be executed after two

receptions from place ‘I’, but before completion

152

of both a1 and bf. As in case (a.i), the derived

protocol is not correct.

The problem seems to be that different send-operations

cannot be distinguished by the receiver. A means for

overcoming the deficiencies illustrated above therefore

is the addition of a message parameter which

‘identifies’ a synchronization message.

It is noted that synchronization is always linked to the
sequence operator I;‘: The service defined by the left

subexpression must be completely executed before the

service given by the right subexpression may be

started. Therefore, synchronization messages have to

be sent from all places of ‘terminating’ operations of the
left subexpression to all places of ‘starting’ operations

of the right subexpression.

Messages related to different ‘terminating’ operations

must be distinguishable at the receiving places, and

therefore we introduce a consecutive numbering

applied to groups of synchronization messages: For
each ‘terminating’ operation, all messages indicating

its completion form a group. Groups can have more

than one element, because the completion of a

‘terminating’ operation may have to be communicated

to more than one place (or to the same place, but for

different ‘starting’ operations) of the right subex-

pression.

The following modifications of the algorithm overcome

the deficiencies illustrated above: An attribute N(.) is

introduced which defines a unique numbering of all

leaves of the syntax tree. This attribute can be obtained
by parsing the syntax tree from left to right. Now we can

modify the definition of the synthesis of the attributes S

and E for production rule 1:

1’) S(e) := “S”ptace(x)“(Z)”

for each terminal symbol XE {ai,bi,,.,)
E(e) := “r”place(x)“(“N(x)“)”

for each terminal symbol xg{ai,bj,...)

This means that we add the parameter value N(x) to
receive-operations associated with the operation x

(attribute E). Furthermore, a parameter ‘z’ is added to
send-operations which is replaced by a specific value

later in the derivation process, according to the

following modified derivation rule:

1’) Tp(e) := if place(x) = “p”

then P(x) “; x ;‘I F(x)[z/N(x)]

else “empty”

for all XE {a’,b],...}

Here, ‘F(x)[z/N(x)]’ denotes that all occurrences of ‘z’

in ’ F(x)’ are to be substituted by the value of ‘N(x)‘.

Reconsidering the examples from the beginning of

section 3.3., the derivation now leads to correct

protocol specifications:

a.i) Tl (es) = “(a’; 9(l)) 1 (Cl; S#)”

T&J = ‘YrlV 1; b2) I (rl(3); d2Y

a.ii) T1 (e,‘) = ‘*(al; 9(l)) I (c’ ; .s2(2))”

T:!(e,‘) = “(q(l) I rlG3); lb2 I d2)”

W Tl(+J =
‘I a’; @p(l) II spU))l II 1 bl; (s&3 II s2Wl”

We,) =
‘l(rlU) II r1W; c21 II Krl(V II q(2)); d21”

3.4. A complete example

We give in the following a derivation of the protocol for

the service defined by

es = (Ua’ ; (b2 ; c3)) I (d’ ; e5)1 II f6) ; (s7 II h8)

The syntax tree of this service expression is shown in

figure 1. For each node of the tree, the attribute values

of S, E, P, F and N are given.

The result of the derivation process is the following:

TI (es) = V& spU)) I NJ1; s5(4))”
T2(es) = ” [rl(l); b2; s3(2)] 1 empty”

T3(es) = ‘lr2W; c3; (s?(3) II Q(3))] I empty”

T5(es) = “empty I I q(4); e5; (s7(5) II s3(5)) I ”

Ttj(es) = “f6; (s7(6) II S&3))”
We,) = ” [k.+) I r&W II r#) 1; !J7.
T&Q = ” [(r3P) I r&3) II $63) I; h8”

153

154

4. DISCUSSION, EXTENSIONS AND

APPLICATIONS

We have presented an algorithm which allows to fully

automate the derivation of protocol specifications from
service expressions. To define a service, we used

operators for sequence, parallelism and alternatives.

Such operators can also be found in FDTs like LOTOS

([Bri85]), CCS ([Mil80]) or CSP ([Hoa78]). The ex-

change of messages between the protocol entities is

assumed to be provided by reliable FIFO-queues. The
protocol specifications obtained by applying the

algorithm are unique, since the derivation process is

based on the (unique) syntax tree of the service

expression and the defined attribute evaluation rules

are deterministic.

It would be desirable to formally define the semantics of

the language used to specify services and protocols in

order to prove that the presented algorithm yields

correct results. So far we believe that the flaws

eliminated in sections 3.2. and 3.3. represent all

shortcomings present in the algorithm as described in

section 3.1.

A current limitation which we expect to remove in the

next version concerns parameters which will have to be

added to the service primitives. Since we deal with

distributed systems, inputs of a service primitive may

have to be obtained from different places, they are

possibly results of the execution of other service

primitives. First of all, such dependencies between

inputs and outputs impose constraints on the set of

valid service expressions. Secondly, additional

message exchange becomes necessary to commu-
nicate outputs to the places where they are needed,

which requires an extension of our derivation algo-

rithm.

Additional extensions should concern the optimization
of traffic necessary to synchronize operations and to

pass parameter values. It is for instance not necessary

to pass messages to synchronize subsequent

operations at the same place. Also, synchronization
messages and data messages may be combined.

Furthermore, it could be useful to include more power-

ful elements like levels of hierarchy and recursion into

our language for the specification of services. The

impact of such extensions on the’derivation algorithm

must be carefully examined.

The described protocol derivation algorithm may be

applied in different areas. It is noted that we assume

the availability of a reliable message transmission

service between participating protocol entities. Usually,
logical connections would be established between

these entities before the derived protocol is executed.

Within the OSI reference model, this situation can be

satisfied for the application layer, it is therefore

expected that the algorithm could be useful in areas

such as distributed data bases, process control, etc. It is

necessary, however, to include the exchange of

parameters into the considerations. Also, subsystem

failures which are not handled by the algorithm should

be taken into account.

Acknowledgements. The idea of deriving protocol

specifications from service specifications arose in
discussions with H. lchikawa and M. ltoh during a visit

of G. v. Bochmann at the NTT Mosashino ECL in Tokyo.
We thank H. Ichikawa and T. Murakami for their

detailed study and helpful comments on an earlier

version of the algorithm presented here.

REFERENCES

[Boc76] Bochmann,G.v.: Semantic Evaluation from Left
to Right, Communications of the ACM, Feb.1976,
Vol.1 9, No.2, pp.5562

[BoSu80] Bochmann,G.v., Sunshine,C.A.: Formal Meth-
ods in Communication Protocol Design, IEEE Trans-
actions on Communications, Vol. COM-28, No.4, April
1980, pp.624-631

[Bri85] Brinksma,E.: A Tutorial on LOTOS, in: M. Diaz
(ed.), Protocol Specification, Testing, and Verification,
V, Proc. of the IFIP WG 6.1 Workshop, Toulouse-
Moissac, France, June 1 O-l 3, 1985, North-Holland,
Amsterdam 1986, pp. 171-194

[Chu84] Chung,R.: A Methodology for Protocol Design
and Soecification based on an Extended State Trans-
ition Model, Proc. ACM SIGCOMM Symposium, June
1984, Montreal, Computer Communication Review,
Vol.1 4, No.2, pp.34-41

155

[Gou84] Gouda,M,, Yu,Y.: Synthesis of Communicating
Finite-State Machmes with guaranteed Progress, IEEE
Transactions on Communications, COM-32, No.7, July
1984, pp.n9-788

IJ
Hoa7a] Hoare,C.A.R.: Communicating Sequential
t’ocesses, CACM Vol.21, No.81 978

[Lav79] Laventha1,M.S.: A Constructive Approach to
Reliable Synchronization Code, Proc. 4th Int. Conf. on
Software Engineering, 1979, pp.1 94-202

[Mac831 Mackert,L.: Modellierung, Spezifikation und
korrekte Realisierung von asynchronen Systemen,
Arbeitsberichte des IMMD Bd.16, Nr.7, Universitaet
Erlangen-Nuernberg, Erlangen 1983, 266~.

[Mera3] Merlin,P., Bochmann,G.v.: On the Construction
of Submodule Specifications and Communication
Protocols, ACM Trans. on Programming Languages
and Systems, No.1, Jan.1983, pp.l-25

[Milao] Milner,R.: A Calculus of Communicating
Systems, Lecture Notes in Computer Science 92,
Springer-Verlag, Berlin 1980, 171~.

[ViLo85] Vissers,C.A., Logrippo,L.: The Importance of
the Service Concept in the Design of Data Communi-
cations Protocols, in: M. Diaz (ed.), Protocol Specifi-
cation, Testing, and Verification, V, Proc. of the IFIP WG
6.1 Workshop, Toulouse-Moissac, France, June 10-13,
1985, North-Holland, Amsterdam 1986, pp. 3-17

[Zaf80] Zafiropulo,P., West,C.H., Rudin,H., Cowan,D.D.,
Brand,D.: Towards Analyzing and Synthesizing Proto-
cols, IEEE Transactions on Communications, Vol.
COM-28, No.4, April 1980, pp.651 -661

156

