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Abstract—Crawling is a necessary step for testing web 

applications for security. An important concept that impacts the 
efficiency of crawling is state equivalence. This paper proposes 
two techniques to improve any state equivalence mechanism. The 
first technique detects parts of the pages that are unimportant for 
crawling. The second technique helps identifying session 
parameters. We also present a summary of our research on 
crawling techniques for the new generation of web applications, 
so-called Rich Internet Applications (RIAs). RIAs present new 
security and crawling challenges that cannot be addressed by 
traditional techniques. Solving these issues is a must if we want to 
continue benefitting from automated tools for testing web 
applications.   

Keywords: Security Testing, Automated Crawling, Rich Internet 
Applications, State Equivalence 

I.  INTRODUCTION 
The concerns on the security of the web applications have 

grown along with their popularity. One of the response to 
these concern about security issues was the development of 
automated tools for testing web applications for security.  

There are various commercial and open-source black-box 
web application security scanners available (see  [1] for a 
recent survey). A black-box web application security scanner 
is a tool that aims at finding security vulnerabilities in web 
applications without accessing the source-code. That is, a 
black-box scanner has only access to the client-side just like a 
regular user of the application. When a black-box security 
scanner is given the URL pointing to the initial page of the 
application (together with other minimal information that may 
be required, such as username and password, if the application 
requires login), it simply tries to discover every page (client-
state) of the application that is reachable from the initial page. 
As the new pages are discovered, the tool scans each one for 
possible security vulnerabilities by applying test cases and 
reports any detected vulnerability to the user. These tools can 
easily apply a large number of security tests automatically at 
each discovered page which would otherwise require a long 
time if done manually.  

It is clear that effectiveness of a security scanner depends 
not only on the quality and coverage of the test cases but also 

on how efficient it is at discovering the pages (client-states) of 
the application. This activity of automatic exploration of the 
web application is called crawling. The result of crawling is 
called a “model” of the application. This model simply 
contains the discovered client-states and ways to move from 
one state to the other within the application. Only after 
obtaining a model of the application can a security scanner 
know which states exists and how to reach them in order to 
apply the security tests. Thus, crawling is a necessary step for 
security scanning as well as it is necessary for content 
indexing and testing for any other purpose such as 
accessibility. 

The new generation of web applications, sometimes called 
Rich Internet Applications (RIAs) poses a challenge for the 
security scanners. This is because, the crawling techniques used 
for traditional web applications are not sufficient for RIAs. 
Without an appropriate crawling ability a security scanner 
cannot be used on RIAs.  

RIAs are much more responsive and user-friendly than their 
traditional counterparts. This is thanks to technologies such as 
AJAX (Asynchronous JavaScript and XML) [2] which 
combine client-side scripting with asynchronous 
communication. That is, client-side scripts (JavaScript) allow 
computations to be carried out at the client-side. It is also 
possible to register JavaScript code as event handlers on 
HTML elements so that when a user interacts with the element 
the corresponding event (click, mouse over etc.) fires and the 
registered code is run. When JavaScript code runs, it has the 
capability of accessing and modifying the current page by 
changing the DOM (Document Object Model) [3] which 
represents the client-state of the application. In addition, these 
scripts can communicate asynchronously with the server so that 
new content from the server can be retrieved and used to 
modify the current state into a new one. In a sense, RIAs have 
brought the feeling of the desktop applications to the web while 
still preserving the convenience of being on the web. As a 
result, there are RIA versions of even the most classical 
desktop applications (word processors, photo editors, media 
players etc.) 
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Traditional crawling techniques are based on the fact that in 
a traditional application each page is identified by a URL. So, 
to crawl a traditional application it is enough to collect and visit 
the URLs on the each page to discover the states of the 
application. But in RIAs, client-side scripts are able to change 
the state on the client-side, which means that the URL does not 
necessarily change when the state changes (many  RIAs have a 
single URL which points to the initial state). That means that in 
order to crawl RIAs, a crawler needs to exercise event-based 
exploration as well as the traditional URL-based exploration.  

Primarily motivated by the aim of making security scanners 
usable on RIAs, our research group has been working in 
collaboration with IBM to design efficient RIA crawling 
techniques. We have implemented some of the ideas of this 
research in a prototype of IBM® Security AppScan® Enterprise 
[4], a security scanner for web applications. 

Previously we have presented in detail the requirements and 
anticipated problems for a solution to the RIA crawling 
problem as well as the shortcomings of the current attempts to 
solve this problem [5]. Basically we require a RIA crawler to 1) 
produce a complete model in a deterministic way (it should 
capture all the states and be able to produce the same model 
when run multiple times on an unchanged website); 2) be 
efficient (discover as many states as possible in a given amount 
of time); 3) use an appropriate state equivalence relation (i.e. a 
mechanism to identify the states that should be considered as 
the same) depending on the purpose of the crawl and the 
application.  

We have also stated that satisfying these requirements may 
be possible only when some limiting, but common 
assumptions, are made about the application: 1) the application 
should not have server-side states. That is, the global state of 
the application is only determined by the client-state. In that 
case we can expect that repeating an action on the same client 
state at different times will always result in the same state. 2) 
On a page where the user can enter a free text input in a form, 
using a finite set of representative input values is enough for 
crawling purposes. This last assumption helps us not to miss 
any state due to not entering a specific user-input value, since 
in practice the result of an action might be different based-on 
the user-input values.  

Some of the important anticipated problems were designing 
efficient strategies, choosing appropriate user-input values, 
deciding what to do if the application has some server-side 
states, how to choose an appropriate state equivalence relation, 
how to deal with the state explosion problem and how to 
further enhance the model for security.   

As a step forward in addressing some of these issues, in this 
paper we focus on two important concepts that are important 
for efficient RIA crawling: state equivalence and crawling 
strategy. State equivalence is the mechanism used by the 
crawler to decide whether or not two states should be regarded 
as the same. This is important since there are often situations 
where, although two pages reached by the crawler are not 
exactly the same, they are equivalent for the purpose of 
crawling. The simple example is an application that places an 
advertisement in each page. For this application, visiting the 
same page at different times will most likely result in pages 

that have different advertisements while everything else 
remains the same. Although these two pages are not exactly the 
same, a good state equivalence relation should detect and 
ignore these “unimportant” parts. Failure to do so will likely 
result in infinite crawling runs or at least unnecessarily large 
state spaces.  

A crawling strategy is an algorithm which decides what 
actions to take next. For example, the crawling strategy decides 
which URL to follow next if it is doing traditional URL-based 
exploration and in the case of event-based exploration (in 
RIAs), the crawling strategy decides from which state which 
event should be executed next.   

We have been working on the techniques to improve state 
equivalence relations in addition to designing crawling 
strategies for event-based crawling of RIAs. In this paper, we 
present two techniques that help to improve the existing state 
equivalence relations. Also we present a summary of our 
research on crawling strategies. 

This paper is organized as follows. In Section 2, we present 
the techniques for improving any state equivalence relation. 
Section 3 contains a summary of our recent research on 
crawling strategies for RIAs. Section 4 presents the related 
work and Section 5 concludes with a summary of 
contributions. 

II. STATE EQUIVALENCE 
During crawling, the crawler navigates through the states 

of the application by following the found links or executing an 
event on the current state. When the crawler reaches a state, it 
must know if it had already been to that state before. 
Otherwise, the crawler would regard each state as a new one 
and it could never finish crawling and build a meaningful 
model, it would just keep exploring the same states over and 
over again.  

The mechanism that is used by the crawler to decide if a 
state is equivalent to an already discovered one is called the 
state equivalence relation.  With a state equivalence relation 
the crawler will recognize an already visited state and hence it 
will not explore already explored events unnecessarily. 
Moreover, by identifying the current state it will know where 
it currently is in the partial model constructed up to that point. 
Thus, the crawling strategy will be able to decide on its next 
moves based on that model (i.e. crawling strategy will know 
whether there is an already executed sequence of events that 
will lead from the current state to some other state). 

It seems very difficult to come up with a single solution for 
equivalence. The simplest equivalence relation is the equality. 
In this case, two states are considered equivalent only if they 
are identical. But for most applications, this definition is too 
strict and would lead to very large or infinite models. Clearly, 
deciding whether a given application state is “similar” to 
another state very much depends on the application as well as 
the purpose of the crawl. As an example, if the purpose of 
crawling is security scanning then the text content of the pages 
would not be very important, hence could be ignored. 
However, from the content indexing and usability point of 
view, the text content should not be ignored when deciding the 
equivalence of states. Being able to adapt the equivalence 
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relation to the application and the purpose of the crawl is thus 
very valuable. For these reasons, we believe that state 
equivalence should be considered independent of the crawling 
strategy. 

The choice of an appropriate equivalence relation should 
be considered very carefully. If an equivalence evaluation 
method is too stringent (like equality), then it may result in too 
many states being produced, essentially resulting in state 
explosion, long runs and in some cases infinite runs. On the 
contrary, if the equivalence relation is too lax, we may end up 
with client states that are merged together while, in reality, 
they are different, leading to an incomplete, simplified model.  

Although choosing a state equivalence relation requires 
many considerations, its correctness should not be put into 
negotiation. That is, a state equivalence relation should be an 
equivalence relation in mathematical sense. Moreover, it 
seems reasonable to insist that equivalent states have the same 
set of events, since otherwise two equivalent states would have 
different ways to leave them.  

In the following, we present two novel ideas to help 
improve the efficiency of state equivalence of web application 
being crawled in an automated and efficient manner. 

A. Load, Reload: Discovering Unnecessary Dynamic 
Content of Web Page. 
As mentioned above, Web pages often contain bits of 

content that change very often but are not important in terms 
of making two states non-equivalent. When determining 
whether or not two states are equivalent, there is a desire to be 
able to ignore these constantly changing but irrelevant portions 
of the page. This is important since failing to identify data that 
should be ignored could cause an equivalence function to 
evaluate to false when it otherwise would not. 

Thus one of the important challenges when defining state 
equivalence functions is to exclude from the content 
considered in the equivalence function the portion of the 
page/DOM that may introduce false positives. The most 
common current solution to the problem is to manually 
configure the crawler on a case by case basis, to make it 
ignore certain types of objects that are known to change over 
time, such as session ids and cookies. This is highly 
inefficient, and is also inaccurate, since most of the time this 
list is incomplete. Another solution is to use regular 
expressions to identify in the DOM the portions of the content 
that can be ignored. The main problem with the latter solution 
is the difficulty of creating the regular expressions and the fact 
that they are different for different sites. Automating the 
detection of irrelevant page sections is desired since those 
differences are also page-specific and as a consequence, the 
irrelevant parts vary from page to page even within the same 
website. 

We have developed a technique for automatically inferring 
the portions of the page that should be ignored. The technique 
requires loading a given web page twice. The DOM of the 
page at each load can then be compared to see the differences 
which indicate data that can be ignored. For example, a web 
page X is loaded at time t1 and then again at time t2. The DOM 
of X at t1 is then compared to the DOM of X at t2 to produce 

Delta(X), in the form of a list of differences between the 
DOMs. When using an equivalence function to compare this 
state with another, the data in this list can be excluded. 
Therefore, two states can be considered equivalent if they are 
equivalent after the irrelevant data is excluded from both. 

 

 
Figure 1. DOM values for a web page X at two different time intervals 

Figure 1 depicts a timeline with t1 and t2 being two distinct 
points in time. Assume that the crawler reaches and loads a 
web page X at time t1 producing DOM(X) @t1. The same web 
page X loaded at time t2 will produce DOM(X) @t2. Let 
Delta(X) represent the differences between DOM(X) @t1 and 
DOM(X) @t2. Delta(X) is the information that must be 
excluded by the DOM equivalence function for web page X. 
This delta can be computed as a string difference between the 
two DOMs, or can be pictured as a collection of XPath values. 
Each of the XPath values will point to an element/location of 
the DOM that can be ignored. Furthermore, if an attribute 
value is different between two DOMs, the XPath will point not 
only to the node, but also to that attribute within the node that 
is not consistent in time. 

The crawler will then record Delta(X) as being the 
irrelevant information to be excluded for any future DOM 
comparisons for the web page X. 

 

 
Figure 2. Example of a page with irrelevant data which changes over time 

Let us analyze a simple example of a page X that, after 
rendering, contains the HTML document shown in Figure 2. 
As we can see, the webpage is displaying the current time, and 
let us assume it displays one random sponsor at a time. Let 
DOM(X) @t1 be the document in Figure 2. Thus, it is feasible 
to assume that a different request to the same server for page 
X will return a different timestamp and a different sponsor. 
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Furthermore, let us assume that the second time when page X 
is visited, the content will change as follows: 

Current time will be “1:45:31 pm” and the sponsor will be 
“http://mysite/aclk?sa=l&ai=Ba4&adurl=http://www.mysite” 

We can now compute the Delta(X) as being the list of 
differences as follows: 

Delta(X) = {html\body\div\, html\body\a\@href} 

There are many ways to exclude Delta(X) from the DOM. 
For instance, each XPath that exists in the Delta(X) can be 
simply deleted from the DOM. Alternatively, every XPath 
from Delta(X) can be replaced with any of the t1 or t2 values. 
The idea behind is to have these two values equal after the 
current step. This will make the DOM comparison algorithm 
to see all the XPath in the Delta(X) as having the same values, 
and therefore not different. Finally, another technique will be 
to replace each XPath with a constant. This action, like in the 
earlier case, will make the DOM comparison algorithm see no 
difference in the values of these XPaths. Regardless of the 
method used to exclude the Delta(X) from the DOM, this 
process will be transparent to the DOM comparison algorithm. 
As a result, two new DOMs t1' and t2' are produced. 

These two new DOMs can now be sent to the comparison 
algorithm. The state diagram in Figure 3 shows how our 
proposed algorithm applies to the crawling paradigm in 
general. 

In addition, when computing Delta(X), to further increase 
the differences between two consecutive loads, the crawler 
could redirect one of the two requests through a proxy. 
Practice shows that web pages may display different content 
based on the origin of the request, for instance users from 
different countries or even provinces may see different 
advertisements when visiting the same web page. Thus far, the 
proposed algorithm keeps track of the Delta(X) and excludes it 
from the DOM comparison method. 

Alternatively, one could keep track of the parts in the 
DOM that do not change in time and consider only those for 
the DOM comparison method. Those common parts of the 
DOM would in this case act like a mask to the current DOM. 
Regardless of the technique, the effect will be the same (i.e. 
the Delta(X) will be excluded from the data sent to the DOM 
comparison function). 

A simple experiment of the technique conducted on 30 
popular websites (see Appendix for the list) show that only 4 
out of 30 (13%) did not change their content on two 
consecutive loads (the time between the consecutive loads is 
10 seconds) [15]. The differences in the 26 other sites proved 
to be advertisements links, usage statistics, or timestamps that 
must be ignored by crawlers. Failure to do so may lead to the 
creation of a large or even infinite number of states, since the 
state equivalence method will likely separate the states based 
on these differences. 

 
Figure 3. Integration design between a DOM comparison method and the 
proposed technique 

B. Identifying Session Variables and Parameters 
Web sites usually track users as they download different 

pages on the web site. User tracking is useful for identifying 
user behavior, such as identifying purchasing behavior by 
tracking the user through various page requests on a shopping-
oriented website. Since HTTP is stateless, most modern 
server-side technologies keep the state information on the 
server and pass only an identifier between the browser and the 
server. This is called session tracking. All requests from a 
browser that contain the same identifier (session id) belong to 
the same session and the server keeps track of all information 
associated with the session. A session id can be sent between 
the server and the browser in one of three ways: 

1) As a cookie 
2) Embedded as hidden fields in an HTML form 
3) Encoded in the URLs in the response body, typically 

as links to other pages (also known as URL- 
rewriting) 

 

Among the three methods, using cookies is the most 
common. Although URL-rewriting is not the most common, 
many web application servers offer built-in functionality, to 
allow the application to run with browser clients that do not 
accept cookies. The method of URL-rewriting works as 
follows. When the user requests a page of a web site with a 
URL that does not have a session identifier, a session 
identifier is created for this user and the user receives a 
version of the entry web page in which links on the page are 
annotated by the session identifier. That is, each URL in the 
response page contains the created session identifier which is 
usually a string of random characters. When the user selects a 
link, the web server parses the session identifier from the 
URL, attaches the same session identifier to the local links on 
the next generated web page, and returns that web page to the 
user. The web server continues to parse and attach the session 
identifiers as long as the user requests a page who’s URL has a 
session identifier. 

As an example of the difficulties caused by not detecting 
the session identifiers, consider the situation of a web crawler 
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which has found multiple URLs without session identifiers 
and pointing to pages in the same website. Let’s for the sake 
of simplicity assume that there are two such URLs, called 
URL1 and URL2. A typical crawler will collect URL1 and 
URL2 and put them in its queue to process. If the server 
hosting the website pointed by URL1 and URL2 is using URL-
rewriting, when the crawler requests URL1 the server will 
notice that URL1 does not contain a session identifier, so the 
server will produce a session identifier and will return a page 
where all URL’s contain the generated session identifier. 
When the crawler requests URL2, the server again will notice 
URL2 does not have a session identifier and generate a session 
identifier, most probably different from the first one that is 
produced when URL1 was requested. Thus two sessions have 
been created for the crawler. It is very likely that the crawler 
can find in two different sessions URLs that are pointing to the 
same page within website. However, since those URLs are 
found in different sessions, the crawler will not be able to 
understand that they are actually the same URLs except for 
different session identifiers.  The crawler would thus crawl the 
same web pages redundantly, thus wasting the crawler's time 
and bandwidth (and if the crawling purpose was content 
indexing, filling the search engine's index with duplicate 
pages, thus wasting storage space). 

Another problem faced by automated crawlers, not being 
able to detect session identifiers is session termination.  If the 
client fails to provide the correct session identifiers, the web 
application will terminate the session and the crawl operation 
will result in poor application coverage. 

The current solutions for these problems are not reliable. 
They are based on heuristics, such as known session id name 
patterns or entropy of the values. There are two sources of 
weakness with the current solutions: 1) they rely on expert 
knowledge to create; 2) they depend on common practices that 
servers use to populate these values. That is, the current 
solutions require human intervention (not automated) and 
cannot be effective in case of a server that does not use one of 
the common practices. 

For example in the case of URL-rewriting session 
identifiers the relevant value will be passed in the request path. 

GET /S(120fd4ovfqyogf34f)/home.asp  

HTTP/1.1 

Alternatively, some web application developers may 
implement their own version of the mechanism. In order to 
handle such a case the web crawler has to be preconfigured to 
identify the session id value. Since such combinations are left 
to the creativity of web application developers, it is almost 
impossible to maintain a reliable set of heuristics in order to 
identify URL-rewriting session identifiers. 

Thus, there is a need to effectively identify web sites that 
contain session identifiers and to be able to identify all the 
parameters and cookies that need to be tracked by the crawling 
engine in order to improve web crawling and successfully 
perform the scan. Unless prior knowledge of this fact is given 
to a crawler, it would �nd an essentially unbounded number of 
URLs to crawl at this one web page alone. 

One fundamental point about the session identifiers is that 
they are by definition unique for a session. This applies to any 
request component regardless of the place or time when it is 
constructed. There is also the case where a session id will 
maintain the same value for subsequent sessions, but will 
expire after a period of time (session timeout). In this case the 
algorithm we propose can be reapplied after the session has 
expired and the session id can be identified this way. 

Based on these considerations, we propose a technique 
which compares all the request components recorded during 
two different login sequences. As a result of this comparison, 
any variable that changes its value between these two different 
login sequences is flagged as a session identifier used by the 
crawling engine. Conversely, any variable that has the same 
value in two recorded sequences will not be considered as 
being part of the session identifiers set. 

The proposed algorithm requires that the two recordings of 
the log-in sequence are done on the same website, using the 
same user input (e.g. same user name and password) and the 
same user actions. Failure to respect this requirement will lead 
to invalid results. 

It is also important that the session is invalidated between 
the two recording actions or that the second recording action 
will occur when the crawling has reached an out-of-session 
state. 

Let’s take for example the following two recorded login 
sequences. The entities in the square brackets are parameters, 
passed as part of the POST request to the server such as user 
name, password etc. 

1) Sequence 1 
1.1 Request 1 

GET https://www.site.com/bank/login.php HTTP/1.1 

Cookie: PHPSESSIONID = c9bqcp9w97qgfq4w; 

1.2 Request 2 

POST 
https://www.site.com/;GpJLFBYlVprxP8Qky/bank/login.php 
HTTP/1.1 

Cookie: PHPSESSIONID = c9bqcp9w97qgfq4w; 

[sessionid]:[qxp9mt3ohyqb4tq3tocJDS] 
,[user]:[jsmith],[password]:[Demo1234] 

1.3 Request 3 

GET 
https://www.site.com/;GpJLFBYlVprxP8Qky/bank/main.php 
HTTP/1.1 

Cookie: PHPSESSIONID = c9bqcp9w97qgfq4w; 

2) Sequence 2 
2.1 Request 1 

GET https://www.site.com/bank/login.php HTTP/1.1 

Cookie: PHPSESSIONID = caksvkOACSCACC00d2kkqbd; 

2.2 Request 2 
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POST 
https://www.site.com/;eJeB5rxXGqadZ1p9/bank/login.php 
HTTP/1.1 

Cookie: PHPSESSIONID = caksvkOACSCACC00d2kkqbd; 

[sessionid]:[sdhaovhaohwoefo29020jf9f],[user]:[jsmith],[pass
word]:[Demo1234] 

2.3 Request 3 

GET 
https://www.site.com/;eJeB5rxXGqadZ1p9/bank/main.php 
HTTP/1.1 

Cookie: PHPSESSIONID = caksvkOACSCACC00d2kkqbd; 

Looking at the differences between these two log-in 
sessions we notice that the value that precedes the /bank path 
element is dynamically generated. In addition the value of the 
PHPSESSIONID cookie also changes between the two logins. 

Out of all the parameters, we notice that the value of the 
session-id parameter changes while the username and 
password remain the same. 

In this technique, the following operations are performed 
after two login sequences have been recorded:  

1) Separate all elements of the request. For example path 
elements will be separated using predefined path 
delimiters. The same goes for parameter values which will 
be separated by body delimiters. It is important to identify 
the delimiters because two values of the same session id 
might contain a common substring across different logins. 

2) Compare the two sequences and identify the elements that 
change. 

3) Construct session identifier entities that can be handled 
accordingly by the crawler 

 

As discussed above, web sites that use session identifiers 
may be automatically identified by comparing in-host links to 
multiple copies of documents from the web sites. Knowing 
that a particular web site uses session identifiers and 
identifying the session identifier variables can enhance web-
crawling. Crawling Strategies For RIAs 

A crawling strategy is an algorithm that decides how the 
exploration should continue at any point during crawling. As 
mentioned, for traditional (non-RIA) web applications, 
crawling strategies are well-studied [6] [7]. But for RIAs, new 
crawling strategies are required that are also able to perform 
event-based exploration. In event-based exploration, the 
crawling strategy decides from which state, which 
(unexecuted) event should be taken next. Our group has been 
working on event-based exploration strategies that can 
efficiently crawl RIAs.  

We measure the efficiency of a crawling strategy on a given 
application by the total number of events and resets executed 
(reset is the action of bringing the application back to the initial 
state by loading its URL) used for discovering all the states in 
the application. That is, a crawling strategy which is able to 
discover new states using fewer event executions and resets is 

more efficient, since the event execution and resets are the 
operations that dominate the crawling time.  

The existing tools for crawling RIAs [8] [9] [10] use one of 
the two basic crawling strategies that are Breadth-First (BF) 
and Depth-First (DF) search. Although BF and DF are capable 
of exploring an application completely, they are not very 
efficient in most of the cases. One reason is that BF and DF are 
very strict exploration strategies. For example, DF does not 
explore any other state further unless the most recently 
explored state is completely explored. Consider the case where 
we execute an event of the most recently discovered state and 
we end up at a state that was previously discovered. In this case 
DF will go back to the most recently discovered state although 
the current state (or some state that is much closer to the 
current state than the most recently discovered state) may still 
have unexplored events. Making such strict decisions definitely 
increases the number of events executed by any crawler that 
uses a DF strategy. (Similar inefficiencies occur with BF where 
the least recently discovered state is given strict exploration 
priority). In addition, DF and BF crawling does not make any 
prediction about the application behavior. In fact, it is possible 
to increase the efficiency of the crawling if accurate predictions 
can be made about the application behavior. These predictions 
may be based on the partial but valuable information collected 
during crawling. For example, by looking at previous 
executions of an event (in different states), it might be possible 
to predict how that event is likely to behave in a state where it 
has not yet been executed. Or predictions can even be made 
before even crawling begins by observing some general 
behavioral patterns in the given RIA. Later these patterns can 
be used as a guide for the crawling strategy. With these 
motivations, we have been investigating crawling strategies 
different from BF and DF.  

The crawling strategies we have experimented are designed 
based on a methodology that we call “model-based crawling” 
[11]. The basic principle in model-based crawling is to come 
up with some expectation about the behavior of the application. 
These expectations may be based on behavioral characteristics 
observed in most RIAs and can be formalized as a “meta-
model” which denotes the class of applications that follow the 
given behavioral characteristics. Once a meta-model is defined, 
a crawling strategy can be designed that is efficient for 
crawling any application that follows the chosen meta-model. 
Of course, we cannot expect that all applications follow the 
characteristics of the chosen meta-model and we have to make 
sure that the strategy is capable to crawl any application 
(including the ones that deviate from the meta-model 
characteristics). For this reason, in model-based crawling the 
strategy is designed in an adaptive way. That is, the steps to 
take if the application being crawled deviates from the meta-
model characteristics is also specified as part of the strategy. In 
summary, a model-based crawling methodology has three steps 
to design a crawling strategy: 

1) Choose a meta-model. 

2) Specify a good strategy for crawling any application 
that follows the meta-model. 
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3) Specify how to adapt the crawling strategy in case that 
the application being crawled deviates from the meta-
model. 

In accordance with our efficiency definition, when 
specifying the strategy (steps 2-3), we always aim to discover 
new states using as few resets and event executions as possible 
based on the expectations provided by the meta-model 
characteristics.     

One of the strategies we have designed using model-based 
crawling is called Hypercube strategy [12]. As the name 
suggests, the Hypercube strategy is based on a Hypercube 
meta-model. The two main characteristics of the Hypercube 
meta-model is the independence of events (the execution order 
of the events do not change the state reached) and the 
expectation that executing an event does not disable or enable 
other events. The experiments we have conducted using the 
Hypercube strategy show that it outperforms the BF and DF 
strategies. 

Another strategy we have experimented with is based on a 
statistical model. In this strategy, we predict the model of the 
application using Bayesian statistics collected during the 
crawling rather than starting with an initial expectation. This 
probability-based strategy tries to predict which events are 
more likely to result in a new state based on that event’s 
previous execution history (from different states) and tries to 
take the action that has the maximum likelihood of discovering 
a new state. Again the initial experimental results for this 
strategy show that it also outperforms the BF and DF strategies. 

We have also been working on distributed crawling of 
RIAs by using several crawlers running in a cloud 
environment. 

III. RELATED WORK 
Recently there has been research on crawling RIAs, but 

none of the work proposes a strategy different than BF and 
DF. In [8], Mesbah, Bozdag, and van Deursen introduced a 
tool called Crawljax which aims to produce static HTML 
snapshots of AJAX websites. DF is used as the crawling 
strategy in Crawljax. In [9] Duda, Frey, Kossman, Matter and 
Zhou use a BF strategy to crawl AJAX applications. They also 
propose a caching mechanism to store the results of the 
JavaScript calls that result in AJAX requests to reduce the 
communication cost of the crawler. In [10], Amalfitano, 
Fasolino and Tramontana introduced a tool called CrawlRIA 
which automatically generates execution traces using a DF 
strategy and tries to construct the model of the application 
based on the generated traces.  

With regard to state equivalence used in RIA crawlers, [8] 
only says that they compute a “hash code” for each DOM to 
compare the current DOM with the already seen ones. But 
within their strategy, after executing an event they compare if 
reached state is different from the previous state (where the 
event has been executed). They use the so-called Levenstein 
distance which determines the minimum number of operations 
necessary to convert one string to another. If the distance is 
above some threshold, then the state reached is regarded as a 
new state. Since the distance is not an equivalence relation, 
this method has the possible problem of incorrectly identifying 

non-equivalent states as equivalent. In [9], it is also mentioned 
that their state equivalence is based on comparing the hash 
value of the DOM. This means that equality is used as the 
equivalence relation and this is too strict. In [10], a state 
equivalence relation based on comparing the set of HTML 
elements of two DOMs is considered. According to this 
method, two states are equivalent if one contains all the 
HTML elements of the other as a subset. This inclusion is 
checked based on the indexed path of the elements, event 
listeners and event handlers of the element. They have also 
introduced two variations of this relation. In the first variation, 
DOMs are required to have exactly the same set of HTML 
elements, in the other variation, only visible elements with 
registered event listeners are considered and the index 
requirement for the paths is removed. The weaknesses of this 
method are that it requires storing each DOM and the cost of 
comparing the DOMs is high. 

Detecting near-duplicate web documents can also be 
considered a research area related to state equivalence (see 
[13] for a survey). Near-duplicate web documents are 
documents that are exactly the same in terms of their main 
content but differ in small portion of the documents, such as 
advertisements, timestamps and counters. The main 
motivations for this research are (a) increasing the quality of 
content searching and (b) reducing space requirements of 
search engines. Most of the methods proposed in this area 
work in batch mode (once documents have already been 
discovered) which is not suitable for crawling where the 
decision of whether two states are the same or not should not 
be a performance bottleneck. Another problem with these 
methods is that they are mostly based on calculating a 
similarity measure between two documents; hence they are not 
equivalence relations in the mathematical sense.  

In [14], Bar-Yossef, Keidar and Schonfeld try to address the 
problem of detecting different URLs that point to similar 
pages. Given a list of URLs, they first try to find rules to 
detect URLs that are likely to point to similar documents. 
Later they try to validate these rules by sampling.  

IV. CONCLUSION 
Crawling is essential for security testing of web 

applications. RIAs have created new challenges for crawling, 
and thus security testing of RIAs will not be possible unless 
these challenges are addressed.  

In this paper, we have presented a brief overview of the 
issues of RIA crawling, with an emphasis on state 
equivalence. We have proposed two new techniques that can 
improve the accuracy of state equivalence relations and thus 
crawler efficiency. We have also presented a summary of our 
recent work on designing efficient crawling strategies.  
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APPENDIX A: WEB APPLICATIONS FOR TESTING “LOAD, RELOAD” 
1 http://www.netflix.com 
2 http://www.facebook.com 
3 http://www.wachovia.com 
4 http://www.youtube.com 
5 http://www.logicbuy.com 
6 http://www.wikipedia.org 
7 http://www.amazon.com 
8 http://www.ebay.com 
9 http://www.live.com 
10 http://www.engadget.com 
11 http://www.craigslist.org 
12 http://www.msn.com 
13 http://www.apple.com 
14 http://www.bing.com 
15 http://www.google.com 
16 http://www.foursquare.com 
17 http://www.vark.com 
18 http://www.ikea.com 
19 http://www.www.un.org 
20 http://www.gmail.com 
21 http://www.godaddy.com 
22 http://www.bananarepublic.com 
23 http://www.onelook.com 
24 http://www.bankofamerica.com 
25 http://www.kayak.com 
26 http://www.kbb.com 
27 http://ssrg.site.uottawa.ca 
28 http://www.reuters.com 
29 http://www.newegg.com 
30 http://www.rapidshare.com 
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