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New Web technologies, like AJAX, result in more responsive and interactive Web applications, sometimes
called Rich Internet Applications (RIAs). Crawling techniques developed for traditional Web applications are
not sufficient for crawling RIAs. The inability to crawl RIAs is a problem that needs to be addressed for at least
making RIAs searchable and testable. We present a new methodology, called “model-based crawling”, that
can be used as a basis to design efficient crawling strategies for RIAs. We illustrate model-based crawling
with a sample strategy, called the “hypercube strategy”. The performances of our model-based crawling
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1. INTRODUCTION

Crawling is the activity of capturing all the reachable pages of a Web application to-
gether with the information on how to reach them. A crawler is a tool that performs
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crawling. A crawler navigates through the pages of the application starting from an
initial page, just like a human navigates using a browser, but in an automated, sys-
tematic, and efficient way. The most common reason for crawling is indexing, that
is, gathering all the content of a site to make it searchable through search engines.
But, crawling is also needed for automated model inference that is used for activities
such as automated testing, automated security assessment, or automated usability
verification.

Over the years, Rich Internet Applications (RIAs) have become the new norm for
Web applications. RIAs break away from the traditional concept of a Web application
running exclusively on the server side. A Web application consists of a client software
(a Web browser) that allows the user to send a request to a Web server that provides the
content as a response. In traditional Web applications, the user navigates to another
page of the application by following one of the URLs embedded in the current page.
Following a URL generates a new request to the server and the server responds with a
new HTML page that completely replaces the current page. Initially, applications relied
completely on the server to implement the application logic and the communication
between the client and the server was synchronous. These applications were not very
responsive and lacked the “desktop feel” of non-Web applications.

RIAs changed this situation with two enhancements: First, RIA computations can
be carried out at the client side via scripts such as JavaScript. Thus, the current page
can be modified partially or completely by client-side scripts, without going back to the
server. The events defined on HTML elements trigger the execution of such scripts. The
second enhancement is asynchronous communication between the server and the client.
This allows the user to use the application without having to wait for the reception of
the responses for the previous requests. These changes were introduced gradually, but
today the most common such technology is AJAX (Asynchronous JavaScript And XML
[Garrett 2005]).

These improvements came at a great cost; we have lost the crawling ability. Tra-
ditional crawling techniques are not sufficient for crawling RIAs. In traditional Web
applications, a page is identified by its URL and each page contains the URLs of those
pages that can be reached directly from it. Hence, crawling a traditional Web applica-
tion is not a difficult task: start by visiting an initial URL, collect all the embedded
URLs in the corresponding page, and keep collecting new URLs by visiting the already
collected URLs until all URLs are visited. But in RIAs, the current page can be dy-
namically changed with the execution of events, hence a URL does not correspond to
a single page; many different pages can be reached under the same URL. Moreover,
client-side modifications can add and remove URLs in the current page, so scanning
the initial page for embedded URLs is not sufficient; the correct sequence of events
must be executed first.

This unintended consequence of RIA technologies is not usually understood by users,
who still expect RIAs to be indexed. This is simply not the case; to our knowledge, none
of the current search engines and Web application testers has the ability to crawl
RIAs1. Crawling RIAs is a problem that needs to be addressed in order to keep Web
applications testable and indexed by search engines.

1For example, Google [2009] acknowledges its inability to crawl AJAX applications and suggests a method
where the Web developer has to present a static HTML snapshot of each state reachable by AJAX, when
asked by Google. The Web developer also has to produce URLs for AJAX states by appending a hashbang
sign (#!) followed by a unique name for the state at the end of the application’s URL and put them somewhere
visible to the crawler, such as Sitemap. When the crawler sees such a URL it will understand that this is
an AJAX state and will ask the server for the static HTML snapshot corresponding to that state. Obviously
this method just makes crawling the responsibility of the Web developer and is not a real solution to RIA
crawling. Also see Bau et al. [2010] for a survey of Web application security testers.
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The contribution of this article is a new general methodology to design efficient
strategies for inferring models of RIAs: “model-based crawling”. Model-based crawling
is a generic approach for crawling RIAs; it can be used to define several actual crawling
strategies. It requires the definition of a model that is used as a basis for generating
the crawling strategy. Model-based crawling is the framework used to create an actual
strategy from a chosen model. Based on this chosen model, the created strategy is able
to make anticipations about the behavior of the application and thus discover the states
in the application much faster. This is the major difference of our approach with the
existing strategies that do not have any such mechanism to anticipate. In this article,
we formally define the entire framework for model-based crawling. We also present in
detail one such model and its specific strategy: the “hypercube” strategy2. We prove this
strategy is optimal under the assumptions made about the behavior of the application.
We chose to use the hypercube in this article because of its formalism and optimality, as
a good illustration of the concepts behind model-based crawling. Note, however, that the
model of the hypercube is not a very realistic model for RIAs, so the performance is not
the best (but still much better than the usual breadth-first and depth-first approaches).
Other models based on the principles presented in this article have been proposed, with
much improved performances. We will illustrate these results as well, using real RIAs
in the experimental study in addition to some test applications.

In this article, we focus on AJAX-based applications, however, the same concepts and
ideas are still applicable to other similar RIA technologies (such as Flex [Apache 2004]
and Silverlight [Microsoft 2007]).

The rest of the article is organized as follows: Section 2 contains a discussion of the
general concepts and challenges for crawling RIAs. Section 3 presents a summary of
the work related to crawling RIAs. Section 4 presents an overview of our methodol-
ogy. In Section 5 we describe the hypercube strategy and mention two other crawling
strategies designed using our approach. Section 6 presents the technical details, proof
of optimality, and complexity analysis of the hypercube strategy. Section 7 contains
the experimental results and Section 8 concludes the work with a summary of our
contributions and some research directions.

2. CRAWLING RICH INTERNET APPLICATIONS

An RIA can be considered as two programs, one on client side and one on the server
side, running concurrently. In an RIA, when the user requests a page from the server,
the response may contain the contents of the HTML document and some code that can
be executed on client side. This client-side code is usually executed as a reaction to the
user’s actions that are defined as “events” on the page. The client-side code can modify
the current page into a different view without contacting the server. When the page is
modified on client side, the URL of the page does not change. These scripts can also
send asynchronous requests to the server, that is, when such a request is made, the
user interaction is not blocked by waiting for the response to come. The data retrieved
from the server can be used to partially update the page rather than refreshing the
whole page.

2.1. Document Object Model and Events

In a browser, an HTML page is represented as an instance of the Document Object
Model (DOM) [W3C 2005]. A DOM is a tree data structure that is formed following

2An early version of the hypercube strategy was presented in Benjamin et al. [2011]. That version was not
practical since it had a precomputation overhead that could be exponentially larger than the actual size of
the model being built. In this article, we present an improved version of the strategy that is carried out
on-the-fly without requiring any precomputation.
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the hierarchical structure of the HTML document. DOM also defines a platform- and
language-independent interface to access and modify the contents, style, and structure
of the underlying document.

AJAX-based RIAs use the scripting language JavaScript to modify the page through
the DOM interface in the browser. In AJAX-based applications, when the client requests
a URL from the server, the response contains the contents of the HTML document
and the JavaScript code that can be executed on the document. The JavaScript code
execution can be triggered by events defined as part of the DOM.

Definition 2.1 (Event). An event is a user interaction (or a timeout) that triggers
client-side code execution.

In Web pages, events are associated with the DOM elements. In a page, the DOM
elements are allowed to react to certain predefined user interactions (a mouse click,
mouse over, selecting an input field, submitting a form, etc.) and Web developers can
define what JavaScript code should be run in case an event occurs on an element. The
code that runs when triggered by the event is called an event handler. A crawler can
analyze the DOM of a page to detect the elements having registered event handlers
and execute these handlers as if a user interaction took place. In the following, we refer
to running the event handlers registered for an event on a DOM element simply as an
“event execution”.

2.2. A Model of a Web Application

The result of crawling is called a “model” of the application. A model contains the
discovered pages and the possible ways to move from one page to another. In modeling
terms, a model consists of client states (or simply states) and transitions.

Definition 2.2 (Client State). A client state (or simply state) is the state of the appli-
cation as it is seen on the client side. States represent DOM instances.

Definition 2.3 (Transition). A transition represents the execution of an event that
leads the application from one state to another.

In Web applications, there are two ways a crawler (or a user) can trigger a transition:
follow a URL or execute an event. The latter is only possible in RIAs.

2.3. Crawling Traditional Applications vs. Crawling RIAs

In traditional Web applications, there is a one-to-one relation between the set of DOMs
reachable in the application and the URLs, thus a DOM can be identified by a URL.
Hence, crawling traditional applications is relatively easy; starting from a given seed
URL, it is possible to discover the client states by visiting those URLs that are found
on the already visited client states.

In RIAs, however, one can reach many client states from a single URL. When an
event execution modifies the DOM, the URL does not change. This means some client
states in RIAs are not reachable directly by loading a URL, but rather are reachable
by executing a sequence of events, starting from a given URL of the application. Some
RIAs even have a single URL. There are also RIAs that use the traditional URL-based
navigation together with RIA technologies. That is, an RIA may contain several URLs
leading to different sections of the application and each section may contain pages
reachable only via events. For this reason, a complete crawling approach for RIAs
must provide a mix of exploration through execution of events as well as traditional
URL-based exploration.

There is an important difference between following a URL and executing an event
in the context of crawling: the result of an event execution depends on the state where
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the event is executed, whereas a URL always leads to the same state regardless of the
state in which the URL is seen. Hence, it is sufficient to follow a URL once, but an
event should be executed in each state where the event is seen. In this sense, following
a URL cannot be treated as a “regular” event.

The traditional URL-based exploration is well understood [Olston and Najork
2010]. The focus of this article is on event-based exploration, that is, crawling those
parts of the RIA that are reached through event executions under a given URL. This
means the techniques we explain in the remainder must thus be applied to each distinct
URL in the application for a complete coverage.

2.4. Model Representation

In event-based exploration, the aim is to start from a client state that can be directly
reached by a URL and extract a model that contains all the client states reachable by
event executions. This model can be conceptualized as a Finite State Machine (FSM).
We formulate an FSM as a tuple M = (S, s1, �, δ), where:

—S is the finite set of client states;
—s1 ∈ S is the initial client state of the URL;
—� is the set of all events in the application; and
—δ : S × � → S is the transition function.

The initial state s1 is the client state that represents the page reached when the URL
is loaded.

During exploration, the application can be in only one of its client states, referred to
as the “current state”.

For two client states si and sj and an event e, if δ(si, e) = sj , then the application
(modeled by the FSM M) performs a transition from the client state si to the client
state sj when the event e is executed in si. We denote such a transition by (si, sj ; e). The
client state from which the transition originates (si) is called the source state and the
state to which the transition leads (sj) is called the destination state of the transition.

The transition function δ is a partial function: from a given state s only a subset
of the events in � can be executed. This subset contains those events associated with
elements existing in the DOM represented by s. It is called the “enabled events” at s.

An FSM M = (S, s1, �, δ) can be represented as a directed graph G = (V, E), where:

—V is the set of vertices such that a vertex vi ∈ V represents the client state si ∈ S;
and

—E is the set of labeled directed edges such that (vi, v j ; e) ∈ E iff δ(si, e) = sj . When it
is not important, we omit the edge’s event label and simply write (vi, v j).

In a graph, any sequence of adjacent edges is called a path. Given paths P, P ′, PP, PS,
we say P ′ is a subpath of P if P = PP P ′ PS, where PP and PS are (possibly empty) prefix
and suffix of P, respectively. The length of a path P is the number of edges in P.

2.5. Building a Complete Model

Under our working assumptions (Section 2.6), we aim at building a correct and complete
model. Building a complete model means that every state (and every transition) will
eventually be discovered. Achieving this requires to execute each enabled event at
each discovered state. Since the result of an event execution may depend on the state
in which the event is executed, it is not enough to execute the event from only one of
the states where the event is enabled. We refer to the first execution of an event e from
a state s as the “exploration of e from s” (sometimes, we say a transition is explored to
mean that the corresponding event is explored from the source state).
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To build a model for a given URL, initially we start with a single vertex representing
the initial state of the URL. The initial state is reached by loading the URL. Then,
the crawler identifies the enabled events on the initial state and explores one of the
enabled events. After each event exploration, the model is augmented by adding a new
edge for the newly discovered transition. If a new state is discovered, a new vertex
is added to the model. When from each discovered state s every enabled event at s is
explored, a complete model is obtained for the URL.

During crawling, the crawler often needs to move from the current state to another
known (already discovered) state, in order to explore an event from the latter. This
is either because all the enabled events of the current state might have already been
explored or exploring an event from another state may seem more preferable to the
crawler. In such cases, the crawler uses a transfer sequence to move to the desired state.

Definition 2.4 (Transfer Sequence). A transfer sequence is a sequence of already
explored events executed by the crawler to move from one known state to another.

A transfer sequence corresponds to a path in the extracted model. One may ask
why the crawler needs to execute a transfer sequence instead of storing each DOM
it discovers and simply reloading the stored DOM of the desired state. However, this
is not feasible: this requires the crawler to allocate a significant amount of storage to
store the DOMs and, more importantly, in most RIAs, when a stored DOM is loaded
to the memory, the functionality of the application will be broken since the JavaScript
and the server-side context of the application will not be correct.

In some cases, the crawler executes a transfer sequence after a “reset”.

Definition 2.5 (Reset). A reset is the action of going back to the initial state by
loading the URL.

Sometimes, resetting may be the only option to continue crawling of a URL: we may
reach a state where there is no enabled event, or the crawler needs to transfer to a
state that is only reachable through the initial state of the URL and the crawler has
not discovered a transfer sequence to the initial state from the current state.

2.6. Working Assumptions

When building a model, we make some limiting assumptions regarding the behavior
of the application being crawled. The assumptions we make are in line with the ones
made in most published work: determinism and user inputs.

2.6.1. Determinism. The behavior of the application is deterministic from the point of
view of the crawler: from the same state, executing the same event leads to the same
state3. Formally, the following is satisfied.

∀sx, sy ∈ S ∀e ∈ �. sx = sy ∧ δ(sx, e) = sk ∧ δ(sy, e) = sl ⇒ sk = sl (1)

Similarly, a reset is assumed to always lead to the same initial state.
A dependence of the application that is not directly observable on the client side,

such as server-side states, can potentially violate this assumption. How to cope with
such violations is not addressed in this article.

2.6.2. User Inputs. The second assumption is regarding the user-input values. Entering
a user-input value is also considered as an event during crawling. However, the number
of possible values that can be entered by a user are infinitely many (for example,
consider the text that can be entered in a text field of a form), hence it is not usually

3Because of this assumption, we represent the model we are building as a deterministic FSM: δ is a function.
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feasible to try every possible value during crawling. We assume that the crawler is
provided with a set of user-input values to be used during crawling. We are not making
any assumptions regarding the coverage of the provided set, but merely guarantee that
the model being built is complete for the values provided.

How to a choose a subset of the possible user-input values that will provide a good
coverage is out of scope of this article. There has been some research addressing this
problem [Ntoulas et al. 2005; Wu et al. 2006; Lu et al. 2008]. Ideally, the subset provided
to the crawler must be sufficient to discover all the states of the application.

2.7. Crawling Strategy

A crawling strategy is an algorithm that decides what event should be explored next.
Under the working assumptions of Section 2.6, the basic goal of a crawling strategy is
the construction of a correct and complete model of the application made by systemat-
ically exploring each enabled event at each discovered state.

2.7.1. Efficiency of a Crawling Strategy. Our aim is to efficiently produce a correct and
complete model. Our definition of efficiency goes beyond producing the model as quickly
as possible: in a real setting, the crawl may not run to the end due to lack of time. We
note that states have more information value than the transitions, thus the primary
goal of efficient crawl is to find as many states as possible, as early as possible in the
crawl. This way, if the crawl is stopped before the end, a more efficient strategy will
provide more information. In addition, we still aim for a complete model as quickly as
possible, of course.

This efficiency of a strategy can be measured in terms of number of event executions
and resets it requires to discover all the states, and then the entire model. Event
executions and the resets are the actions that dominate the crawling time and solely
depend on the decisions of the strategy. In general, a reset can be expected to take
more time than an event execution because a reset loads an entire page from scratch
whereas an event usually changes a page partially.

It seems clear that an efficient strategy for RIAs will have the following
characteristics.

(1) An efficient strategy predicts exploring which events are more likely to discover a
new state. Since the number of events to explore in a typical RIA is much larger
than the number of states, a strategy cannot discover the states earlier on during
the crawl if it cannot prioritize the events that will lead to new states.

(2) An efficient strategy minimizes the total length of transfer sequences used during
the crawl since the purpose of executing a transfer sequence is not exploration.

2.7.2. Standard Crawling Strategies. Two existing and widely used crawling strategies
are the breadth first and the depth first. Although these strategies work well with
traditional applications, they are not efficient for crawling RIAs since they lack the
mentioned characteristics of an efficient strategy: Neither strategy has a mechanism
to predict which event is more likely to discover a new state. In addition, both strategies
explore the states in a strict order that increases the number and the length of transfer
sequences used by these strategies. That is, the breadth-first strategy explores the least
recently discovered state first, whereas the depth-first crawling strategy explores the
most recently discovered state first. Note that exploring a state means to explore every
enabled event of the state. This implies, for example, when these strategies explore an
event from a state s, and if as a result, another state s′ is reached, the crawler needs
to transfer from s′ to s in order to finish remaining unexplored events in s (in the case
of depth first, assume s′ is a known state). A more efficient strategy would try to find
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an event to explore from the current state or from a state that is closer to the current
state, rather than going back to the previous state after each event exploration.

2.8. DOM Equivalence

To be able to build a model, the crawler must decide, after each event exploration,
whether the DOM it has reached corresponds to a new state or not. This is needed to
avoid exploring the same states over and over again. Moreover, if the current DOM is
not a new state, the crawler must know to which state it corresponds.

A simple mechanism is equality where two DOMs correspond to the same state if
and only if they are identical. But equality is a very strict relation and not very useful
for most applications. Web pages often contain parts that change when the page is
visited at different times or that do not contain any useful information (for the purpose
of crawling). For example, if the page contains timestamps, counters, or changing
advertisements, using equality will fail to recognize a page when the page is visited at
a later time, simply because these “unimportant” parts have changed (see Choudhary
et al. [2012] for a technique that aims at identifying automatically the nonrelevant
parts in a Web page).

More generally, the crawler could use a DOM equivalence relation4. A DOM equiva-
lence relation partitions the DOMs into equivalence classes such that each equivalence
class represents a state in the model. Using the DOM equivalence relation, the crawler
decides whether the current DOM maps to an existing state in the model or not.

The choice of a DOM equivalence relation should be considered very carefully since
it affects the correctness and the efficiency of crawling. If the equivalence relation
is too strict (like equality), then it may result in too many states being produced,
essentially resulting in state explosion, long runs, and in some cases infinite runs. On
the contrary, if the equivalence relation is too lax, we may end up with client states
that are merged while, in reality, they should be considered different, leading to an
incomplete, simplified model.

Unfortunately, it is hard to propose a single DOM equivalence relation that can be
useful in all situations. The choice of the DOM equivalence depends on the purpose of
the crawl as well as the application being crawled. For instance, if the purpose of the
crawl is content indexing, then the text content of pages should be taken into account.
But, in the case of security analysis, the text content usually has no significance for
deciding the equivalence of DOMs.

For the correctness of the model produced, it is important to have a DOM equivalence
relation that is an equivalence relation in the mathematical sense (i.e., the relation
must be reflexive, symmetric, and transitive). In addition, it is reasonable to constrain
the equivalence relation such that the DOMs in the same equivalence class have the
same set of enabled events, otherwise, two equivalent states would have different ways
to leave them. This will result in a model that cannot be used reliably to move from
one state to the other. When two DOMs with different sets of events are mapped to the
same state, we can never be sure which set of events we are going to find in that state
when we visit it again.

When implementing a DOM equivalence relation, it is important to use an effi-
cient mechanism to decide the equivalence class of a given DOM. It is usually not
feasible to store seen DOMs and compare a given DOM against all. For this reason,

4Mathematically, a binary relation, ∼ on a set A is an equivalence relation iff it has the following three
properties: (1) reflexivity (∀a ∈ A. a ∼ a), (2) symmetry (∀a, b ∈ A. a ∼ b ⇒ b ∼ a), (3) transitivity (∀a, b, c ∈
A. a ∼ b ∧ b ∼ c ⇒ a ∼ c). An equivalence relation partitions the underlying set, that is, divides the set
into nonempty, disjoint subsets whose union covers the entire set. Each subset in the partition is called an
equivalence class.
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fingerprinting techniques are usually used to determine the equivalence class of a
DOM. That is, when a DOM is reached, it is first transformed into a normalized form
(for example, by removing unimportant components of the DOM) and the hash of this
normalized DOM is produced. This hash value is stored and used to efficiently identify
equivalent DOMs: if two DOMs have the same hash values then they are considered
equivalent.

We note that DOM equivalence is a concept independent of the crawling strategy; in
a nutshell, the DOM equivalence shapes the model of the RIA that must be inferred
by any correct crawling strategy. Different (correct) crawling strategies will eventually
yield the same model when crawling the same RIA with the same DOM equivalence,
but some strategies will be more efficient than others in doing so.

2.9. Event Identification

Another challenge in crawling RIAs is identification of events. The crawler should be
able to detect the enabled events at a state and produce identifiers to differentiate
between these events. The event identification mechanism must be deterministic, that
is, for an event at a state, the same event identifier must be produced every time
the state is visited. This is required since the crawler must know whether an event
has already been explored from the state or not. Also, to be able to trigger a known
transition at a later time, the crawler needs to recognize the event that corresponds to
the transition among the events enabled at the source state. The event identification is
also important for DOM equivalence, since we require that two equivalent DOMs need
to have the same set of enabled events.

In addition, an event identification mechanism should allow the crawler to recognize
the instances of the same event at different states. Although it is still be possible to
crawl an application without this capability, this is important for designing efficient
crawling strategies. Recognizing instances of the same event at different states allows
crawling strategies to make predictions about the event’s behavior.

Since events are associated with DOM elements, the problem of event identification is
related to unique identification of DOM elements. This is challenging since it is difficult
to identify a single solution that would work for all applications. One may suggest using
the path of an element from the root node in the DOM tree as an identifier, but this path
changes if the place of an element changes in the tree. Similarly, one may be tempted
to use the id attributes of the DOM elements, but this is not a complete solution on its
own. This is because there can be elements with no id assigned. Moreover, although
the ids of the elements in a DOM are supposed to be unique, there is no mechanism
to enforce this, it is still possible to assign the same id to multiple elements in the
same DOM. Also, there is no requirement for ids to be consistent across different
DOMs. Generating the event identifier based on a combination of information about
an element such as the values of some selected attributes, the number of attributes,
and the element type can be possible, but in this case the question of which attributes
to include/exclude becomes important.

Like DOM equivalence, event identification should be considered independent of the
crawling strategy since a strategy works with any appropriate event identification
mechanism.

3. RELATED WORK

For traditional Web applications, crawling is a well-studied problem [Arasu et al. 2001;
Page et al. 1998] (see Olston and Najork [2010] for a recent survey of traditional
Web crawling). For traditional applications, in addition to the fundamental problem of
automatically discovering existing pages, research has been done on how to best use
the model obtained after crawling. For example, the question of how often a page should

ACM Transactions on the Web, Vol. 8, No. 3, Article 19, Publication date: June 2014.



19:10 M. E. Dincturk et al.

be revisited to detect any possible changes on the page [Cho and Garcia-Molina 2003;
Coffman et al. 1998], or ranking pages according to some “importance” metric in order
to list more important pages first in the search results [Arasu et al. 2001; Page et al.
1998] are addressed. Note that, in the case of RIAs, the current research is still trying
to address the fundamental problem of automatically discovering existing pages.

There has been some research focusing on crawling of RIAs, but to our knowledge
there has not been much attention paid to the efficiency of crawling strategies, except
for Peng et al. [2012]. Most of the existing approaches use either a breadth-first or
depth-first crawling strategy, often with slight modifications. For the reasons explained
in Section 2.7, these strategies are not efficient for RIAs. The major difference of our
work from the existing ones is that our goal is not only being able to crawl RIAs,
but doing so efficiently with better strategies. Another difference of our work is that
we aim at obtaining a complete model that can be used for any purpose. Under our
working assumptions, we guarantee that every state (and transition) will eventually
be discovered. This is not always the goal in the related research.

Mesbah et al. [2008, 2012] introduced a tool, called Crawljax, for crawling AJAX ap-
plications. Crawljax converts AJAX applications to multipage static pages that can be
used for indexing. The tool extracts an FSM model of the application using a variation
of the depth-first strategy. One of the drawbacks of its default strategy is that it only
explores a subset of the enabled events in each state. That is, only those events regis-
tered to DOM elements that are different from the previous state are explored. This
default strategy may not find all the states, since executing a fixed event from different
states may lead to different states5. In addition, Crawljax uses an edit distance (the
number of operations needed to change one DOM to the other, the so-called Levenstein
distance) to decide whether the current DOM corresponds to a different state than the
previous one. If the distance is below some given threshold, then the current DOM is
considered “equivalent” to a previous one. Since the notion of distance is not transitive,
it is not an equivalence relation in the mathematical sense. Using a distance has the
problem of incorrectly grouping together those client states whose distance is actually
above the given threshold. The same group also published research regarding testing of
AJAX applications: Mesbah and van Deursen [2009] focus on invariant-based testing,
Bezemer et al. [2009] focus on the security testing, and Roest et al. [2010] consider the
regression testing of AJAX applications.

Duda et al. [2009] do not propose a new crawling strategy but rather use the breadth-
first strategy to crawl AJAX applications. They propose to reduce the communication
costs of the crawler by caching the JavaScript function calls (together with actual pa-
rameters) that result in AJAX requests and the response received from the server.
If a function call with the same actual parameters is made in the future, the cached
response is used instead of making a new AJAX call. In Frey [2007], the author pro-
poses a ranking mechanism for the states in RIAs. The proposed mechanism, called
AjaxRank, is an adaptation of PageRank [Page et al. 1998]. Similar to PageRank, the
AjaxRank is connectivity based. In the AjaxRank, the initial state of the URL is given
more importance (since it is the only state directly reachable from anywhere), hence
those states that are closer to the initial state also get higher ranks.

Amalfitano et al. [2008] focus on modeling and testing RIAs using execution traces.
Their work is based on first manually obtaining some execution traces from user ses-
sions. Once the traces are obtained, they are analyzed and an FSM model is formed
by grouping together equivalent user interfaces according to an equivalence relation.
In a later paper [Amalfitano et al. 2010], they introduced a tool, called CrawlRIA, that

5What is explained here is the Crawljax’s default strategy. However, the tool can be configured to explore
every event, in which case its crawling strategy becomes the standard depth-first strategy.
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automatically generates execution traces using a depth-first strategy. That is, starting
from the initial state, events are executed in a depth-first manner until a client state
that is equivalent to a previously visited client state is reached. Then the sequence of
states and events is stored as a trace and, after a reset, crawling continues from the
initial state to record another trace. These automatically generated traces are later
used to form an FSM model using the same technique used for user-generated traces.
They do not propose a new crawling strategy.

In Peng et al. [2012], the authors suggested using a simple greedy strategy, that is,
the strategy is to explore an event from the current state if there is an unexplored
event. If the current state has no unexplored event, the crawler transfers to the closest
state with an unexplored event. Except ours, this is the only work that proposed a
different strategy than the standard strategies. The greedy strategy tries to minimize
the transfer sequences, but still does not have a mechanism to decide whether an event
is more likely to discover a new state.

4. MODEL-BASED CRAWLING

Our goal is to crawl RIAs “efficiently”, that is, to find all the client states as quickly as
possible while being guaranteed that every given client state will eventually be found
(under the working assumptions of Section 2.6). Without any knowledge of the RIA
being crawled, it seems difficult to devise a general efficient strategy. For example, the
breadth-first and depth-first strategies are guaranteed to discover a complete model
when given enough time, but are usually not very efficient (for the reasons explained
in Section 2.7).

In this section, we describe a generic framework, called “model-based crawling”,
that can be used to design more efficient strategies: if we can identify some general
patterns that we anticipate will be found in the actual models of the RIAs being
crawled, we can use these patterns to forecast an anticipated model of the application.
These anticipated models can be used as a guide for the crawling strategy that will be
efficient if the application behaves as predicted by the anticipated model. To be correct,
the strategy should also be able to gracefully handle “violations” occuring when the
application does not behave as expected. We formally define the model-based crawling
framework and identify the necessary steps that should be taken to devise a correct
strategy in this framework.

4.1. Metamodel

We use the term metamodel to represent a class of applications that share certain
behavioral patterns. A metamodel is defined by specifying the characteristics of the
applications that constitute the instances of the metamodel. Different metamodels
can be established using different sets of characteristics. These characteristics usually
capture the relations of the events with the states and with the other events. For
example, the characteristics may provide an answer to questions such as: is executing
a particular event going to lead to a new state? or is executing a particular event going
to lead to a state where there is a different set of events?, or which of the known states
is reached when a particular event is executed? and so on. In model-based crawling, a
metamodel is used as a means to anticipate the model of the application being crawled.

4.2. Methodology

We introduce a methodology called “model-based crawling” to design efficient strategies
based on a chosen metamodel. Such a strategy uses the chosen metamodel as a guide
for crawling. The strategy initially assumes that the application we are crawling is an
instance of the chosen metamodel. Thus, the strategy will be very efficient (possibly,
an optimal one) for crawling applications that are instances of the chosen metamodel.
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However, this does not mean that applications that are not instances of the chosen
metamodel cannot be efficiently crawled. In fact, the actual RIA will in practice almost
never be a perfect match for the given metamodel. Model-based crawling must account
for the discrepancy between the anticipated model and the actual model, allowing the
strategy to adapt to the application being crawled.

To summarize, a model-based strategy is designed in three steps.

(1) A metamodel is chosen.
(2) A strategy optimized for those applications that follow the metamodel is designed.

Ideally, the strategy must be optimal if the actual model is a perfect match for the
metamodel.

(3) Steps to take are specified in case the application that is crawled deviates from the
metamodel.

4.2.1. Actual Model vs. Anticipated Model. In model-based crawling we often talk about
two models, namely the actual model of the application and the model we are antici-
pating to find according to the chosen metamodel.

Definition 4.1 (Actual Model). The actual model of a given application is the model
discovered during crawling. As defined in Section 2, we represent the actual model as
a graph G = (V, E).

Definition 4.2 (Anticipated Model). The anticipated model of the application is the
model we are anticipating to discover based on the metamodel characteristics. We
represent the anticipated model also as a graph, written G′ = (V ′, E′).

4.2.2. Choosing a Metamodel. A crucial step in model-based crawling is to find a meta-
model that will allow us to anticipate the behavior of the application as accurately as
possible. It is a challenge to find a good metamodel that is generic enough to cover
most RIAs, but at the same time specific enough to allow making some valid anticipa-
tions. To find a good metamodel, common behaviors that apply to a majority of RIAs
can be observed and experiments with different metamodels can be done. In the next
section, we present the first metamodel we have experimented with as an example for
the model-based crawling approach and provide references to some other metamodels
that are devised after the hypercube. We discuss a possible solution to the challenge of
finding good metamodels as part of the future works.

4.2.3. Designing an Optimized Strategy. When designing a strategy for a given metamodel,
we often use a two-phase approach.

—The state exploration phase is the first phase that aims to discover all those states
anticipated by the metamodel as efficiently as possible. Given the extracted model so
far and assuming the unexplored parts of the application will follow the metamodel
anticipations, it is possible to know whether there is any more state to be discovered.
Once, based on these anticipations, it is decided that there is not any new state to
discover, the strategy moves on to the second phase.

—The transition exploration phase is the second phase, exploring those events that
have not been previously explored. In the state exploration phase, the crawling
strategy does not necessarily explore every event; in this first phase, the strategy
only explores those events which it anticipates will help discovering new states.
However, we cannot be sure that we have discovered all the states unless each event
is explored. If a new state is discovered in the transition exploration phase, or the
strategy anticipates that more states can be discovered, then the strategy switches
back to the state exploration phase.
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4.2.4. Handling Violations. During the crawl, whenever a discrepancy between the actual
model and the anticipated model is detected, the anticipated model and the strategy
are revised according to the actual model uncovered so far. There may be different
ways to achieve this, but one simple and consistent mechanism is to assume that
the characteristics of the metamodel will still be valid for the unexplored parts of
the application. So, using the same characteristics, a strategy can be obtained for the
unexplored parts as was done initially.

After the violations are handled, the anticipated model must conform to the actual
model. This means the violation handling mechanism makes sure that the actual model
is a subgraph of the anticipated model. The difference between the two models lies in
the anticipated states yet to be discovered V A and unexplored anticipated transitions
EA (i.e., V ′ = V ∪ V A and E′ = E ∪ EA).

5. OVERVIEW OF THE HYPERCUBE METAMODEL AND ITS STRATEGY

In the following, we present the hypercube metamodel and an optimal strategy to
crawl the instances of this metamodel as an example of the model-based crawling
methodology. We have introduced the idea of using a hypercube as a metamodel for
crawling RIAs in Benjamin et al. [2010]. In Benjamin [2010] and Benjamin et al. [2011],
we have presented an initial version of the hypercube strategy that is much improved
in this article. In this section, we give an outline of the hypercube metamodel and of its
strategy, and we briefly discuss two other metamodels. In the next section, we provide
the technical details and proofs for the hypercube strategy.

5.1. The Hypercube Metamodel

As its name suggests, the hypercube metamodel is the class of models that have a
hypercube structure. The hypercube metamodel is formed based on two assumptions.

—A1. The events that are enabled in a state are pairwise independent. That is, in a
state with a set of enabled events, executing a given subset of these events leads to
the same state regardless of the order of their execution.

—A2. When an event e is executed in state s, the set of events that are enabled in the
reached state is the same as the events enabled in s minus e.

These assumptions reflect the anticipation that executing an event does not affect
(enable or disable) other events and executing a set of events from the same state
in different orders is likely to lead to the same state. Based on these assumptions,
the initial anticipated model for an application whose initial state has n events is a
hypercube of dimension n. Figure 1 shows a hypercube of dimension 4. The vertex at
the bottom of the hypercube represents the initial state with four events {e1, e2, e3, e4}
enabled. Initially, the remaining vertices represent the anticipated states. Each vertex
is labeled by the events enabled in the state (for readability, not all the labels are
shown). Each edge is directed from the lower incident vertex to the upper incident
vertex and represents an initially anticipated transition of the application.

In a hypercube of dimension n, there are 2n states and n × 2n−1 transitions. The
height of a state in the hypercube is the number of transitions that must be traversed
to reach it from the initial state. The set of states in a hypercube of dimension n can
be partitioned as {L0, L1, L2, . . . , Ln}, where Li is the set of states of height i. We call Li
the “level i” of the hypercube. L0, Ln, and L
n/2� are called the bottom, the top, and the
middle of the hypercube, respectively. We refer to all levels higher than the middle as
the “upper half” and levels lower than the middle as the “lower half” of the hypercube.
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Fig. 1. A hypercube of dimension 4.

5.2. Violations of the Hypercube Assumptions

When the RIA does not fully follow the hypercube metamodel, we have “violations” of
the hypercube assumptions. With this metamodel, there are four possible violations
that are not mutually exclusive. The first metamodel assumption A1 can be violated in
two ways.

—Unexpected Split. In this case, after executing an event, we expect to reach a state
that has already been visited but we actually reach a new state.

—Unexpected Merge. In this case, after executing an event, we unexpectedly reach a
known state (i.e., not the expected known state).

A2 can also be violated in two ways.

—Appearing Events. There are some enabled events not expected to be enabled in the
reached state.

—Disappearing Events. Some events expected to be enabled in the reached state are
not enabled.

As explained before, we need to have an efficient strategy that handles all four
violations.

5.3. The Strategy for the Hypercube Metamodel

For the hypercube metamodel, we presented an optimal crawling strategy in Benjamin
[2010] and Benjamin et al. [2011]. We provide an overview of these algorithms here;
all the technical details and proofs are given in Section 6. These algorithms use the
characterization of the hypercube as a partially ordered set to produce an efficient
strategy.

A hypercube is the partially ordered set of all subsets of n elements ordered by
inclusion. In our case, each subset of the n events found in the initial state represents
a state in the hypercube. This characterization is useful for generating an optimal
state exploration strategy for a hypercube model. In a partially ordered set, a set
of pairwise comparable elements is called a chain. Thus, each directed path in the
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hypercube is a chain. A set of chains covering every element of the order is known as
a chain decomposition of the order. A Minimum Chain Decomposition (MCD) of the
order is a chain decomposition of minimum cardinality (see Anderson [1987] for an
overview of concepts). For the hypercube model, a minimum chain decomposition is
a set A of paths that contain every state in the hypercube such that A is of minimal
cardinality with this property (i.e., following an MCD of a hypercube allows us to visit
every state in the hypercube using the minimum number of events and the minimum
number of resets). Dilworth [1950] proved that the cardinality of any minimal chain
decomposition is equal to the width of the order, that is, the maximum number of
pairwise noncomparable elements. In a hypercube of dimension n, the width is the
number of states in the middle level which is ( n


n/2� ). A minimum chain decomposition
algorithm that can also be used for hypercubes is given in Bruijn et al. [1951]. A chain
given by this algorithm is of the form C =< vi, vi+1, . . . , vi+k >, where vi is a state at
level i. In this decomposition, each chain is a unique path in the hypercube, but it does
not necessarily start from the bottom of the hypercube. In a chain C the state at the
lowest level is called the chain starter state or the bottom of C. The set of MCD chains
produced for a hypercube of dimension 4 (shown in Figure 1) is the following.

(1) < {e1, e2, e3, e4}, {e2, e3, e4}, {e3, e4}, {e4}, {} >
(2) < {e1, e2, e3}, {e2, e3}, {e3} >
(3) < {e1, e2, e4}, {e2, e4}, {e2} >
(4) < {e1, e2} >
(5) < {e1, e3, e4}, {e1, e4}, {e1} >
(6) < {e1, e3} >

By definition, an MCD provides a complete coverage of the states of a hypercube
in an optimal way, that is, using the minimum number of events and the minimum
number of resets. Thus, for state exploration it is enough to generate an MCD of the
hypercube. However, an MCD does not cover all the transitions of the hypercube. In
the initial hypercube strategy, we devised another algorithm that generates a larger
set of chains, called Minimum Transition Coverage (MTC), to cover all the transitions
in a hypercube in an optimal way. Since MCD chains already traverse some of the
transitions, the MTC algorithm can be constrained with an already generated MCD so
that the set of MTC chains contains every MCD chain. The number of paths in an MTC
is ( n


n/2� ) ×�n/2, which is the number of transitions leaving the middle level.
The combination of MCD and MTC provides an optimal way of crawling an RIA that

perfectly follows the hypercube metamodel. That is, for a hypercube, MTC uses the
minimal number of resets and event executions to traverse each transition at least
once. Moreover, among MTC chains the ones that contain the MCD chains are given
exploration priority. Thus all the states of the hypercube are visited first, using the
minimal number of events and resets.

The algorithm also provides a revision procedure to update the existing set of chains
to handle violations of the hypercube assumptions. The revision procedure basically
replaces the chains that become invalid and adds new chains if necessary.

5.4. An Example

To better explain the concepts of the anticipated model and the violations of the hy-
percube assumptions, we provide a simple example. The example details the partial
exploration of an example application whose model is shown in Figure 2. The initial
state of the application s1 has three enabled events {e1, e2, e3} and there are 8 states
in total.
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Fig. 2. Model of the example application.

Fig. 3. (Partial) crawling of the example application.

Figure 3 shows (partially) the steps taken by the hypercube strategy to crawl the
application in Figure 2. Each diagram in Figure 3 shows the current anticipated model:
the solid nodes and edges show the actual discovered model whereas dashed nodes and
edges belong to the anticipated model only.

The first diagram, 3.(1), shows the initial situation: the only discovered state is s1 and
the anticipated model is a hypercube of dimension 3 based on s1. The MTC chains that
are generated for crawling this hypercube are listed next. The highlighted sequences
are the MCD chains.
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(1) < {e1, e2, e3},{e2, e3},{e3}, {} >
(2) < {e1, e2, e3}, {e1, e3},{e1}, {} >
(3) < {e1, e2, e3}, {e1, e2},{e2}, {} >
(4) < {e1, e2, e3}, {e2, e3}, {e2} >
(5) < {e1, e2, e3}, {e1, e3}, {e3} >
(6) < {e1, e2, e3}, {e1, e2}, {e1} >

The hypercube strategy starts with the execution of the first chain. This is shown in
diagrams 3.(1)–(4). In this example, the first chain is executed without any violations
and the states s1, s2, s3, s4 are discovered as anticipated.

3.(5) shows the situation after executing the first event (e2 from s1) of the second
chain. In this case, we were anticipating to reach a new state that has enabled events
{e1, e3} but we have reached an already discovered state (s3) that has e3 as the only
enabled event. This is a violation of both A1 and A2 since we have an unexpected
merge and a disappearing event. Note that, after this violation, the anticipated model
is updated. The state we were expecting to reach is removed since this was the only
way to reach it in the model (this also means that the 5th chain is not valid anymore,
since it was supposed execute an event from the unreachable anticipated state, thus
it has to be removed as well). After this violation we cannot continue with the current
chain; the strategy moves on to the third chain.

3.(6) and 3.(7) show the execution of the first two events in the third chain. These
executions do not cause any violations. However, as shown in 3.(8), the last event in
the chain causes a violation. We were expecting to reach s4 by executing e1 from s6,
but we reached to a new state s7 with two enabled events {e4, e5}. This is a violation
of both A1 and A2: it is an unexpected split and there are appearing/disappearing
events in the state reached. After this violation, the anticipated model is updated by
adding a new hypercube of dimension 2 based on s7. This means new chains have to
be computed and added to the set of existing chains while the current chain becomes
invalid.

As the concepts of an anticipated model and the violations are depicted in Figure 3,
we do not show the further exploration steps that would be performed by the strategy,
until all the events are explored.

5.5. Other Model-Based Crawling Strategies

The hypercube strategy presented here and detailed in the next section is an elegant
one: the metamodel is a simple, formal, and well-studied mathematical object (the
hypercube) and the proposed strategy optimal. Thus, it is a good choice to illustrate
the concepts behind model-based crawling. Unfortunately, the assumptions that are
made about the RIAs being crawled, described in Section 5.1, are not commonly found
in actual RIAs. In practice, as will be shown in Section 7, when crawling “real-life”
RIAs the strategy is faced with violations of the metamodel assumptions fairly often.
Consequently, while still much better than depth-first and breadth-first methods, the
results on these real RIAs are not as good as what is achieved with metamodels that
are closer to the reality of RIAs’ behaviors.

Other metamodels have been proposed based on model-based crawling. These other
models are better representative of real RIAs and, as a consequence, yield better results
than the hypercube on our tests. These metamodels and their strategies have been
described elsewhere. We do include here a brief description of two of them, to show
that model-based crawling can indeed be used to create other strategies that are more
efficient.

The first such model is the Menu model [Choudhary 2012; Choudhary et al. 2013]: in
this metamodel, each event is classified in one of three categories. The “menu” events
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are events that always bring the application to the same state, regardless of the state
from which these events were executed. The “self-loop” events are events that always
bring the application back to the state from which these events were executed. Finally,
the other events are unclassified and no assumption is made regarding what happens
when they are executed. The strategy consists in assigning each event to its category
and using the inferred model rapidly to find new states (see Choudhary et al. [2013]
for details).

The second metamodel is the Probability model [Dincturk 2013; Dincturk et al.
2012]: in this metamodel, instead of assigning events to strict categories, a probability
of finding a new state is calculated for each event. It can be seen as a refinement of
the menu model with a dynamic range of categories in which events are assigned,
and where the category in which an event is assigned changes over time. The strategy
consists in computing the probability of each event using a Bayesian formula that
includes the history of event execution up to that point, and using the current set
of probability to decide which event to explore next (see Dincturk et al. [2012] for
details).

Of course, many other metamodels and corresponding strategies can be created based
on the model-based crawling. If an efficient strategy can be found for the metamodel and
if the metamodel is a good representative of the RIAs being crawled, the result of the
crawl will be good. As more metamodels and efficient strategies for these metamodels
are added to the framework, it will eventually be possible to build a “metacrawler” that
selects the best metamodel on-the-fly based on the actual behavior of the RIAs being
crawled.

6. THE HYPERCUBE STRATEGY: TECHNICAL DETAILS AND PROOF OF OPTIMALITY

In order to execute the hypercube strategy in an efficient manner, the whole strategy
cannot be generated beforehand, because the anticipated model has a size exponential
in the number of events enabled in the bottom state. For example, if we attempted
to crawl an RIA that has 20 events on its initial page (which is in fact a very small
number), we would need to generate 1,847,560 chains. If the application being crawled
happens not to fit the hypercube model, then this precomputation would be largely in
vain.

Fortunately, the selection of the next event to execute can be made on-the-fly. For the
state exploration phase, we need the ability to identify the successor of a state in its
MCD chain. That is, for any state in the hypercube we need a way to figure out which
event to execute to reach the next state in the MCD chain. If we can do this, then we
can execute an MCD chain step by step without costly precomputation overhead and
still have an optimal strategy. We then need to do the same thing with the transition
exploration, which is going to be simpler to achieve with simple greedy approach.
Since there are no stored chains to maintain, in case of violations the revision of the
strategy will also be simplified. In the following, we detail this efficient execution of
the hypercube strategy and provide algorithms for this purpose.

Algorithm 1 shows the global variables and the main body of the hypercube strategy
that extracts a model for a given URL. The global variables are listed next.

—v1 is a vertex representing the initial state. We assume the method Load loads the
given URL and returns a vertex that represents the initial state.

—G = (V, E) is the extracted model, initially G = ({v1},∅).
—G′ = (V ′, E′) is the anticipated model, initially a hypercube based on v1. Note that the

anticipated model (which can be very large) is not actually constructed in memory. It
is merely a hypothetical graph that we use for explanation purposes. The structure
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of a hypercube allows us to know all the transitions from any state without actually
creating the anticipated model.

—vcurrent is a reference to the vertex representing the current state. It is updated after
each event execution.

—phase shows the current phase of the crawling strategy. It can have one of the three
possible values: stateExploration, transitionExploration, or terminate. It is initialized
to stateExploration. Crawling continues until its value becomes terminate.

ALGORITHM 1: The Hypercube Strategy
Input: url: the URL of the application to crawl.
Output: G = (V, E): the model of the application
global v1 = Load(url) ;
global V = {v1}, E = ∅ ; // the actual model
global G′ = (V ′, E′) = A hypercube graph based on v1 ; // the anticipated model
global vcurrent = v1;
global phase = stateExploration;
while phase ! = terminate do

if phase == stateExploration then
StateExploration();

else
TransitionExploration();

end
end

6.1. State Exploration Phase

The optimal state exploration strategy for a hypercube is to follow an MCD of the
hypercube. However, we must do it without generating the chains in the MCD ahead of
time. The key to achieve this is the ability to determine the state that comes after the
current state in an MCD chain, without generating the chain beforehand. For an MCD,
we call the state that follows a given state v in the MCD chain as the MCD successor
of v and write MCDSuccessor(v). In addition to the successors, we also need to identify
from which state an MCD chain starts: the chain starter.

6.1.1. Identifying MCD Successors and Chain Starters. Aigner [1973] and Greene and
Kleitman [1976] present two different approaches for defining the successor function
MCDSuccessor that gives a minimal chain decomposition of a hypercube (according to
Griggs et al. [2004], both approaches yield the same decomposition that is also produced
by the algorithm given in Bruijn et al. [1951]).

The approach of Greene and Kleitman [1976] is based on parenthesis matching and
works as follows: since each state in the hypercube is characterized by a subset of the
set of events enabled at the initial state ({e1, e2, . . . , en}), a possible representation of a
state v in the hypercube is an n-bits string representation x1x2 . . . xn ∈ {0, 1}n such that
the bit xi is 0 if and only if ei is enabled at v. To find MCDSuccessor(v), we use this
bit string representation of v. We regard each 0 as a left parenthesis and each 1 as a
right parenthesis and match the parentheses in the traditional manner as shown in
the Function MCDSuccessor.

The function keeps track of a set called IndexesOfUnmatchedZeros. The set is empty
initially and will contain the indexes of the unmatched zeros at the end. The func-
tion starts from the leftmost bit x1 and scans the string such that when a 0 bit is
encountered, the index of the 0 bit is added temporarily to the set. When a 1 bit is
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encountered, it is matched with the rightmost unmatched 0 bit to the 1 bit’s left. This
is achieved by removing from the set the maximum value. At the end, if the set is
empty (i.e., all 0’s are matched) then v has no successor. That means v is the last state
in the MCD chain. Otherwise, the minimum index stored in the set is the index of
the leftmost unmatched 0 bit. We obtain the bit string of MCDSuccessor(v) by flip-
ping the bit at that position. That means, if i is this minimum index then we have to
execute event ei to reach the MCDSuccessor(v) from v. Using this simple method, an
MCD chain can be followed without precomputation. In addition, the starting states
of these MCD chains are the states whose bit strings do not contain any unmatched
1 bits.

For instance, if the bit string representation of a state v is 1100110001 then we have
the following parenthesis representation

))(())((()
1100110001

where the leftmost unmatched 0 (left parenthesis) is the seventh bit so we have to
execute the corresponding event (i.e., the seventh event among the events enabled at
the bottom of the hypercube) from v to reach the successor of v, MCDSuccessor(v) =
1100111001. In addition, since the bit string of v contains unmatched 1’s (the first and
the second bits), v is not a chain starter state.

Function MCDSuccessor(v)
Input: a vertex v
Output: the MCD successor of v
IndexesOfUnmatchedZeros = ∅;
Let x1x2 . . . xn ∈ {0, 1}n be the bit string representation of v;
i = 1;
while i <= n do

if xi == 0 then
IndexesOfUnmatchedZeros = IndexesOfUnmatchedZeros ∪ i;

else
IndexesOfUnmatchedZeros = IndexesOfUnmatchedZeros\
MAX(IndexesOfUnmatchedZeros);

end
end
if IndexesOfUnmatchedZeros == ∅ then

return nil;
else

bitStringSuccessor = FlipTheBitAt(x1x2 . . . xn, MIN(IndexesOfUnmatchedZeros));
return the vertex corresponding to bitStringSuccessor;

end

6.1.2. Execution of the State Exploration Phase. The procedure StateExploration de-
scribes the execution of the state exploration phase. In this phase, we follow the MCD
chains one by one using the successor function described earlier. In order to execute an
MCD chain, we first need to find a chain starter state whose MCD chain has not been
executed. At the very beginning of the crawl, since the initial state is a chain starter
state, we can immediately start by executing the corresponding MCD chain. But, if the
current state is not a chain starter, we find a path from the current state to the closest
chain starter that we have not tried to reach before (note that the chain starter state is
an anticipated state; it is possible that the chain starter we are expecting to reach does
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not exist)6. We use the path to attempt to reach to the chain starter. (To execute a path,
the function ExecutePath is used. This function, which will be given later, executes the
events in the path one after the other, and if needed updates the actual and anticipated
models. If a violation is detected during the execution of the path, ExecutePath returns
with value false.) If there is no violation, we do reach the chain starter and we start the
execution of the corresponding MCD chain. If a violation occurs, we stop the execution
of the current chain (which is not valid anymore) and start looking for another chain
starter. The state exploration phase finishes when we have tried to execute all MCD
chains for the current anticipated model.

Procedure StateExploration
while there is a chain starter that we have not yet attempted to reach do

Let P be a path in G′ from vcurrent to the closest such chain starter;
// try to reach to the chain starter
if ExecutePath(P) == TRUE then

// execute the MCD chain
vsuccessor = MCDSuccessor (vcurrent);
while vsuccessor! = nil do

if ExecutePath((vcurrent, vsuccessor)) == FALSE then
break;

else
vsuccessor = MCDSuccessor((vsuccessor));

end
end
// if the end of chain is reached, extend the chain
if vsuccessor == nil then

while there is an unexplored transition (vcurrent, v
′; e) do

// explore the event and check for violation
if ExecutePath((vcurrent, v

′; e)) == FALSE then
break;

end
end

end
end

end
phase = transitionExploration;

When executing this strategy, there are some additional steps that we must take
in order to preserve the optimality of the hypercube strategy. First of all, during the
state exploration phase, we explore more than the MCD chains. In addition to the
MCD chains, whenever possible, we try to traverse unexplored transitions on the path
used to reach a chain starter (rather than using already explored transitions). Also,
when we come to the end of an MCD chain, we continue exploring transitions rather
than immediately starting the next MCD chain. In other words, the MCD chains are
extended towards the bottom and the top using unexplored transitions. Otherwise,
those transitions that we have not explored during state exploration while we had the
opportunity will cause at least one extra event execution and possibly one extra reset.
Moreover, when constructing a path P, we want it to be in the following form: P = PP PS,

6If there are multiple such chain starters, we choose the one whose MCD chain is longer. This is because a
longer MCD chain means more anticipated states to discover. In an n-dimensional hypercube, the length of
an MCD chain whose chain starter is at level l is given by the formula: n − 2 × l.
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where PP is a (possibly empty) prefix path that consists of already explored transitions
and PS is a path that contains only previously unexplored transitions. This means, in
a path, all the transitions that follow the first unexplored transition should also be
unexplored. In particular, those paths that are used to reach a chain starter during the
state exploration phase should contain, as much as possible, unexplored transitions and
there should not be an already explored transition following an unexplored transition.
Based on the same principle, the paths that extend the MCD chain toward the top and
the paths taken during the transition exploration (the phase explained next) should
end when a state without unexplored transitions is reached. In that case, we should go
back to the bottom of the hypercube and start exploring a new chain.

6.2. Transition Exploration Phase

The procedure TransitionExploration describes the execution of the transition explo-
ration phase. In this phase, we use a simple greedy strategy to explore the remaining
unexplored events. The strategy is to always explore an unexplored transition that is
closest to the current state. That is, we search in the actual model the shortest path
from the current state to a state which has an unexplored event. We reach that state
using the path, execute the unexplored event, and check whether the state that is
reached violates hypercube assumptions. Any violation is handled as we explain next.

Procedure TransitionExploration
while phase == transitionExploration do

if there is an unexplored transition then
Let (v, v′; e) ∈ E′ be the closest unexplored transition to vcurrent;
Let P be a path constructed by appending (v, v′; e) to a shortest path from vcurrent to v;
ExecutePath(P);

else
phase = terminate;

end
end

The crawl terminates when all the enabled events in each discovered state are
explored.

6.3. Executing Events, Updating the Models and Handling Violations

To execute transitions we call the function ExecutePath. Given a path, the function
triggers the transitions in the path one after the other, possibly after a reset. A transi-
tion is triggered by executing its event. We assume a method called Execute executes
the given event from the current state and returns a vertex representing the state
reached. That is, if the event execution leads to a known state, Execute returns the
vertex of the state. Otherwise, Execute creates and returns a new vertex for the newly
discovered state (we use the method Execute as a notational convenience combining
event execution and the DOM equivalence relation).

The path provided to ExecutePath may contain both anticipated transitions (i.e., not
yet explored) and already explored transitions. The return value of ExecutePath shows
whether a violation of the hypercube assumptions is detected during the execution. If
a violation is detected, the function returns immediately with value false.

After each explored transition, we must update the actual model, check for the
violations of the hypercube assumptions, and, if needed, update the anticipated model.
The function Update describes the mechanism to update the models and to handle the
violations. The returned value of the function is false when a violation is detected.
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Function ExecutePath(P)
Input: a path to traverse
Output: FALSE if any hypercube assumption is violated, otherwise TRUE
if P requires reset then

vcurrent = Load(url);
end
foreach transition (v, v′; e) ∈ P from the first to the last do

vcurrent = Execute(e);
if (v, v′; e) ∈ EA then // is this an event exploration?

if Update((v, v′; e)) == FALSE then
return FALSE;

end
end

end
return TRUE;

The function Update is given the transition that has just been explored. The function
adds this transition to the actual model. If a new state is reached, it also adds a new
state to the actual model. Then it checks for a violation.This is checked by the expression
vcurrent ! = v′. A violation is detected if the inequality holds. Here, we are checking the
inequality of two vertices: one representing the state reached, vcurrent (an actual state)
and the other, v′, representing the state that we were anticipating to reach. The latter
can be representing either an anticipated state or an actual state. The semantics of
the comparison is different in these cases. If v′ represents an actual state (i.e., we have
just explored a transition that was anticipated to connect two known states), then we
just check whether the vertices represent different states. Otherwise, if v′ represents
an anticipated state, then the inequality is satisfied only if the reached state is not new
or the enabled events on the new state do not satisfy the hypercube assumption A2.

When there is a violation, we update the anticipated model, still assuming that
the hypercube assumptions (A1 and A2) remain valid for the unexplored parts of the
application. For this reason, if we unexpectedly reach a new state, we add a new
(anticipated) hypercube to the anticipated model. Note also that in such a case the

Function Update((v, v′; e))
Input: the transition recently explored
Output: FALSE if any hypercube assumption is violated, otherwise TRUE
E = E ∪ {(v, vcurrent; e)} ; // add a new transition to the model
isNewState = vcurrent /∈ V ; // is this a new state?
if isNewState then

V = V ∪ vcurrent;
end
isV iolated = vcurrent ! = v′ ; // is this a violation?
if isV iolated then

if isNewState then
add to G′ a hypercube based on vcurrent;
phase = stateExploration;

end
E′ = E′ \ {(v, v′; e)} ; // remove the violated, anticipated transition
remove from G′ any vertex that has become unreachable;

end
return !isV iolated;
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phase is reset to stateExploration. In case of any violation, we have to remove the
anticipated transition and any unreachable anticipated states from the anticipated
model (again, since the anticipated model is a hypothetical graph, we do not actually
remove anything in the real implementation of the strategy).

6.4. Complexity Analysis

The worst-case time complexity of the hypercube strategy can be analyzed in terms
of the size of the actual model of the application, |E|, and the maximum number of
enabled events at a state, denoted n (i.e., n is the maximum outdegree of the actual
model G). In the state exploration phase, we look for the chain stater state closest to
the current state. To find such a state, we start traversing the actual model built so far
in a breadth-first manner (note that we are searching the graph in memory rather than
executing any event). During the traversal, we consider whether any of the unexplored
transitions leads to a chain starter state. Checking if a transition leads to a chain
starter is done using the parenthesis matching method explained in Section 6.1.1. This
method requires to scan the bit string representation of a state having at most n bits
and this takes O(n) time. The number of unexplored transitions is at most |E|, so a
traversal to look for chain starter takes O(n×|E|). Since there can be at most |V | chain
starter states, this traversal is done at most |V | times. During the crawl, the total time
spent looking for a chain starter is O(n × |E| × |V |). Once a chain starter is found, we
start following the MCD chain. Finding the MCD successor of a state requires O(n)
time. This calculation is done at most once for each state discovered, hence, the total
time for following MCD chains is O(n × |V |).

Therefore, the complexity of the state exploration algorithm is O(n × |E| × |V |) +
O(n × |V |) = O(n × |E| × |V |) = O(n × |E|2)

For the transition exploration phase, we search in the actual model for the closest
unexplored transition. Again, to find such a transition, we traverse the actual model
starting from the current state in a breadth-first manner, which requires O(|E|) time.
This traversal is done at most |E| times.

Hence, the complexity of the transition exploration algorithm O(|E| × |E|) = O(|E|2)
thus, the overall complexity is O(n × |E|2) + O(|E|2) = O(n × |E|2).

The hypercube strategy does not have a significant overhead compared to the greedy
strategy or the optimized implementations of the breadth-first and the depth-first
crawling strategies (we say that an implementation of a standard crawling strategy is
optimized if the implementation always uses the shortest known transfer sequence, as
will be explained in Section 7.2). These strategies have complexity O(|E|2); the factor n
is the overhead of the hypercube strategy.

6.5. Optimality of the Hypercube Strategy

In this section, we show that the hypercube strategy is optimal for applications that
are instances of the hypercube metamodel. In particular, we show that the hypercube
strategy is optimal for both the number of resets and the number of event executions
for the complete crawling of a hypercube model.

In addition to the optimality of the complete crawling (exploring all transitions), we
are also concerned with finding all the states in the hypercube first. The number of
resets required to visit all the states of the hypercube is clearly optimal since we are
using an MCD of the hypercube, which is by definition the smallest number of chains
(thus of resets) to go over all the states. However, for the number of events executed to
visit all the states, the hypercube strategy is deliberately not optimal. This is because
when we come to the end of an MCD chain we continue exploration from the current
state instead of resetting and executing another MCD chain immediately, in order to
keep the number of resets required for the overall crawling at the optimal value. If
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we do not extend the MCD chains, then this number is optimal, but in that case the
number of resets is not optimal anymore for the complete crawl. This is because we
will need to reset again later during the transition exploration phase to visit these
transitions.

6.5.1. Number of Resets. First, we consider the number of resets. Note that, in a hyper-
cube, each transition leaving a state at level i enters a state at level i + 1. Once we are
at a state at level i, unless we reset, there is no way to reach another state at level j ≤ i.
This means that if there are k transitions leaving level i, then to traverse each one at
least once, we have to reset the application k times (counting the first load as a reset).
Since the level with the largest number of outgoing transitions is the middle level, the
lower bound on the number of resets for crawling the hypercube is r∗ = ( n


n/2� ) × �n/2,
where ( n


n/2� ) is the number of states at the middle level and �n/2 is the number of
outgoing transitions for each state at the middle level.

We first introduce the notation that will be used in the following. Let CH =
{C1, C2, . . . , Cm} denote the set of all chains executed by the hypercube strategy when
crawling a hypercube of dimension n. In particular Ci = {vi

0, v
i
1, . . . , v

i
k} represents the

ith chain executed by the strategy where vi
j is the state at level j. We show that the

number of chains executed by the hypercube strategy for crawling a hypercube is r∗ (i.e.,
m = r∗) so only r∗ resets are used by the hypercube strategy. We begin by explaining
the following properties of the hypercube strategy.

LEMMA 6.1. Let Cu ∈ CH such that u ≤ r∗, then there exists a transition t = (vu
i , vu

i+1)
with i ≤ 
n/2� such that Cu is the first chain to traverse t.

PROOF. If u ≤ ( n

n/2� ) then Cu is executed during state exploration and contains an

MCD chain Cu
MCD ∈ Cu. If u = 1, then the statement holds trivially. Let (vu

i , vu
i+1) be the

transition traversed to reach the chain starter vi+1 of Cu
MCD. Then vu

i+1 cannot be in the
upper half, since a chain starter is either at the middle level or in the lower half. Hence
i + 1 ≤ 
n/2� implies i < 
n/2� and obviously (vu

i , vu
i+1) was untraversed before Cu.

If u > ( n

n/2� ) then Cu is executed during the transition exploration phase. According

to the transition exploration strategy, the first untraversed transition of Cu will be
the one closest to the bottom among the untraversed transitions in the hypercube.
Hence, unless all transitions leaving the middle level are traversed, the source of the
first untraversed transition of Cu cannot be at a higher level than the middle. Since
to traverse all the transitions leaving the middle level we need at least r∗ chains and
u ≤ r∗, there exists t = (vu

i , vu
i+1) with i ≤ 
n/2� such that Cu is the first chain to traverse

t.

LEMMA 6.2. If a chain Cu ∈ CH enters state vu
i using an already traversed transition

and leaves vu
i using a previously untraversed transition, then at the time Cu is executed,

all transitions entering vu
i have already been traversed.

PROOF. Let t = (vu
i−1, v

u
i ), t′ = (vu

i , vu
i+1) be the transitions that Cu traversed to enter

and leave vu
i . If u ≤ ( n


n/2� ) then Cu is executed during state exploration and contains
an MCD chain Cu

MCD ∈ Cu. If t and t′ are the transitions on the subpath that leads
to the chain starter of Cu

MCD then t′ is the first untraversed transition in Cu. Since
the hypercube strategy tries to use unexplored transitions as much as possible, all
transitions entering vu

i must have already been traversed in this case. Note that t cannot
be a transition in Cu

MCD as all transitions in an MCD chain are traversed for the first
time. Also t cannot be a transition that is used to extend Cu

MCD towards the top, since
only previously untraversed transitions are used for this purpose. If u > ( n


n/2� ) then Cu
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is executed during the transition exploration phase. Assume there is an untraversed
transition (v′

i−1, v
u
i ). Let (vu

j−1, v
u
j ) be the first untraversed transition in Cu. Obviously

i �= j. If i < j, then (vu
j−1, v

u
j ) cannot be the first previously untraversed transition in

C. The transition exploration strategy would traverse (v′
i−1, v

u
i ) first since it is closer to

the bottom of the hypercube. If i > j, then there is no untraversed transition leaving
vu

i−1, otherwise the transition exploration strategy would prefer the untraversed one
instead of t. But then the transition exploration strategy would not execute t at all,
since the transition exploration strategy does not continue further from the current
state (vu

i−1) when it has no untraversed transition.

LEMMA 6.3. If Cu ∈ CH contains a transition t = (vu
i , vu

i+1) traversed for the first time
by Cu such that i ≤ 
n/2�, then Cu is also the first chain traversing every transition
following t in Cu and the size of Cu is at least 
n/2� + 1.

PROOF. As explained in Section 6.1.2, in a chain executed by the hypercube strategy,
all transitions following the first unexplored transition are also unexplored. Hence, Cu

is the first chain traversing all transitions after t in Cu.
Now we show that the size of Cu is at least 
n/2� + 1. The case i = 
n/2� is trivial.

Assume i < 
n/2�. If Cu is executed during state exploration, then there is an MCD
chain Cu

MCD ∈ Cu. Since every MCD chain contains a state in the middle level, Cu
MCD

also contains a state in the middle level, namely vu

n/2�. If vu


n/2� has a successor vu

n/2�+1

in Cu
MCD we will definitely reach vu


n/2�+1. Otherwise, since it is the first time vu

n/2� is

visited, none of its outgoing transitions is traversed before and the strategy will follow
one of them. Assume Cu is executed during transition exploration. Let (vu

j , v
u
j+1) be any

transition traversed by Cu such that j ≥ i. We know that (vu
j , v

u
j+1) is untraversed before

Cu. By Lemma 6.2, if a transition t′ entering vu
j+1 was already traversed at the time Cu

is executed, then, among all chains that traversed t′, only the one that traversed t′ for
the first time left vu

j+1 using a previously untraversed transition. (If at all, others used
an already traversed transition to leave vu

j+1). Combining this with the fact that in a
hypercube for all levels j ≤ 
n/2� the number of transitions leaving a state v j at level j
is greater than or equal to the number of transitions entering v j , we can conclude that
there is an untraversed transition leaving vu

j+1 and the transition exploration strategy
will follow it.

LEMMA 6.4. Each transition leaving the middle level is traversed by the first r∗
chains.

PROOF. This is a consequence of Lemma 6.1 and Lemma 6.3.

LEMMA 6.5. Each transition leaving a state in the lower half of the hypercube is
traversed by the first r∗ chains.

PROOF. Assume there exists a transition leaving a state in the lower half of the hy-
percube that has not been traversed after r∗ chains. Let vi be a state at level i such that
i < 
n/2� and (vi, vi+1) is untraversed after r∗ chains. Let C = {v0, v1, . . . , vi, vi+1, . . . , vk}
be the chain that traverses (vi, vi+1) for the first time. By Lemma 6.3, k > 
n/2� and
all transitions (v j, v j+1) in C where i ≤ j ≤ k are also traversed for the first time by
C. In particular, (v
n/2�, v
n/2�+1) was untraversed before C. But this contradicts Lemma
6.4.

LEMMA 6.6. Each transition entering a state in the upper half of the hypercube is
traversed by the first r∗ chains.
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PROOF. In a hypercube, the number of transitions entering a state in the upper half
is greater than the number of transitions leaving it. So each state in the upper half
must be visited more than the number of outgoing transitions. The hypercube strategy
continues to traverse untraversed transitions as long as the current state has one.
That means, if all incoming transitions of an upper-level state are traversed then all
outgoing transitions are also traversed by the strategy. By Lemma 6.4, every transition
entering the level 
n/2� + 1 (first level of the upper half ) is traversed by r∗ chains. The
result extends similarly for the higher levels.

THEOREM 6.7. Every transition in the hypercube is traversed by the first r∗ chains of
the hypercube strategy.

PROOF. Follows from Lemma 6.5 and Lemma 6.6.

6.5.2. Number of Event Executions. The hypercube strategy is also optimal in terms of the
total number of events executed to crawl an application whose model is a hypercube.
The optimal number of event executions required to crawl a hypercube of dimension
n ≥ 2 is e∗ = 2n−2n + r∗n/2. For simplicity assume n is even, then this formula can
be derived as follows (the number is also valid for odd n). As we have shown, at least
r∗ chains are needed to crawl the hypercube and each of these chains has to cover a
transition leaving a middle-level state. As a result, some transitions in the lower half
must be traversed more than once. Since there are r∗ chains to execute, for 1 ≤ i ≤ n/2
the total number of transition traversals for transitions entering level i is r∗. So, for all
transitions whose source is in the lower half, r∗n/2 event executions are needed. Each
transition whose source is in the middle level or the upper half needs to be executed at
least once. There are 2n−2n such transitions. So in total, the optimal number of event
executions to crawl the hypercube is e∗ = 2n−2n + r∗n/2. It is not difficult to see that
the hypercube strategy uses the optimal number of event executions as stated by the
following.

THEOREM 6.8. The hypercube strategy executes exactly e∗ events when crawling a
hypercube application.

PROOF. We have already shown that the hypercube strategy uses the optimal number
of chains, which is r∗. So, in the lower half of the hypercube no more than r∗n/2 events
will be executed. Then it is enough to show that each transition leaving a state at level

n/2� ≤ i ≤ n is traversed exactly once. By Lemma 6.1 and Lemma 6.3, each chain
Cu ∈ CH is the first chain to traverse some t = (vu

i , vu
i+1) with i ≤ 
n/2� and every

transition after t is also traversed for the first time by Cu, including all transitions
traversed by the hypercube strategy in the upper half. Hence, there is no chain that
retraverses a transition in the upper half. Since we have also shown that the hypercube
strategy covers all transitions, each transition in the upper half is traversed exactly
once.

7. PERFORMANCE EVALUATION

In this section, we present the results of our experimental study using five real and
three test applications. The research questions for this study are as follows.

—Can a model-based strategy be more efficient than the standard crawling strategies
for crawling RIAs?

—How does the hypercube strategy perform when the application being crawled does
not follow the hypercube metamodel?
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7.1. Measuring the Efficiency of a Strategy

We defined the efficiency of a strategy in terms of the time the strategy needs to discover
all the states of the application. Although we provide the time measurements for this
experimental study, our preferred way of assessing efficiency is to measure the number
of events executed and the resets used by a strategy during the crawl. The reason is
that the time measurements also depend on factors external to the crawling strategy,
such as the hardware used to run the experiments and the network delays, which can
be different in different runs. In addition, the event executions and resets are normally
the operations that dominate the crawling time and they only depend on the decisions
of the strategy. We combine the number of resets and the event executions used by a
strategy to define a cost unit as follows.

—We measure for each application:
—t(e)avg: the average event execution time. This is obtained by measuring the time

for executing each event in a randomly selected set of events in the application
and taking the average.

—t(r)avg: the average time to perform a reset.
—For simplicity, we consider each event execution to take t(e)avg and take this as a cost

unit.
—We calculate “the cost of reset”: cr = t(r)avg/t(e)avg.
—Finally, the cost that is spent by a strategy to find all the states of an application is

calculated by

ne + nr × cr,

where ne and nr are the total number of events executed and resets used by a strategy
to find all the states, respectively7.

7.2. Strategies Used for Comparison and the Optimal Cost

We compare the hypercube strategy as well as the other two model-based crawling
strategies, the menu and the probability, with the following.

—The Optimized Breadth-First and the Optimized Depth-First Strategies. These are
the standard crawling strategies that are widely used. The breadth-first strategy
explores the least recently discovered state first. The depth-first strategy explores
the most recently discovered state first. Our implementations for the breadth-first
and the depth-first methods are optimized so that (like the other strategies), to reach
the state where an event will be explored, the shortest known transfer sequence from
the current state is used during the crawl. The “default” versions of the breadth-first
and the depth-first strategies (simply resetting to reach a state) fare much worse
than the results presented here.

—The Greedy Strategy. This is a simple strategy that prefers to explore any event from
the current state if there is an unexplored event. Otherwise, it explores any event
from any state that is closest to the current state.

—The Optimal Cost to Discover All States. We also present, for each application, the
optimal cost required to discover all the states of the application. The optimal cost
can only be calculated after the model of the application is obtained using one of
the crawling strategies. The optimal cost can be calculated by finding an optimal

7We measure the value of cr before crawling an application and give this value as a parameter to each
strategy. A strategy, knowing how costly a reset is compared to an average event execution, can decide
whether to reset or not when transferring from the current state to another known state. Although our
measurements on the test applications show that the cost of reset is greater than 1, this does not mean it
cannot be less than or equal to 1.
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path that visits all nodes (states) of the known directed graph (model), known as
the Asymmetric Traveling Salesman Problem (ATSP). We use an exact ATSP solver
[Carpaneto et al. 1995] to get an optimal path. Note that this optimal path cannot
be known before crawling, hence it is not a crawling strategy. This is provided just
to see how far the strategies are from an optimal solution.

7.3. Subject Applications

We compare the strategies using three test and five real RIAs. We acknowledge that
the number of applications is not very high, however, we are limited by the availabil-
ity of tools that can be used for RIA crawling. For crawling an RIA, a tool must have
the complete control of the JavaScript execution. The existing tools that provide such
level of control are mostly experimental and typically implement a small subset of
JavaScript. Thus, often each new RIA requires a significant amount of work to improve
existing tools by implementing the JavaScript functionality required by each new ap-
plication. This work, unrelated to our research focus, prevents us from using a large
set of applications for experiments.

In addition, each application crawled is first mirrored on our Web site (the mirrored
version is the one crawled), to ensure that we are able to again crawl the same version
and to avoid stressing the real site with a large number of automated requests. This
also prevents too much variation due to network delay.

The applications we have used in this experimental study are the following8.

(1) Bebop. This is an AJAX-based bibliography browsing application. It allows filtering
a bibliography according to different categories (authors, year, etc.) and displaying
details about each publication in the bibliography.

(2) Elfinder. This is an AJAX-based file management application. The version we have
used allows browsing a file system and displaying a preview for each directory/file.

(3) FileTree. This is an AJAX-based file explorer, an application that allows navigating
a directory structure on the Web server.

(4) Periodic Table. This is an AJAX-based periodic table. When a chemical element is
clicked in the table, detailed information about the chemical element is displayed.

(5) Clipmarks. This is an AJAX-based social network to easily share multimedia (text,
video, images) found on the other Web sites with the users of the network. We have
used a partial local copy of this Web site for the experimental study.

(6) Altoro Mutual. This is an AJAX version of a demo Web site by IBM R© Security
AppScan R© Team. It is a fictional banking site.

(7) TestRIA. This is an AJAX test application we developed that is in the form of a
generic company site.

(8) Hypercube10D. This is a test application whose model is a 10-dimensional hyper-
cube.

Except for the Hypercube10D, the models of the applications are completely unrelated
to the hypercube metamodel (i.e., they do not follow the hypercube metamodel). Table I
summarizes the number of states (#s), the number of transitions (#t) (both obtained
after crawling), and the cost of reset (cr) according to our measurements.

7.4. Experimental Setup

We have implemented all the mentioned crawling strategies in a prototype of IBM R©

Security AppScan R© Enterprise, a security scanner for Web applications9. Each strategy
is implemented as a separate class in the same codebase. That is, each strategy uses

8Links to the applications can be found at http://ssrg.eecs.uottawa.ca/testbeds.html.
9The implementation details are available at http://ssrg.eecs.uottawa.ca/docs/prototype.pdf.
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Table I. Applications

Name #s #t cr

Real Applications

Bebop 1,800 145,811 2
Elfinder 1,360 43,816 10
FileTree 214 8,428 2
Periodic Table 240 29,034 8
Clipmarks 129 10,580 18

Test Applications
TestRIA 39 305 2
Altoro Mutual 45 1,210 2
Hypercube10D 1,024 5,120 3

the same implementation of the DOM equivalence relation, an event identification
mechanism, the same embedded browser (JavaScript execution and DOM manipulation
engine), and so on. For this reason, at the end of the crawl each strategy discovers the
same model for an application (this is also verified by comparing the models produced
by each strategy against each other). The sole difference is the decisions the strategies
make to discover this model.

Although the majority of the events in our subject applications are user interac-
tion events, some applications, for example, Elfinder, have timeout events as well.
Our crawler executes any timeout events in addition to the event triggered by user
interactions. After each event execution (or page reload), the crawler checks whether
there are timeout events registered as a result of the event execution (page load). The
crawler executes all such timeout events, so that we reach a stable DOM after each
event execution.

To verify that the model extracted by our tool is a correct model of the application
behavior, we manually checked the states and transitions in the model against the
observed behavior of the application in an actual browser. To ease this verification
process, we have developed a model visualization tool that can represent the extracted
model as a directed graph (shown in Figure 4). It also allows us to replay in an actual
browser the transitions the crawler traversed to reach any state.

7.5. Results

For each application and for each strategy, we present two sets of measurements:

(1) how fast the strategy discovers the states of the application (i.e., strategy efficiency),
(2) how fast the strategy finishes crawling (i.e., discovers all the transitions of the

application).

Among these two, we are primarily interested in the first. In our definition, the first
set of measurements shows how efficient the strategy is for an application. However, we
have to crawl each application completely to obtain the first set of measurements, since
the crawler cannot know for sure that all the states are discovered until all transitions
are taken at least once.

7.5.1. Strategy Efficiency. We use box plots to present the results for the strategy effi-
ciency. The box plots in Figure 5 show the cost measurements (as defined in Section 7.1)
and the box plots in Figure 6 show the time measurements (in seconds). Each figure
contains a box plot for each (application, strategy) pair. A box plot consists of a line and
a box on the line. The minimum point of the line shows the cost (or time) of discovering
the first state (equal to cr for the plots in Figure 5). The lower edge, the line in the
middle, and the higher edge of the box show the cost (or time) of discovering 25%, 50%,
and 75% of the states, respectively. The maximum point of the line shows the cost (or
time) of discovering all the states. The plots are drawn in logarithmic scale for better
visualization.
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Fig. 4. On the left, the extracted model of the FileTree partially shown in the visualization tool (the tool is
configured not to show all the transitions for a clearer picture) and a state that is selected to be shown in
the browser. On the right, the page corresponding to the selected state, reached automatically by replaying
the event executions taken by the crawler in a real browser.

Fig. 5. Costs of discovering the states (strategy efficiency), in logarithmic scale. The cost measure com-
bines the number of events executed and the number of resets used by the strategy during the crawl; see
Section 7.1.

In Figure 5, the costs of discovering states are shown. The vertical dotted lines in this
figure shows the optimal cost of discovering all the states for an application. It can be
seen that for all applications the hypercube strategy is significantly more efficient than
the breadth-first and the depth-first strategies. It is also evident that the hypercube
strategy shows a similar performance to the greedy strategy when the application does
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Fig. 6. Time for discovering the states (strategy efficiency), in logarithmic scale.

not follow the hypercube metamodel (all applications except the Hypercube10D). The
other model-based crawling strategies, the menu and the probability, are even more
efficient.

The results are not surprising, given the fact that the hypercube strategy always
tries to explore an event from a state that is closer to the current state when the appli-
cation does not follow the hypercube metamodel. This means the hypercube strategy
falls back to a greedy strategy when the application does not follow the metamodel.
However, there is a slight difference between the greedy strategy and the hypercube.
Among two states that are at the same distance from the current state, the hypercube
strategy prefers to explore an event from the state that has the larger number of events
(in the same case, the greedy strategy has no preference). This is because, according
to the hypercube assumptions, the state with more enabled events has a larger antici-
pated model, which means more chances of discovering a new state. This explains the
slight performance differences that can be seen between the hypercube and the greedy.
It is worth noting that, although the application Altoro Mutual does not follow the
hypercube metamodel, this preference makes the hypercube strategy slightly better
for the application. Of course, the Hypercube strategy guarantees an optimal crawling
when the application follows the hypercube metamodel, as can be seen in the case of
Hypercube10D.

There is, however, a more important difference between the greedy strategy and the
hypercube strategy: the hypercube strategy is usually slightly better, and at worst as
efficient as the greedy strategy. But the hypercube strategy is a good illustration of a
more general approach to model building, namely model-based crawling. It opens up
the possibility to improve upon these results using other model-based strategies, such
as the menu and the probability, which are based on the same principles. The greedy
strategy, on the other hand, does not suggest new principles that could be leveraged to
improve the results.

In Figure 6, the time measurements are presented. The time measurements show
very similar results and verify that the event executions and resets indeed dominate
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the crawling time. Hence, the number of events and the number of resets are valid
metrics to assess the performance of a crawling strategy. The major source of differ-
ence between the time measurements and our cost measurements is the simplifying
assumption we are making (when calculating the cost) that each event execution takes
the same average time. As a result of this simplification, for Clipmarks, our measured
value for cost of reset (cr) seems a bit higher than the real time delays incurred by
the resets during crawling. This is why, for this application, the breadth-first method
is punished too much for using a significantly larger number of resets when calculating
its cost.

We also present the exact numbers for when all the states are discovered. Table II
shows the number of events executed, the number of resets used, the cost (calculated
as explained in Section 7.1), and the time it takes for each strategy to find all the states
of an application (i.e., the data in this table corresponds to the maximum points on the
box plots). The numbers show that the breadth-first strategy needs significantly more
resets whereas the depth-first one executes significantly more events.

7.5.2. Completing the Crawl. The previous results show the measurements until all the
states are discovered by the strategies. However, the crawl usually does not end at this
point, since the crawler does not know that all the states are discovered. The crawler
has to first extract the complete model (explore all transitions), before it can conclude
that all states are discovered. In this section, we present the measurements when the
complete model is extracted. As discussed earlier, this data has no significance in our
definition of crawling strategy efficiency.

The results presented in Table III show the number of events executed, the number
of resets used, the cost (calculated as explained in Section 7.1), and the time it takes
for each strategy to crawl the applications. It can be seen that two of the model-based
strategies, the hypercube and the probability, as well as the greedy, finish crawling sig-
nificantly faster than the standard crawling strategies. The menu strategy is also more
efficient in terms of event executions and resets, but in terms of time, the menu strategy
takes slightly more time than the breadth-first version for Bebop and Elfinder. This is
because the transition exploration phase for the menu strategy is not implemented in
the most optimized way.

8. CONCLUSION AND FUTURE WORK

The main contributions of this article can be summarized as follows.

—We provide a discussion of the important concepts and challenges for crawling of
RIAs.

—We present model-based crawling as a general approach to design efficient crawling
strategies for RIAs.

—We explain the hypercube metamodel and its corresponding strategy as an example
strategy designed using model-based crawling methodology. Also, proof of optimality
of this strategy for applications that follow the hypercube metamodel is given.

—We detail an experimental study where the performances of the model-based strate-
gies, the hypercube, the menu, and the probability, are compared with existing crawl-
ing strategies on five real RIAs as well as three test applications.

The results we have obtained show that more efficient crawling strategies are possible
using a model-based crawling method. Although the hypercube strategy is a good
example to show how the model-based crawling works and has a good performance
compared to the existing strategies used so far in the related works, the experimental
study made it evident to us that the hypercube assumptions are too strict for most real
RIAs; they are violated too often. The model-based crawling strategies designed after
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the hypercube model, the menu and the probability, have more realistic assumptions.
Thus, they are much more efficient for real application than any other known crawling
strategy. However, there are still many opportunities for improvement. We conclude
the article with a discussion of some future research directions.

8.1. Adaptive Model-Based Crawling

One important aspect of model-based crawling is to decide on a metamodel for which
the crawling strategy will be optimized. However, it is often difficult to predict a good
metamodel for an arbitrary application before crawling. A possible solution to this
problem might be using an adaptive model-based crawling approach. Instead of fixing
a metamodel before crawling, the crawler could start exploring the application using
a generic and relatively efficient strategy. Once some initial information is collected
using this strategy, the partially extracted model could be analyzed by the crawler
and a model-based strategy that would suit the application could be chosen. However,
this requires to have a set of metamodels available. The hypercube strategy we have
presented is a first step towards this end and it has been followed by the probability
[Dincturk et al. 2012] and the menu [Choudhary et al. 2013] strategies.

This idea of dynamically choosing the metamodel can even be developed further,
so that a suitable metamodel could be constructed during the crawl. This would be
possible when the model of the application has some repeating patterns. For example,
we might detect that the instances of the same subgraph repeat themselves in the
partially extracted model (as an example, we can think of a large application that uses
the same navigational pattern to present different content, like a Web-based product
catalog). In that case, it could even be possible to generate an optimal strategy for such
subgraphs. Whenever the crawler can predict that some portion of the application is
likely to follow this same structure, we can apply this dynamically generated, optimized
strategy for exploring that portion.

A recent paper [Faheem and Senellart 2013] applies the adaptive crawling idea to
Web sites generated using content management systems like WordPress, vBulletin,
etc. When crawling the Web, if they recognize that a Web site is following the template
(metamodel) of one of these systems then they apply a crawling strategy optimized for
that template.

8.2. Avoiding New States without New Information

A Web page in an RIA often consists of portions that can be interacted independently.
For example, each widget in a widget-based application, or each container that mimics
the functionality of a window of a desktop application, usually behave independent of
each other. Normally, every different combination of the contents of such independent
parts will be considered as a new state. However, the majority of such states will not
contain any new information. To be able to efficiently crawl these kind of applications,
the crawler should be able to predict those events that will lead to new states without
new information and assign them lower priorities. The key to achieve this is the ability
to detect such independent parts and crawl them separately.

8.3. Greater Diversity

For a large RIA, it is not feasible to wait until crawling finishes to analyze the pages
discovered. The analysis of the discovered pages usually takes place while crawling
still continues. This is why we stress the importance of the ability to find new pages
as soon as possible. In addition to that, rather than exploring one part of the applica-
tion exhaustively only to keep discovering new but very similar pages, we would like
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discover dissimilar pages as much as possible earlier on during the crawl. For example,
consider a Web page that has a long list of events where each event leads to a similar
page. It is not smart to first exhaustively explore each of these events, before trying
something outside this list. This is true especially for testing, since the similar pages
would probably have the same problems. It is not of much use to find a thousand in-
stances of the same problem when finding one of them would suffice to fix all instances.
For this reason, new techniques are needed that would diversify the crawling and
provide a bird’s-eye view of the application as soon as possible. To this end, crawling
strategies may benefit from algorithms that will help in detecting similar pages, and
events with similar functionality.

8.4. Relaxing the Determinism Assumption

Another common limitation of the current RIA crawling approaches is the determinism
assumption, that is, the expectation that an event will lead to the same state whenever
it is executed from a given state. This is not very realistic since most real Web applica-
tions may react differently at different times. Crawling strategies should be improved
in order to handle such cases.

8.5. Distributed Crawling

Another promising research area is to crawl RIAs using multiple concurrently running
processes to reduce the crawling time. The existing distributed crawling techniques for
traditional applications distribute the workload based on URLs. However, this would
not be sufficient in the context of RIA crawling, so new distributed crawling algorithms
are required for RIAs.
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