
Solving Some Modeling Challenges when Testing
Rich Internet Applications for Security

Suryakant Choudhary1, Mustafa Emre Dincturk1,
Gregor v. Bochmann1,3, Guy-Vincent Jourdan1,3

1EECS, University of Ottawa
3IBM Canada CAS Research

Ottawa, Canada

{schou062, mdinc075}@uottawa.ca

{bochmann, gvj}@eecs.uottawa.ca

Iosif Viorel Onut, Paul Ionescu
Research and Development, IBM

IBM®
 Security AppScan® Enterprise

Ottawa, Canada

{vioonut, pionescu}@ca.ibm.com

Abstract—Crawling is a necessary step for testing web

applications for security. An important concept that impacts the
efficiency of crawling is state equivalence. This paper proposes
two techniques to improve any state equivalence mechanism. The
first technique detects parts of the pages that are unimportant for
crawling. The second technique helps identifying session
parameters. We also present a summary of our research on
crawling techniques for the new generation of web applications,
so-called Rich Internet Applications (RIAs). RIAs present new
security and crawling challenges that cannot be addressed by
traditional techniques. Solving these issues is a must if we want to
continue benefitting from automated tools for testing web
applications.

Keywords: Security Testing, Automated Crawling, Rich Internet
Applications, State Equivalence

I. INTRODUCTION
The concerns on the security of the web applications have

grown along with their popularity. One of the response to
these concern about security issues was the development of
automated tools for testing web applications for security.

There are various commercial and open-source black-box
web application security scanners available (see [1] for a
recent survey). A black-box web application security scanner
is a tool that aims at finding security vulnerabilities in web
applications without accessing the source-code. That is, a
black-box scanner has only access to the client-side just like a
regular user of the application. When a black-box security
scanner is given the URL pointing to the initial page of the
application (together with other minimal information that may
be required, such as username and password, if the application
requires login), it simply tries to discover every page (client-
state) of the application that is reachable from the initial page.
As the new pages are discovered, the tool scans each one for
possible security vulnerabilities by applying test cases and
reports any detected vulnerability to the user. These tools can
easily apply a large number of security tests automatically at
each discovered page which would otherwise require a long
time if done manually.

It is clear that effectiveness of a security scanner depends
not only on the quality and coverage of the test cases but also

on how efficient it is at discovering the pages (client-states) of
the application. This activity of automatic exploration of the
web application is called crawling. The result of crawling is
called a “model” of the application. This model simply
contains the discovered client-states and ways to move from
one state to the other within the application. Only after
obtaining a model of the application can a security scanner
know which states exists and how to reach them in order to
apply the security tests. Thus, crawling is a necessary step for
security scanning as well as it is necessary for content
indexing and testing for any other purpose such as
accessibility.

The new generation of web applications, sometimes called
Rich Internet Applications (RIAs) poses a challenge for the
security scanners. This is because, the crawling techniques used
for traditional web applications are not sufficient for RIAs.
Without an appropriate crawling ability a security scanner
cannot be used on RIAs.

RIAs are much more responsive and user-friendly than their
traditional counterparts. This is thanks to technologies such as
AJAX (Asynchronous JavaScript and XML) [2] which
combine client-side scripting with asynchronous
communication. That is, client-side scripts (JavaScript) allow
computations to be carried out at the client-side. It is also
possible to register JavaScript code as event handlers on
HTML elements so that when a user interacts with the element
the corresponding event (click, mouse over etc.) fires and the
registered code is run. When JavaScript code runs, it has the
capability of accessing and modifying the current page by
changing the DOM (Document Object Model) [3] which
represents the client-state of the application. In addition, these
scripts can communicate asynchronously with the server so that
new content from the server can be retrieved and used to
modify the current state into a new one. In a sense, RIAs have
brought the feeling of the desktop applications to the web while
still preserving the convenience of being on the web. As a
result, there are RIA versions of even the most classical
desktop applications (word processors, photo editors, media
players etc.)

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.186

850

Traditional crawling techniques are based on the fact that in
a traditional application each page is identified by a URL. So,
to crawl a traditional application it is enough to collect and visit
the URLs on the each page to discover the states of the
application. But in RIAs, client-side scripts are able to change
the state on the client-side, which means that the URL does not
necessarily change when the state changes (many RIAs have a
single URL which points to the initial state). That means that in
order to crawl RIAs, a crawler needs to exercise event-based
exploration as well as the traditional URL-based exploration.

Primarily motivated by the aim of making security scanners
usable on RIAs, our research group has been working in
collaboration with IBM to design efficient RIA crawling
techniques. We have implemented some of the ideas of this
research in a prototype of IBM® Security AppScan® Enterprise
[4], a security scanner for web applications.

Previously we have presented in detail the requirements and
anticipated problems for a solution to the RIA crawling
problem as well as the shortcomings of the current attempts to
solve this problem [5]. Basically we require a RIA crawler to 1)
produce a complete model in a deterministic way (it should
capture all the states and be able to produce the same model
when run multiple times on an unchanged website); 2) be
efficient (discover as many states as possible in a given amount
of time); 3) use an appropriate state equivalence relation (i.e. a
mechanism to identify the states that should be considered as
the same) depending on the purpose of the crawl and the
application.

We have also stated that satisfying these requirements may
be possible only when some limiting, but common
assumptions, are made about the application: 1) the application
should not have server-side states. That is, the global state of
the application is only determined by the client-state. In that
case we can expect that repeating an action on the same client
state at different times will always result in the same state. 2)
On a page where the user can enter a free text input in a form,
using a finite set of representative input values is enough for
crawling purposes. This last assumption helps us not to miss
any state due to not entering a specific user-input value, since
in practice the result of an action might be different based-on
the user-input values.

Some of the important anticipated problems were designing
efficient strategies, choosing appropriate user-input values,
deciding what to do if the application has some server-side
states, how to choose an appropriate state equivalence relation,
how to deal with the state explosion problem and how to
further enhance the model for security.

As a step forward in addressing some of these issues, in this
paper we focus on two important concepts that are important
for efficient RIA crawling: state equivalence and crawling
strategy. State equivalence is the mechanism used by the
crawler to decide whether or not two states should be regarded
as the same. This is important since there are often situations
where, although two pages reached by the crawler are not
exactly the same, they are equivalent for the purpose of
crawling. The simple example is an application that places an
advertisement in each page. For this application, visiting the
same page at different times will most likely result in pages

that have different advertisements while everything else
remains the same. Although these two pages are not exactly the
same, a good state equivalence relation should detect and
ignore these “unimportant” parts. Failure to do so will likely
result in infinite crawling runs or at least unnecessarily large
state spaces.

A crawling strategy is an algorithm which decides what
actions to take next. For example, the crawling strategy decides
which URL to follow next if it is doing traditional URL-based
exploration and in the case of event-based exploration (in
RIAs), the crawling strategy decides from which state which
event should be executed next.

We have been working on the techniques to improve state
equivalence relations in addition to designing crawling
strategies for event-based crawling of RIAs. In this paper, we
present two techniques that help to improve the existing state
equivalence relations. Also we present a summary of our
research on crawling strategies.

This paper is organized as follows. In Section 2, we present
the techniques for improving any state equivalence relation.
Section 3 contains a summary of our recent research on
crawling strategies for RIAs. Section 4 presents the related
work and Section 5 concludes with a summary of
contributions.

II. STATE EQUIVALENCE
During crawling, the crawler navigates through the states

of the application by following the found links or executing an
event on the current state. When the crawler reaches a state, it
must know if it had already been to that state before.
Otherwise, the crawler would regard each state as a new one
and it could never finish crawling and build a meaningful
model, it would just keep exploring the same states over and
over again.

The mechanism that is used by the crawler to decide if a
state is equivalent to an already discovered one is called the
state equivalence relation. With a state equivalence relation
the crawler will recognize an already visited state and hence it
will not explore already explored events unnecessarily.
Moreover, by identifying the current state it will know where
it currently is in the partial model constructed up to that point.
Thus, the crawling strategy will be able to decide on its next
moves based on that model (i.e. crawling strategy will know
whether there is an already executed sequence of events that
will lead from the current state to some other state).

It seems very difficult to come up with a single solution for
equivalence. The simplest equivalence relation is the equality.
In this case, two states are considered equivalent only if they
are identical. But for most applications, this definition is too
strict and would lead to very large or infinite models. Clearly,
deciding whether a given application state is “similar” to
another state very much depends on the application as well as
the purpose of the crawl. As an example, if the purpose of
crawling is security scanning then the text content of the pages
would not be very important, hence could be ignored.
However, from the content indexing and usability point of
view, the text content should not be ignored when deciding the
equivalence of states. Being able to adapt the equivalence

851

relation to the application and the purpose of the crawl is thus
very valuable. For these reasons, we believe that state
equivalence should be considered independent of the crawling
strategy.

The choice of an appropriate equivalence relation should
be considered very carefully. If an equivalence evaluation
method is too stringent (like equality), then it may result in too
many states being produced, essentially resulting in state
explosion, long runs and in some cases infinite runs. On the
contrary, if the equivalence relation is too lax, we may end up
with client states that are merged together while, in reality,
they are different, leading to an incomplete, simplified model.

Although choosing a state equivalence relation requires
many considerations, its correctness should not be put into
negotiation. That is, a state equivalence relation should be an
equivalence relation in mathematical sense. Moreover, it
seems reasonable to insist that equivalent states have the same
set of events, since otherwise two equivalent states would have
different ways to leave them.

In the following, we present two novel ideas to help
improve the efficiency of state equivalence of web application
being crawled in an automated and efficient manner.

A. Load, Reload: Discovering Unnecessary Dynamic
Content of Web Page.
As mentioned above, Web pages often contain bits of

content that change very often but are not important in terms
of making two states non-equivalent. When determining
whether or not two states are equivalent, there is a desire to be
able to ignore these constantly changing but irrelevant portions
of the page. This is important since failing to identify data that
should be ignored could cause an equivalence function to
evaluate to false when it otherwise would not.

Thus one of the important challenges when defining state
equivalence functions is to exclude from the content
considered in the equivalence function the portion of the
page/DOM that may introduce false positives. The most
common current solution to the problem is to manually
configure the crawler on a case by case basis, to make it
ignore certain types of objects that are known to change over
time, such as session ids and cookies. This is highly
inefficient, and is also inaccurate, since most of the time this
list is incomplete. Another solution is to use regular
expressions to identify in the DOM the portions of the content
that can be ignored. The main problem with the latter solution
is the difficulty of creating the regular expressions and the fact
that they are different for different sites. Automating the
detection of irrelevant page sections is desired since those
differences are also page-specific and as a consequence, the
irrelevant parts vary from page to page even within the same
website.

We have developed a technique for automatically inferring
the portions of the page that should be ignored. The technique
requires loading a given web page twice. The DOM of the
page at each load can then be compared to see the differences
which indicate data that can be ignored. For example, a web
page X is loaded at time t1 and then again at time t2. The DOM
of X at t1 is then compared to the DOM of X at t2 to produce

Delta(X), in the form of a list of differences between the
DOMs. When using an equivalence function to compare this
state with another, the data in this list can be excluded.
Therefore, two states can be considered equivalent if they are
equivalent after the irrelevant data is excluded from both.

Figure 1. DOM values for a web page X at two different time intervals

Figure 1 depicts a timeline with t1 and t2 being two distinct
points in time. Assume that the crawler reaches and loads a
web page X at time t1 producing DOM(X) @t1. The same web
page X loaded at time t2 will produce DOM(X) @t2. Let
Delta(X) represent the differences between DOM(X) @t1 and
DOM(X) @t2. Delta(X) is the information that must be
excluded by the DOM equivalence function for web page X.
This delta can be computed as a string difference between the
two DOMs, or can be pictured as a collection of XPath values.
Each of the XPath values will point to an element/location of
the DOM that can be ignored. Furthermore, if an attribute
value is different between two DOMs, the XPath will point not
only to the node, but also to that attribute within the node that
is not consistent in time.

The crawler will then record Delta(X) as being the
irrelevant information to be excluded for any future DOM
comparisons for the web page X.

Figure 2. Example of a page with irrelevant data which changes over time

Let us analyze a simple example of a page X that, after
rendering, contains the HTML document shown in Figure 2.
As we can see, the webpage is displaying the current time, and
let us assume it displays one random sponsor at a time. Let
DOM(X) @t1 be the document in Figure 2. Thus, it is feasible
to assume that a different request to the same server for page
X will return a different timestamp and a different sponsor.

852

Furthermore, let us assume that the second time when page X
is visited, the content will change as follows:

Current time will be “1:45:31 pm” and the sponsor will be
“http://mysite/aclk?sa=l&ai=Ba4&adurl=http://www.mysite”

We can now compute the Delta(X) as being the list of
differences as follows:

Delta(X) = {html\body\div\, html\body\a\@href}

There are many ways to exclude Delta(X) from the DOM.
For instance, each XPath that exists in the Delta(X) can be
simply deleted from the DOM. Alternatively, every XPath
from Delta(X) can be replaced with any of the t1 or t2 values.
The idea behind is to have these two values equal after the
current step. This will make the DOM comparison algorithm
to see all the XPath in the Delta(X) as having the same values,
and therefore not different. Finally, another technique will be
to replace each XPath with a constant. This action, like in the
earlier case, will make the DOM comparison algorithm see no
difference in the values of these XPaths. Regardless of the
method used to exclude the Delta(X) from the DOM, this
process will be transparent to the DOM comparison algorithm.
As a result, two new DOMs t1' and t2' are produced.

These two new DOMs can now be sent to the comparison
algorithm. The state diagram in Figure 3 shows how our
proposed algorithm applies to the crawling paradigm in
general.

In addition, when computing Delta(X), to further increase
the differences between two consecutive loads, the crawler
could redirect one of the two requests through a proxy.
Practice shows that web pages may display different content
based on the origin of the request, for instance users from
different countries or even provinces may see different
advertisements when visiting the same web page. Thus far, the
proposed algorithm keeps track of the Delta(X) and excludes it
from the DOM comparison method.

Alternatively, one could keep track of the parts in the
DOM that do not change in time and consider only those for
the DOM comparison method. Those common parts of the
DOM would in this case act like a mask to the current DOM.
Regardless of the technique, the effect will be the same (i.e.
the Delta(X) will be excluded from the data sent to the DOM
comparison function).

A simple experiment of the technique conducted on 30
popular websites (see Appendix for the list) show that only 4
out of 30 (13%) did not change their content on two
consecutive loads (the time between the consecutive loads is
10 seconds) [15]. The differences in the 26 other sites proved
to be advertisements links, usage statistics, or timestamps that
must be ignored by crawlers. Failure to do so may lead to the
creation of a large or even infinite number of states, since the
state equivalence method will likely separate the states based
on these differences.

Figure 3. Integration design between a DOM comparison method and the
proposed technique

B. Identifying Session Variables and Parameters
Web sites usually track users as they download different

pages on the web site. User tracking is useful for identifying
user behavior, such as identifying purchasing behavior by
tracking the user through various page requests on a shopping-
oriented website. Since HTTP is stateless, most modern
server-side technologies keep the state information on the
server and pass only an identifier between the browser and the
server. This is called session tracking. All requests from a
browser that contain the same identifier (session id) belong to
the same session and the server keeps track of all information
associated with the session. A session id can be sent between
the server and the browser in one of three ways:

1) As a cookie
2) Embedded as hidden fields in an HTML form
3) Encoded in the URLs in the response body, typically

as links to other pages (also known as URL-
rewriting)

Among the three methods, using cookies is the most
common. Although URL-rewriting is not the most common,
many web application servers offer built-in functionality, to
allow the application to run with browser clients that do not
accept cookies. The method of URL-rewriting works as
follows. When the user requests a page of a web site with a
URL that does not have a session identifier, a session
identifier is created for this user and the user receives a
version of the entry web page in which links on the page are
annotated by the session identifier. That is, each URL in the
response page contains the created session identifier which is
usually a string of random characters. When the user selects a
link, the web server parses the session identifier from the
URL, attaches the same session identifier to the local links on
the next generated web page, and returns that web page to the
user. The web server continues to parse and attach the session
identifiers as long as the user requests a page who’s URL has a
session identifier.

As an example of the difficulties caused by not detecting
the session identifiers, consider the situation of a web crawler

853

which has found multiple URLs without session identifiers
and pointing to pages in the same website. Let’s for the sake
of simplicity assume that there are two such URLs, called
URL1 and URL2. A typical crawler will collect URL1 and
URL2 and put them in its queue to process. If the server
hosting the website pointed by URL1 and URL2 is using URL-
rewriting, when the crawler requests URL1 the server will
notice that URL1 does not contain a session identifier, so the
server will produce a session identifier and will return a page
where all URL’s contain the generated session identifier.
When the crawler requests URL2, the server again will notice
URL2 does not have a session identifier and generate a session
identifier, most probably different from the first one that is
produced when URL1 was requested. Thus two sessions have
been created for the crawler. It is very likely that the crawler
can find in two different sessions URLs that are pointing to the
same page within website. However, since those URLs are
found in different sessions, the crawler will not be able to
understand that they are actually the same URLs except for
different session identifiers. The crawler would thus crawl the
same web pages redundantly, thus wasting the crawler's time
and bandwidth (and if the crawling purpose was content
indexing, filling the search engine's index with duplicate
pages, thus wasting storage space).

Another problem faced by automated crawlers, not being
able to detect session identifiers is session termination. If the
client fails to provide the correct session identifiers, the web
application will terminate the session and the crawl operation
will result in poor application coverage.

The current solutions for these problems are not reliable.
They are based on heuristics, such as known session id name
patterns or entropy of the values. There are two sources of
weakness with the current solutions: 1) they rely on expert
knowledge to create; 2) they depend on common practices that
servers use to populate these values. That is, the current
solutions require human intervention (not automated) and
cannot be effective in case of a server that does not use one of
the common practices.

For example in the case of URL-rewriting session
identifiers the relevant value will be passed in the request path.

GET /S(120fd4ovfqyogf34f)/home.asp

HTTP/1.1

Alternatively, some web application developers may
implement their own version of the mechanism. In order to
handle such a case the web crawler has to be preconfigured to
identify the session id value. Since such combinations are left
to the creativity of web application developers, it is almost
impossible to maintain a reliable set of heuristics in order to
identify URL-rewriting session identifiers.

Thus, there is a need to effectively identify web sites that
contain session identifiers and to be able to identify all the
parameters and cookies that need to be tracked by the crawling
engine in order to improve web crawling and successfully
perform the scan. Unless prior knowledge of this fact is given
to a crawler, it would �nd an essentially unbounded number of
URLs to crawl at this one web page alone.

One fundamental point about the session identifiers is that
they are by definition unique for a session. This applies to any
request component regardless of the place or time when it is
constructed. There is also the case where a session id will
maintain the same value for subsequent sessions, but will
expire after a period of time (session timeout). In this case the
algorithm we propose can be reapplied after the session has
expired and the session id can be identified this way.

Based on these considerations, we propose a technique
which compares all the request components recorded during
two different login sequences. As a result of this comparison,
any variable that changes its value between these two different
login sequences is flagged as a session identifier used by the
crawling engine. Conversely, any variable that has the same
value in two recorded sequences will not be considered as
being part of the session identifiers set.

The proposed algorithm requires that the two recordings of
the log-in sequence are done on the same website, using the
same user input (e.g. same user name and password) and the
same user actions. Failure to respect this requirement will lead
to invalid results.

It is also important that the session is invalidated between
the two recording actions or that the second recording action
will occur when the crawling has reached an out-of-session
state.

Let’s take for example the following two recorded login
sequences. The entities in the square brackets are parameters,
passed as part of the POST request to the server such as user
name, password etc.

1) Sequence 1
1.1 Request 1

GET https://www.site.com/bank/login.php HTTP/1.1

Cookie: PHPSESSIONID = c9bqcp9w97qgfq4w;

1.2 Request 2

POST
https://www.site.com/;GpJLFBYlVprxP8Qky/bank/login.php
HTTP/1.1

Cookie: PHPSESSIONID = c9bqcp9w97qgfq4w;

[sessionid]:[qxp9mt3ohyqb4tq3tocJDS]
,[user]:[jsmith],[password]:[Demo1234]

1.3 Request 3

GET
https://www.site.com/;GpJLFBYlVprxP8Qky/bank/main.php
HTTP/1.1

Cookie: PHPSESSIONID = c9bqcp9w97qgfq4w;

2) Sequence 2
2.1 Request 1

GET https://www.site.com/bank/login.php HTTP/1.1

Cookie: PHPSESSIONID = caksvkOACSCACC00d2kkqbd;

2.2 Request 2

854

POST
https://www.site.com/;eJeB5rxXGqadZ1p9/bank/login.php
HTTP/1.1

Cookie: PHPSESSIONID = caksvkOACSCACC00d2kkqbd;

[sessionid]:[sdhaovhaohwoefo29020jf9f],[user]:[jsmith],[pass
word]:[Demo1234]

2.3 Request 3

GET
https://www.site.com/;eJeB5rxXGqadZ1p9/bank/main.php
HTTP/1.1

Cookie: PHPSESSIONID = caksvkOACSCACC00d2kkqbd;

Looking at the differences between these two log-in
sessions we notice that the value that precedes the /bank path
element is dynamically generated. In addition the value of the
PHPSESSIONID cookie also changes between the two logins.

Out of all the parameters, we notice that the value of the
session-id parameter changes while the username and
password remain the same.

In this technique, the following operations are performed
after two login sequences have been recorded:

1) Separate all elements of the request. For example path
elements will be separated using predefined path
delimiters. The same goes for parameter values which will
be separated by body delimiters. It is important to identify
the delimiters because two values of the same session id
might contain a common substring across different logins.

2) Compare the two sequences and identify the elements that
change.

3) Construct session identifier entities that can be handled
accordingly by the crawler

As discussed above, web sites that use session identifiers
may be automatically identified by comparing in-host links to
multiple copies of documents from the web sites. Knowing
that a particular web site uses session identifiers and
identifying the session identifier variables can enhance web-
crawling. Crawling Strategies For RIAs

A crawling strategy is an algorithm that decides how the
exploration should continue at any point during crawling. As
mentioned, for traditional (non-RIA) web applications,
crawling strategies are well-studied [6] [7]. But for RIAs, new
crawling strategies are required that are also able to perform
event-based exploration. In event-based exploration, the
crawling strategy decides from which state, which
(unexecuted) event should be taken next. Our group has been
working on event-based exploration strategies that can
efficiently crawl RIAs.

We measure the efficiency of a crawling strategy on a given
application by the total number of events and resets executed
(reset is the action of bringing the application back to the initial
state by loading its URL) used for discovering all the states in
the application. That is, a crawling strategy which is able to
discover new states using fewer event executions and resets is

more efficient, since the event execution and resets are the
operations that dominate the crawling time.

The existing tools for crawling RIAs [8] [9] [10] use one of
the two basic crawling strategies that are Breadth-First (BF)
and Depth-First (DF) search. Although BF and DF are capable
of exploring an application completely, they are not very
efficient in most of the cases. One reason is that BF and DF are
very strict exploration strategies. For example, DF does not
explore any other state further unless the most recently
explored state is completely explored. Consider the case where
we execute an event of the most recently discovered state and
we end up at a state that was previously discovered. In this case
DF will go back to the most recently discovered state although
the current state (or some state that is much closer to the
current state than the most recently discovered state) may still
have unexplored events. Making such strict decisions definitely
increases the number of events executed by any crawler that
uses a DF strategy. (Similar inefficiencies occur with BF where
the least recently discovered state is given strict exploration
priority). In addition, DF and BF crawling does not make any
prediction about the application behavior. In fact, it is possible
to increase the efficiency of the crawling if accurate predictions
can be made about the application behavior. These predictions
may be based on the partial but valuable information collected
during crawling. For example, by looking at previous
executions of an event (in different states), it might be possible
to predict how that event is likely to behave in a state where it
has not yet been executed. Or predictions can even be made
before even crawling begins by observing some general
behavioral patterns in the given RIA. Later these patterns can
be used as a guide for the crawling strategy. With these
motivations, we have been investigating crawling strategies
different from BF and DF.

The crawling strategies we have experimented are designed
based on a methodology that we call “model-based crawling”
[11]. The basic principle in model-based crawling is to come
up with some expectation about the behavior of the application.
These expectations may be based on behavioral characteristics
observed in most RIAs and can be formalized as a “meta-
model” which denotes the class of applications that follow the
given behavioral characteristics. Once a meta-model is defined,
a crawling strategy can be designed that is efficient for
crawling any application that follows the chosen meta-model.
Of course, we cannot expect that all applications follow the
characteristics of the chosen meta-model and we have to make
sure that the strategy is capable to crawl any application
(including the ones that deviate from the meta-model
characteristics). For this reason, in model-based crawling the
strategy is designed in an adaptive way. That is, the steps to
take if the application being crawled deviates from the meta-
model characteristics is also specified as part of the strategy. In
summary, a model-based crawling methodology has three steps
to design a crawling strategy:

1) Choose a meta-model.

2) Specify a good strategy for crawling any application
that follows the meta-model.

855

3) Specify how to adapt the crawling strategy in case that
the application being crawled deviates from the meta-
model.

In accordance with our efficiency definition, when
specifying the strategy (steps 2-3), we always aim to discover
new states using as few resets and event executions as possible
based on the expectations provided by the meta-model
characteristics.

One of the strategies we have designed using model-based
crawling is called Hypercube strategy [12]. As the name
suggests, the Hypercube strategy is based on a Hypercube
meta-model. The two main characteristics of the Hypercube
meta-model is the independence of events (the execution order
of the events do not change the state reached) and the
expectation that executing an event does not disable or enable
other events. The experiments we have conducted using the
Hypercube strategy show that it outperforms the BF and DF
strategies.

Another strategy we have experimented with is based on a
statistical model. In this strategy, we predict the model of the
application using Bayesian statistics collected during the
crawling rather than starting with an initial expectation. This
probability-based strategy tries to predict which events are
more likely to result in a new state based on that event’s
previous execution history (from different states) and tries to
take the action that has the maximum likelihood of discovering
a new state. Again the initial experimental results for this
strategy show that it also outperforms the BF and DF strategies.

We have also been working on distributed crawling of
RIAs by using several crawlers running in a cloud
environment.

III. RELATED WORK
Recently there has been research on crawling RIAs, but

none of the work proposes a strategy different than BF and
DF. In [8], Mesbah, Bozdag, and van Deursen introduced a
tool called Crawljax which aims to produce static HTML
snapshots of AJAX websites. DF is used as the crawling
strategy in Crawljax. In [9] Duda, Frey, Kossman, Matter and
Zhou use a BF strategy to crawl AJAX applications. They also
propose a caching mechanism to store the results of the
JavaScript calls that result in AJAX requests to reduce the
communication cost of the crawler. In [10], Amalfitano,
Fasolino and Tramontana introduced a tool called CrawlRIA
which automatically generates execution traces using a DF
strategy and tries to construct the model of the application
based on the generated traces.

With regard to state equivalence used in RIA crawlers, [8]
only says that they compute a “hash code” for each DOM to
compare the current DOM with the already seen ones. But
within their strategy, after executing an event they compare if
reached state is different from the previous state (where the
event has been executed). They use the so-called Levenstein
distance which determines the minimum number of operations
necessary to convert one string to another. If the distance is
above some threshold, then the state reached is regarded as a
new state. Since the distance is not an equivalence relation,
this method has the possible problem of incorrectly identifying

non-equivalent states as equivalent. In [9], it is also mentioned
that their state equivalence is based on comparing the hash
value of the DOM. This means that equality is used as the
equivalence relation and this is too strict. In [10], a state
equivalence relation based on comparing the set of HTML
elements of two DOMs is considered. According to this
method, two states are equivalent if one contains all the
HTML elements of the other as a subset. This inclusion is
checked based on the indexed path of the elements, event
listeners and event handlers of the element. They have also
introduced two variations of this relation. In the first variation,
DOMs are required to have exactly the same set of HTML
elements, in the other variation, only visible elements with
registered event listeners are considered and the index
requirement for the paths is removed. The weaknesses of this
method are that it requires storing each DOM and the cost of
comparing the DOMs is high.

Detecting near-duplicate web documents can also be
considered a research area related to state equivalence (see
[13] for a survey). Near-duplicate web documents are
documents that are exactly the same in terms of their main
content but differ in small portion of the documents, such as
advertisements, timestamps and counters. The main
motivations for this research are (a) increasing the quality of
content searching and (b) reducing space requirements of
search engines. Most of the methods proposed in this area
work in batch mode (once documents have already been
discovered) which is not suitable for crawling where the
decision of whether two states are the same or not should not
be a performance bottleneck. Another problem with these
methods is that they are mostly based on calculating a
similarity measure between two documents; hence they are not
equivalence relations in the mathematical sense.

In [14], Bar-Yossef, Keidar and Schonfeld try to address the
problem of detecting different URLs that point to similar
pages. Given a list of URLs, they first try to find rules to
detect URLs that are likely to point to similar documents.
Later they try to validate these rules by sampling.

IV. CONCLUSION
Crawling is essential for security testing of web

applications. RIAs have created new challenges for crawling,
and thus security testing of RIAs will not be possible unless
these challenges are addressed.

In this paper, we have presented a brief overview of the
issues of RIA crawling, with an emphasis on state
equivalence. We have proposed two new techniques that can
improve the accuracy of state equivalence relations and thus
crawler efficiency. We have also presented a summary of our
recent work on designing efficient crawling strategies.

ACKNOWLEDGMENTS
This work is supported in part by IBM Canada CAS Research
and the Natural Science and Engineering Research Council of
Canada.

856

DISCLAIMER
The views expressed in this article are the sole responsibility
of the authors and do not necessarily reflect those of IBM.

TRADEMARKS
IBM and AppScan are trademarks or registered trademarks of
International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names
might be trademarks of IBM or other companies. A current list
of IBM trademarks is available on the Web at “Copyright and
trademark information” at
www.ibm.com/legal/copytrade.shtml.

REFERENCES
[1] J. Bau, E. Bursztein, D. Gupta, and J. C. Mitchell, "State of the Art:

Automated Black-Box Web Application Vulnerability Testing," in
IEEE Symposium on Security and Privacy, 2010, pp. 332-345.

[2] Jesse James Garrett. (2005) Adaptive Path. [Online].
http://www.adaptivepath.com/publications/essays/archives/000385.php

[3] World Wide Web Consortium (W3C). (2005) Document Object Model
(DOM). [Online]. http://www.w3.org/DOM/

[4] IBM. (2012, Feb.) IBM Rational AppScan Enterprise 8.5 Help Page.
[Online].
http://publib.boulder.ibm.com/infocenter/asehelp/v8r5m0/index.jsp?top
ic=%2Fcom.ibm.ase.help.doc%2Fhelpindex_ase.html

[5] K. Benjamin, G.v Bochmann, G.V Jourdan, and I.V Onut, "Some
Modeling Challenges when Testing Rich Internet Applications for
Security," in First International workshop on modeling and detection
of vulnerabilities (MDV 2010), Paris, 2010.

[6] A. Arasu, J. Cho, A. Garcia-Molina, A Paepcke, and S Raghavan,
"Searching the web," ACM Transactions on Internet Technology, vol.
1(1), pp. 2-43, 2001.

[7] S. Brin and L. Page, "The Anatomy of a Large-Scale Hypertextual
Web Search Engine," Computer Networks and ISDN Systems., vol.
30(1-7), pp. 107-117, 1998.

[8] A. Mesbah, E. Bozdag, and A. Deursen, "Crawling Ajax by Inferring
User Interface State Changes," in Proceedings of the 8th International
Conference on Web Engineering, IEEE Computer Society, 2008, pp.
122-134.

[9] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou, "AJAX
Crawl: Making AJAX Applications Searchable," in IEEE 25th
International Conference on Data Engineering, 2009, pp. 78-89.

[10] D. Amalfitano, R. Fasolino, and P. Tramontana, "Rich Internet
Application Testing Using Execution Trace Data," in Proceddings of
Third International Conference on Software Testing, Verification, and
Validation Workshops , Washington, DC, USA, 2010, pp. 274-283.

[11] Gregor v. Bochmann, Mustafa Emre Dincturk, Guy-Vincent Jourdan,
and Iosif-Viorel Onut, "A Model-Based Approach for Crawling Rich
Internet Applications," unpublished.

[12] Kamara Benjamin, Gregor von Bochmann, Mustafa Emre Dincturk,
Guy-Vincent Jourdan, and Iosif Viorel Onut, "A Strategy for Efficient
Crawling of Rich Internet Applications," in Web Engineering: 11th
International Conference, ICWE 2011,Paphos, Cyprus, Sören Auer,
Oscar Díaz, and George Papadopoulos, Eds.: Springer Berlin /
Heidelberg, 2011, vol. 6757, pp. 74-89.

[13] J. Prasanna Kumar and P. Govindarajulu, "Duplicate and Near
Duplicate Documents Detection: A Review ," European Journal of

Scientific Research, vol. 32, no. 4, pp. 514-527, 2009.

[14] Ziv Bar-Yossef, Idit Keidar, and Uri Schonfeld, "Do not Crawl in the
DUST: Cifferent URLs with Similar Text," in WWW '07: Proceedings
of the 16th international conference on World Wide Web, New York,
2007, pp. 111-120.

[15] Kamara Benjamin. "A Strategy for Efficient Crawling of Rich Internet
Applications. EECS-University of Ottawa, Ottawa, Master’s Thesis
2010. [Online]. http://ssrg.site.uottawa.ca/docs/Benjamin-Thesis.pdf

APPENDIX A: WEB APPLICATIONS FOR TESTING “LOAD, RELOAD”
1 http://www.netflix.com
2 http://www.facebook.com
3 http://www.wachovia.com
4 http://www.youtube.com
5 http://www.logicbuy.com
6 http://www.wikipedia.org
7 http://www.amazon.com
8 http://www.ebay.com
9 http://www.live.com
10 http://www.engadget.com
11 http://www.craigslist.org
12 http://www.msn.com
13 http://www.apple.com
14 http://www.bing.com
15 http://www.google.com
16 http://www.foursquare.com
17 http://www.vark.com
18 http://www.ikea.com
19 http://www.www.un.org
20 http://www.gmail.com
21 http://www.godaddy.com
22 http://www.bananarepublic.com
23 http://www.onelook.com
24 http://www.bankofamerica.com
25 http://www.kayak.com
26 http://www.kbb.com
27 http://ssrg.site.uottawa.ca
28 http://www.reuters.com
29 http://www.newegg.com
30 http://www.rapidshare.com

857

