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Abstract We developed a diffusive load balancing technique for P2P systems. This
technique uses the overlay network of a P2P system and results in the nodes of the
network having similar available capacities; therefore the services hosted on these
nodes are expected to have similar mean response times. In this paper, the technique
is presented, including the policies, stages of operation, and decision algorithms. The
convergence of the available capacities to the global average is demonstrated. The
convergence speed depends on the decision algorithm, the neighborhood structure of
the underlying overlay network, and the workload distribution. When used in a system
with churn, the technique keeps the standard deviation of available capacities in the
system within a bound. This bound depends on the amount of churn and the frequency
of the load balancing operations, as well as on the distribution of node capacities.
However, the sizes of services have little impact on this bound. The paper presents the
results of analytical analysis and simulation studies.
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1 Introduction

The performance issues of peer-to-peer (P2P) systems come from the characteristics
of these systems. The nodes in these systems may be heterogeneous in terms of their
resource capacities, geographic locations, or on-line periods (i.e. time of participation
in the system). The services for accessing the shared objects on the P2P nodes also
have different resource requirements and the number of user requests, and the loca-
tions of users may change. In these systems, some user requests may be delayed or
even lost by some nodes, while other nodes are idle. Also, the mean response times
of the requests that access the same object on the same node could vary over time
because of changing request rates.

Load balancing techniques are proposed to solve these issues. These techniques
dynamically reallocate nodes or shared objects in the P2P system so that they could pro-
vide a more uniform quality of service for their services. Using distributed approaches,
these techniques are scalable to large sizes of P2P systems. However, these techniques
either rely on some specific structures of the overlay networks or construct their own
structures therefore inducing extra messages. For example, some techniques, such as
the one in the BATON system [26] or in the DPTree system [16], use the tree structure
of an overlay network for their operations. These techniques can not be deployed in
an overlay network using another kind of structure. Some techniques require the sys-
tem to construct a structure based on their P2P overlay networks (e.g. [10,11]) only
for load balancing. Or, some techniques use random walks (e.g. [7,14]) in their load
balancing operations. These random walks add extra messages to the P2P system.

We developed a diffusive load balancing technique for P2P systems. It uses a diffu-
sive load balancing scheme, originally proposed for parallel computing systems that
have a massive number of processors. In order to deal with the characteristics of P2P
systems, this diffusive scheme specifies that the P2P nodes run the load balancing
operations asynchronously. During each operation, a node collects the load statuses
(i.e. the available capacities) of its neighbors in the overlay network, and decides load
transfers (i.e. object movements) between these neighbors so that the neighbors could
have similar mean response times for their services. A global balanced state, where all
nodes have the same mean response time, can be achieved by this kind of local load
balancing. Compared with other techniques proposed for P2P systems, the diffusive
technique neither sets up extra connections between nodes nor spends a large number
of messages on random walkers in the system.

The following sections are organized for presenting different aspects of the pro-
posed scheme. Section 2 reviews peer-to-peer load-balancing techniques and diffusive
load-balancing schemes studied for parallel computing systems. Section 3 presents
the design of the proposed diffusive scheme for systems with fine-grained services,
including its policies, the stages of operation, and the decision algorithms. This sec-
tion examines the convergence of the scheme and compares the effectiveness of the
decision algorithms in systems with a skip-list overlay structure. It further discusses
the impact of the characteristics of P2P systems on the effectiveness of load balanc-
ing, including the structure of the overlay network, workload distribution, churn (node
joining or leaving), and nodes with heterogeneous capacities. Section 4 presents the
decision algorithms for the diffusive scheme to deal with large-sized services. The
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section further studies the impact of the service size on the effectiveness of load bal-
ancing. Section 5 compares the diffusive scheme with other schemes for P2P systems
proposed in the literature, discusses the practical realization of load transfers in a real
P2P system, and concludes the paper.

2 Background
2.1 Load balancing techniques for P2P systems

The load balancing techniques proposed for P2P systems either allocate or relocate
service objects onto nodes in these systems, or relocate nodes such that the users
accessing these objects see a uniform response time. These techniques have policies
to specify when and where to perform load balancing operations, and how to decide
object locations/relocations during these operations. Since P2P systems have large
sizes, these techniques also specify various structures and algorithms to detect the
load status of the system and to decide load transfers between nodes.

These load balancing techniques differ in the structures by which they organize the
nodes. This results in differences of the effectiveness of load balancing. A linked-list
structure is the simplest structure used by techniques such as [3,11,12]. After a node
conducted a load balancing operation (which moves objects between nodes), all the
nodes in its neighborhood (e.g. including itself and its direct neighbors in the ring)
have the same load. Vu et al. [11] shows that a simple load balancing scheme like
this is not effective in balancing the load variations in systems with churn. Normally,
another kind of scheme is used to further reduce the load variations.

Other structures, such as tree, distributed directory, or neighborhoods with randomly
probed nodes, are also used for load balancing. For example, in the tree structure of
BATON [26], a parent node works as a decision component (or directory) for balanc-
ing the loads for its sub-trees. The system is load balanced when the sub-trees of the
root have equal loads. However, this load balancing can not be applied to systems with
other kinds of structure. The distributed directories proposed in [8] is another structure
used for load balancing. A node registers to a directory at random and stays there for
some time, while the directory balances the loads of its registered nodes. However, the
directory (central or distributed) scheme can not deal well with the dynamics of a P2P
system and the running period of the directory must be engineered [7]. Some schemes,
such as those in [5,7, 13, 14], construct neighborhoods by using random walks. A node
probes some other random nodes for sharing their excess loads.

Some schemes use structures to aggregate the global load information for load
balancing. These schemes are criticized because of the cost of collecting the global
information and the limited freshness of this information. For example, the k-ary tree
scheme [10] constructs a tree structure based on Chord for aggregating the global load
information from the leaf-nodes to the root node, and for disseminating this infor-
mation from the root to the leaves. The global information is used by the leaves to
identify their state (either overloaded or under-loaded). Shen et al. [7] showed that
the system using the scheme does not deal well with load variations due to churn (i.e.
the loads of nodes have a large variance). Shen also revealed that, compared to other
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schemes, the k-ary tree scheme induces a larger number of messages. To avoid the cost
of constructing a tree, the scheme for the DPTree system [16] generates a global map
that is circulated among nodes. The map is updated during the circulation. However,
the map itself reflects a tree structure; this prevents the scheme from being used in
systems with another kind of structure. The Histogram scheme [11] constructs a struc-
ture for aggregating the global load information in a structured P2P system. Although
the scheme keeps a smaller load imbalance for a P2P system than a scheme using a
sender-initiated policy, the aggregation introduces message overhead. Random walks
are sometimes used in estimating global load information for load balancing, such as
in Mercury [12]. However, in order to precisely estimate the global load distribution,
the scheme has to use O (log N) random walks for an operation to estimate the load
status of a system that has N nodes. These random walks add extra overhead to the
system.

2.2 Diffusive load balancing schemes

Diffusive load balancing schemes (also called diffusive schemes in this paper) are stud-
ied for balancing the computations of parallel computing programs over the nodes in
parallel computer systems. These schemes are classified as synchronous or asynchro-
nous schemes. A synchronous scheme specifies that all nodes, which are coordinated
by a global clock, run load balancing operations at the same time. These operations
conduct the activities such as reporting load statuses of nodes to neighbors, deciding
load transfers, and transferring loads. Asynchronous diffusive schemes do not require
this kind of synchrony while nodes periodically conduct individual load balancing
operations. However, the delay for transmitting a message or transferring a load must
be bounded. Therefore, these schemes are also called partially asynchronous schemes.

Diffusive schemes normally use a sender-initiated policy, where a sender node (that
is, an overloaded node) decides and invokes the load transfers to receivers (that are
under-loaded nodes). These schemes differ in their decision algorithms which cal-
culate the amount of load to be transferred. Assuming that the objects (e.g. tasks,
calculations or data items) on nodes are fine grained, Boillat [17] derived an algorithm
for a synchronous scheme from the Poisson diffusion equation. Cybenko [18] derived
an algorithm in a similar way. Bertsekas formalized a partial asynchronous scheme
in [20] by specifying that an overloaded node should send its load to under-loaded
nodes, especially the lightest loaded one, and, after a load transfer, the sender should
still have more load than those having less loads before. The partially asynchronous
schemes in [21,24] also specified the function for calculating the amount of workload
to be transferred from load senders to receivers.

A diffusive load balancing scheme converges if the workload of all nodes (asymp-
totically) reaches the global average as time proceeds. It has been shown that the
convergence speed of a synchronous diffusive scheme could be optimal by choosing
the portion of workload for load exchanges between two neighbors according to the
topology of a system [23]. If the load for an exchange is equal to a proportion of the
difference between the loads of two neighbors [24], a scheme converges faster in a
system with a hypercube or torus topology, where, compared with a ring or a linear
network, the network has a symmetric graph and a smaller diameter.
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Because of these properties, we propose an asynchronous diffusive scheme for load
balancing in P2P systems.

3 Design of the diffusive load balancing scheme

The proposed diffusive scheme is different from the other load balancing schemes for
P2P systems in terms of the load index (i.e. the measure used for indicating the load
statuses of nodes), the policies for applying load balancing operations, and the stages
of these operations. In this section, we describe the scheme in terms of these aspects
and analyze its convergence speed. We also analyze the impact of the neighborhood
structures, workload distributions, churn, and the heterogeneity of the node capacities
on the effectiveness of load balancing.

3.1 Load index

P2P nodes are expected to provide services with a uniform mean response time, like
the servers in a client/server system [9]. But, the load balancing techniques proposed
for P2P systems in the literature can not achieve this purpose. For example, some load
balancing schemes that equalize the amount of data or number of virtual servers on the
nodes [2,3] do not deal with nodes with heterogeneous capacities. Some other schemes
bring the utilizations of nodes to the average of the system [8,10]. It can be shown
that, when two server nodes with different capacities have the same utilization, their
mean response times might not be the same. That is, the requests arriving at the node
with the higher capacity would experience a smaller mean response time. Therefore,
these schemes do not equalize the response times of services on different nodes.

The proposed scheme considers the available capacities of the nodes as load index
that must be equalized. The performance of a server in a client/server system is nor-
mally modeled as an M/M/1 queuing system. According to [19], we have

1
E[r] = —“ L @3.1)

which indicates that the mean response time for requests E[r] is the inverse of the
difference between the service rate p and the arrival rate A of requests on the server.
We take the number of user request that can be processed per time unit as the measure
of the (total) capacity of a node, normally written . Using the same units, the used
capacity, normally written A, is the number of user requests arriving per time unit. Then
the available capacity is the difference between p and A. Equation 3.1 shows that, in
the case that two server nodes have the same available capacity, the mean response
times of their requests are the same. The equation also applies to the case where the
two servers have different capacities. We conclude that, in the case that the nodes that
could be modeled as M/M/1 queues in a P2P system have the same available capacity,
the mean response times of the requests of the system are the same. Therefore, the
purpose of the diffusive load balancing is to obtain similar available capacities for all
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nodes so that the services provided by the system could have a more uniformed mean
response times or quality of service for their services.

In order to show that equalizing the available capacity leads to similar response
times also in situations where the response time of each node is not accurately modeled
by an M/M/1 queue, we compared in [27] two load balancing techniques for systems
with nodes modeled as GI/G/1 queues: one equalizes the available capacities of nodes,
the other their utilizations. This study showed that the first technique leads to more
similar response times than the second. Using the first technique, the system has a
smaller expected value and a smaller variance for the mean response times of nodes.
Also, the variance of the mean response times is bounded by a fixed value. In a system
using the second technique, this variance is bounded by ﬁ where p is the equalized
utilization.

The diffusive schemes for parallel computing systems have different load indexes
for equalizing the amounts of computation on the nodes. Clearly, those load measures
do not reflect the dynamic arrival and departure of requests on the nodes. Therefore,
they are not appropriate for load balancing in P2P systems.

3.2 Load balancing operations and their decision algorithms

The proposed scheme specifies load balancing policies for its operations that peri-
odically run on the nodes of a P2P system. The information policy specifies that a
node periodically runs an operation to collect load information from its neighbors.
The transfer and location policies specify the selection of the senders and receivers
for load transfers within a neighborhood. A load balancing operation realizes these
policies. We call the node that is executing a load balancing operation the operating
node, and its neighborhood includes the operating node itself and its direct neighbors
within the overlay network.
An operation goes through the following three stages:

e Load determination: In this stage, the operating node collects the available capac-
ities of its neighbors by sending probing messages. A probed neighbor responds
with its available capacity if it is not involved in another balancing operation. The
operating node waits for these responses.

e Decision: First, the operating node calculates the average available capacity for
the neighborhood. A node is identified as a candidate receiver (sender) of load
or load-receiver (load-sender) if its available capacity is larger (smaller) than the
average. Then, a decision procedure identifies one or several receiver-sender pairs
and sends a load transfer request to the sender of each pair, including the ID of the
selected receiver (which is the target of the load transfer) and the amount of load
to be transferred (called required capacity). The detail of the decision procedure
depends on the decision algorithm. We will discuss different decision algorithms
in the following sections.

e Load transfer: During this stage, loads are transferred between the determined
senders and receivers.

After having performed an operation, the operating node will go back to process the
normal service requests until the time has come for another load balancing operation.
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Operations on different nodes are not synchronized. These operations may run concur-
rently on different nodes, however, a node involved in one such operation will refuse
the participation in another load balancing operation initiated by one of its neighbors.
In this way, the load status information collected from a neighbor during an operation
is always correct.

We consider the following algorithms that could be used in the decision stage of
a load balancing operation: the Proportional, Complete Balancing (CB), Directory-
Initiated (DI), Sender-initiated (SI) and Receiver-initiated (RI) algorithms. We assume
that objects have sizes of fine granularity, which means that workloads of arbitrary
sizes can be transferred; we also assume that they can be moved to any neighbor in
the system. We will discuss the interaction of these load transfers with the search
algorithm in the P2P system in the last section.

We introduce the following notations. The operating node of a load balancing oper-
ation is called node i. The neighborhood of the operating node is denoted as A;, and
the number of nodes in the neighborhood is |A;|. A node in A; is identified as anode ;.
A node x has a node capacity equal to C,. If a node has services with a total resource
requirements of [, its available capacity is avc, = Cy — I. We write ave, and avc),
to represent the load status of node x at the beginning and at the end of an opera-
tion, respectively. For example, when services with resource requirements / have been
transferred from node x to y at the end of an operation, we have avc; = avcy +/ and
avcl, = avey — 1.

3.2.1 Proportional algorithm

The Proportional algorithm (Prop.) has been discussed in [23], and we assume that
the algorithm uses the available capacities of nodes as load index. Here, the decision
algorithm determines the following load exchanges between node i and all other nodes
J in its neighborhood: load equal to k(avc; — avc;) will be transferred from node j
to node i (if the value is negative, the exchange proceeds in the opposite direction),
where k is a constant between zero and one. At the end of the operation, when all
exchanges have been performed, the new available capacities are as follows: avc; =
(1 —dk)avc; +k Zj avc; fori whered = |A;| -1, andavc} = (I =k)avc; +kavc;
for any neighbor j other than i.

3.2.2 Complete balancing algorithm

The Complete Balancing (CB) algorithm (also described in [23]) equalizes the avail-
able capacities of all nodes in the neighborhood of node i during an operation. The aver-
age available capacity of the nodes in the neighborhood of node i (including node i) is

S e, @V

3.2
|A;] G-2)

avey, =

The CB algorithm determines load exchanges such that at the end of the operation all
nodes in the neighborhood have the same average available capacity.
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Decision Procedure
1 Do forever
2 if SVect and RVect are not empty

3 = mi ;
$= min e

= max.,avc.
jeSVecr{ ’/}

tr =min{avc, —avc ,avc, —avc, }
Send instruction to s and r with load equal to tr for the transfer;
remove s from SVect and r from RVect

else break;

9 End of Do

Fig. 1 The decision procedure of the DI algorithm

SO NN W BN

3.2.3 Directory-initiated algorithm

The Directory-Initiated (DI) algorithm is similar to the algorithm proposed in [4]
for parallel computer programs. This algorithm also calculates the average available
capacity of the neighborhood by using Eq. (3.2). Based on the value of the average, the
algorithm identifies nodes as overloaded (if its available capacity is smaller than the
average), under-loaded (if its available capacity is larger than the average), or equal-
ized. The overloaded nodes are kept in a vector SVect, and the under-loaded nodes in
a vector RVect. The algorithm uses the procedure shown in Fig. 1 to decide service
migrations.

In the case that none of the vectors is empty, the procedure selects a pair of a sender
s and a receiver r such that the two nodes have the largest difference between their
loads among all the nodes remaining in the two vectors (line 3 and 4). Otherwise,
the procedure stops (line 2). Line 5 decides the load that should be moved between
s and r so that the sender s would not be under-loaded and the receiver r would not
be over-loaded after the load transfer. The procedure continues after removing s from
SVect and r from RVect.

3.2.4 Sender-initiated and receiver-initiated algorithms

Like the DI algorithm, the Sender-Initiated (SI) and Receiver-Initiated (RI) algorithms
identify overloaded and under-loaded nodes according to the average. However, in the
SI(RI) algorithm, node i is identified as a sender s (areceiver r) if its available capacity
is smaller (larger) than the average; otherwise, no load transfer will take place. Similar
algorithms have been proposed for parallel computing systems in [6].

The procedure for deciding the load transfer is shown in Fig. 2. The load to be
transferred out from node s (called avcyequirea) is the difference between the average
and the available capacity of s (line 1). The total providable available capacity (called
avC providable) 15 obtained from the available capacities of all under-loaded nodes. The
load to be transferred into a receiver is proportional to its providable available capacity
(line 6). The under-loaded nodes in RVect are considered one by one for deciding a
load transfers.
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Decision Procedure
1 avc

required = ach,- - ClVCX
2 avcpmvidable = Z (avcr - ach;)
reRVect
3 Do forever
4 if RVect is not empty
5 for a node r in RVect
6 Ir= avcrequired (ClVCr - aVCA,- ) / avcprovidable
send instruction to r with load equal to tr for the transfer
7 remove r from RVect
8 else break;
9  End of Do

Fig. 2 The decision procedure of the SI algorithm

The RI algorithm has a similar procedure where the receiver takes the role of the
sender in Fig. 2, and its exceeding available capacity (i.e. providable available capacity)
will be distributed to all the overloaded nodes.

3.3 Analysis of the scheme

In this section, we consider a P2P system with a static workload, where the workloads
of the services performed on the nodes of the P2P system do not change over time.
We will study here how the asynchronous, diffusive load balancing scheme leads
the system to change from any initial state (e.g. where the loads of the nodes are
uniformly distributed) to a globally balanced state (where all nodes have the same
available capacity). First, we discuss the convergence of the diffusive scheme from
an analytical viewpoint, and then we present some simulation studies which provide
a more detailed comparison of the different decision algorithms.

3.3.1 Analytical considerations

The function that the Proportional algorithm uses to calculate the new available capac-
ities of nodes is the function of an asynchronous diffusion scheme presented in [23]
where workload is replaced by available capacity. The proof in [23] shows that, after
an operation, the variance of the workload of all nodes in the system is decreased by
a given factor a (smaller than 1). This means that the variance follows a geometric
series of values which converges to zero. Hence, the Proportional algorithm converges
when it uses the available capacity as load index. We can provide similar proofs of
convergence for the other decision algorithms as follows.

We first discuss the CB algorithm in detail. We assume that there is a P2P system
that consists of N nodes, and the global average of the available capacities of its nodes

. — cavej .  (AVC—avc;)? .
iISAVC = % We write o2 (ave) = Z’(Tavc’) for the variance and o (avc)
for the standard deviation of the available capacities in the system at the time before

a node i starts its load balancing operation. Now we want to calculate the variance
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of the available capacities after this operation, written o2(avc’). We have Eq. (3.3) to
calculate the variance of available capacities:

No? (avc’) = Z (m - avc;-)2
J

= Z (m—avc})z + Z (m—avc;)z (3.3)

JEA; JEAi

At the right side of the equation, there are two terms. The first term is a sum over
all the nodes j that are within the neighborhood A; (including 7), and it is equal to
|A;| (AVC — achl.)z, where avcy, is the average of the available capacity of the
nodes within i’s neighborhood and |A;| is the number of nodes in this neighborhood.
Then, we write

E [Nc72 (avc’)] =E [IA,-I (AvC - achl.)z] +E Z (m— avcl’/)2 (3.4)

JEA;

where the notation E[X] represents the mean of the random variable X. Since the
local average avcy, is obtained over a set of |A;| nodes, the mean of avcy, is AVC,
and in the first term of Eq. (3.4), E [(A VC — ach,.)z] is the variance of avc,, which

is equal to |1‘:—_|c72(avc). We assume that |A;| is the same for all nodes i. Since, in
1

Eq. 3.4), E[No?(avc’)] = No?(avc’)for all available capacities in the system, and
the second term at the left of the equation evaluates to (N — |ADo2(avc), we obtain
No? (avc’) = (N — |A| + 1) 6% (ave), or

o’(avc’) = (l — |A|N_ 1) o2 (avc) (3.5)

Since Eq. (3.5) holds for any local load balancing operation that is performed by
any node in the system, we see that the value of the variance follows a geometric series
that converges to zero.

Now we are interested in estimating by which factor the variance decreases over
a period of one round. A round is the time interval within which each node of the
overlay network is supposed to have performed exactly one load balancing operation.
We denote the variance of available capacities at the end of round 7 as o2(avc') and
the standard deviation as o (avc’). Since there will be N load balancing operations
within this period, we obtain the following equation:

o? (ave') = H (1 - %)02 (avct—l) _ (1 B |A|N_ 1)N02 (auc"l)

(3.6)
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Since |A| is much smaller than N, we can use the approximation (1 + 7)" = e* for
large integers n, and obtain the following equation:

o? (avc’) = e_(‘Al_l)az(avct_l) 3.7
and

o (avct) = e_(‘gl_l)a(avc’_l) (3.8)

Therefore, for the period of one round, the variance of available capacities reduces by a
—1

factor of e/41=1 and the standard deviation reduces by a factor of e ‘A|2 (derived from

Eq. (3.7)). We call the multiplier that indicates the change of the standard deviation in

Eq. (3.8) the convergence ratio. Then, we can say that diffusive load balancing has a

convergence ratio equal to ew (or e]_TW) when it uses the DI algorithm.

In the following, we discuss the convergence speed for the other algorithms: the DI,
SI and RI decision algorithms. These algorithms are more practical for real systems
compared to the CB algorithm. Using the CB algorithm, an operating node works as a
receiver for some neighbors and a sender for the others at the same time. This does not
occur for the algorithms considered now. However, they are expected to provide slower
convergence than the CB algorithm, because at the end of a load balancing operation
by a node i, the available capacities of the nodes within its neighborhood would be
less uniform than in the case of the CB algorithm. For example, in the case of the ST
algorithm, half of the times, there is no change in the load distribution, namely when
node i is under-loaded and we have o2(avc’) = o?(ave). If node i is overloaded,
its available capacity will reach the neighborhood average and the available capac-
ity of each under-loaded node will be increased by smaller amounts. If we consider
the load change on the overloaded node and ignore the changes of the under-loaded
nodes, we obtain the formula No? (avc’) = ﬁaz (ave) + (N — 1)o? (ave). We

combine the above two formulas into the equation No? (avc’ ) = %N o2 (ave) +

% ﬁa2 (ave) + (N — 1) (avc) )- note that we have ignored here the difference

between the global average and the average within the neighborhood. Then, we obtain

02 (ave’) = (l - lzf‘,gll_j\l,) o2 (ave). If we assume |A;| — 1 & |A;], then, we obtain

o2 (avc/) ~ (1 - ﬁ) o2 (avc), and o2 (avc[) ~ e~ 102 (avc’_l). Therefore we
expect that the standard deviation of available capacities is reduced over the period of
one round by a factor of *->3 approximately. This would be similar for the R algorithm.

The convergence speed of the DI algorithm is more difficult to estimate, since dur-
ing a single load balancing operation, several sender-receiver pairs exchange parts of
their load. For each of the resulting load transfers, one of the partners will reach the
neighborhood average, but it is difficult to estimate how many pairs will be identified
and how much the load change of the other partner contributes to the reduction of the
variance. However, since the DI algorithm drives more nodes to reach the average of
the neighborhood during one operation than the S7 or RI algorithms, it is clear that the
convergence speed of this algorithm is expected to lie between the speeds of the CB
and ST algorithms.
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3.3.2 Simulation studies

Next, we study the convergence of load balancing with simulation experiments. The
convergence of a classical synchronous diffusive scheme, such as the one in [18,
23], was evaluated by a convergence factor y, which is the smallest reduction of
the variance of loads during one operation. Therefore, the convergence time derived
from the factor (i.e. t ~ ﬁ) is the maximum time that the scheme uses. We use a
different method to investigate the convergence of an asynchronous scheme. In our
experiments, the convergence of the scheme is measured by the convergence ratio r;
during round ¢.r; is the ratio of o (avc’) to o (avc’~!) where o (avc’) is the standard
deviation of available capacities at the end of round ¢. Therefore, r; is also the reduction
ratio of the standard deviation of available capacities. Using this method, the progress
of load balancing can be displayed.

These experiments use a simulated P2P system which is the modified version of
a clustered P2P system called “eQuus” [28], where each cluster has only one node.
This system has a skip-list structured overlay network. For example, for a system with
N nodes, all nodes are first connected into a ring according to the ascending order of
their IDs. In addition, each node has fingers pointing to the nodes at 2% positions fur-
ther down on the ring (k =0, 1, ... Llogz N J). This structure is similar to those used
by many P2P systems (e.g. Chord, Pastry, or DPTree), where the time and message
complexities of a search can be maintained at O (log N). In the following experiments,
the simulated systems have 1,000 nodes. All 1,000 nodes have the same capacity of
10 requests per second, and initially, the available capacities of nodes are uniformly
distributed in the range of [0, 10], with a mean of 5 which leads to a standard deviation
of 2.88.

We observed that, for a given decision algorithm, the convergence ratios in dif-
ferent rounds are different. During the first round, the algorithm has the smallest
convergence ratio with the largest proportion of loads transferred, and the standard
deviation of available capacities drops very rapidly. In the following rounds, the algo-
rithm has slower convergence ratios with fewer loads transferred. We also observe
that, after the experiment runs for 10 rounds, there are very few loads transferred,
and the standard deviation of available capacities approaches zero. We say that the
system is in the globally balanced state. Figure 3 shows the effectiveness of these
decision algorithms during the first five rounds. The measurements in the figure are
averaged over 20 simulation runs, each. For each measurement, the mean and the 95 %
confidence interval of the mean are displayed.

Figure 3 shows that these decision algorithms converge at different speeds. This
confirms the predictions of our analysis above. Among these algorithms, the CB algo-
rithm converges most rapidly. It has a convergence ratio r; close to 0.002, which
indicates that the standard deviation of available capacities drops by 99.8 % during
the first round. Figure 3a further shows that the standard deviation of the normalized
available capacities drops from 0.573 to 0.001 in this round. The normalized available
capacities are the available capacities at the end of that round divided by the average
workload of the system. In the following rounds, the convergence ratios of the CB
algorithm remain as small as 0.01. The ST and RI algorithms converge much slower
than the CB algorithms (e.g. the standard deviation of available capacities drops by
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Fig. 3 The progress of the diffusive load balancing with various decision algorithms: a standard deviation
of normalized available capacities, b convergence ratio, and ¢ proportion of loads transferred

78 % in the first round with r{ around 0.22). Among the practical algorithms (i.e.
DI, SI and RI), the DI algorithm has the strongest average convergence ratio which is
close to the CB algorithm (with | around 0.02). This observation indicates that resolv-
ing multiple pairs of senders and receivers, as done by the DI algorithm, improves the
effectiveness of diffusive load balancing. The Proportional algorithm converges faster
than the S7 and RI algorithm but slower than the DI algorithm. The data in the figure
confirms the predictions of our analysis given above.

The amount of loads transferred between nodes is also collected for evaluating the
cost of load balancing. For transferring loads, a system has to spend some processing
power of nodes for packing and unpacking objects and some bandwidth of its network
links for transmitting the packed objects. A decision algorithm has a higher cost if it
decides more transferred loads. The Proportional algorithm requires transferring more
loads than the DI, SI or RI algorithms. The DI, SI and RI algorithms result in about
35 % of the total loads to be transferred between nodes for the standard deviation of
available capacities to drop by 99 % from the beginning.

From the perspective of the convergence speed, the diffusive scheme is scalable
for P2P systems. We note that, using the diffusive scheme with the CB algorithm,

1—|A
2

. \ . .
the system has a convergence ratio close to e during one round (where |Alis the
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number of nodes in a neighborhood). In a P2P system, the value of |A| grows along
with the increase of the system size, normally logarithmically. Therefore, the larger
the system size, the smaller is the factor, and the faster the scheme converges. For
example, for a system with a skip-list overlay network, in the case that the system

size is doubled from N to 2N, the convergence ratio of the CB algorithm would
1—|logy N | 1—|logy N+1] —|logy N | . . .
reduce from e~ 2 toe 2 =e 2 (i.e. by 39.3 %). We investigated

the change of convergence ratios in systems with different sizes (e.g. N = 128, 256,
512, or 1,024) through simulation experiments. The DI algorithm is used. We observed
that the convergence ratio r; slightly drops when the system size is doubled. After the
system has its size increased by a factor of 8 (for example, N increases from 128 to
1,024), the reduction of r; becomes close to 42.8 % (r; = 0.021 for N = 128, and
0.012 for 1,024). The reduction is smaller than that calculated for the CB algorithm
(which is 77.6 % in this case). During the following rounds, the convergence ratios for
these systems gradually increase to be as large as 0.3. We can further observe that the
proportions of loads transferred between nodes are almost the same for the different
systems. Also, the effectiveness of the scheme is not different when these systems are
under the same situation of churn (see Sect. 3.6). These results show that the diffusive
scheme is scalable to the large-sized systems.

3.4 Network structure

The impact of the network structure on the effectiveness of diffusive load balancing
has been intensively studied by considering ring, hypercube, or star topologies (see
[17,18,24]). In this section, we consider a structure of random neighborhoods for
load balancing operations. We consider two kinds of random neighborhoods. One is
called random-graph neighborhoods, which are the neighborhoods in a network with a
random-graph topology. Another is called random-walk neighborhoods, which are the
neighborhoods that are obtained by dynamic random walks, a different neighborhood
for each load balancing operation. A node with a neighborhood of either kind has
Llogz N J neighbors.

We observed that the network structure of a system has an impact on the conver-
gence speed of an algorithm. It has little impact on the CB algorithm since we see that
the convergence ratio r; is around 0.003 for either kind of random neighborhoods.
This value is also close to that for the skip-list neighborhoods. When the random-graph
neighborhoods, instead of the skip-list neighborhoods, are used, the other algorithms
have their convergence speeds degraded. The Proportional, SI and RI algorithms have
their convergence ratios increased by 10 % (see Fig. 4a to be compared with Fig. 3b).
The DI algorithm has its convergence ratio increased by a factor of about 2—4 (for the
skip-list neighborhoods, r; is around 0.012, and rs around 0.30, in Fig. 3b; for the
random-graph neighborhoods, r| is around 0.046 and rs around 0.6, in Fig. 4a).

The situation is different when random-walk neighborhoods are used, as shown in
Fig. 4b; only the classic Proportional algorithm does not perform well. The standard
deviation of available capacities at a level of around 0.05 can not be further reduced
even after the experiment runs for 50 rounds. The ST and RI algorithms perform better
with random-walk neighborhoods. Starting from round 2, their convergence ratios
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Fig. 4 The convergence ratios of diffusive load balancing with different neighborhoods: a in an overlay
network with a random-graph topology, and b with neighborhoods collected by random walks

become much smaller than those for static overlay network neighborhoods (either the
skip-list neighborhoods or random-graph neighborhoods). Using random-walk neigh-
borhoods, a node has more chance to be a sender or a receiver when it runs operations
with different neighborhoods each time, and the reduction of the load differences is
also larger than in the case of overlay network neighborhoods. Using random-walk
neighborhoods, the DI algorithm has similar convergence ratios as those for skip-
list neighborhoods. Meanwhile, we observe that the proportion of loads transferred
between nodes in a system using the DI, SI or RI algorithm is very similar to that in
the previous case (see Fig. 3c).

3.5 Workloads with highly skewed distributions

In this section, we investigate the decision algorithm in situations with highly skewed
distributions of workloads, like the Zipf distribution in [22]. The simulated systems
have different workload distributions. We observed that, in these systems, the conver-
gence speeds of a decision algorithm are different at the beginning of load balancing.
Afterwards (e.g. after one or two rounds), the speeds do not change much. We also
observed that the S7 algorithm handles workloads with extremely skewed distributions
better than the DI algorithm.

To simulate a skewed workload distribution, we considered a situation where a
certain proportion of the nodes are hot spots (e.g. 0.001, 0.01, 0.1, 0.2, or 0.4 of all
nodes). At the beginning of an experiment, the workload is evenly distributed over all
the hot-spots. The DI and SI algorithms are used for the following experiments. One
of two kinds of neighborhoods is used: either the skip-list or random-walks neighbor-
hoods. Figure 5 only displays the rq for each of the cases since we observed that, along
with the progress of load balancing, the convergence ratios (e.g. r5) depend on the
decision algorithm and the kind of neighborhoods rather than the number of hot spots.

The ST algorithm outperforms the DI algorithm when the system has an extremely
small proportion of hot spots, like 0.001. However, the advantage of the SI algorithm
drops when the convergence speed of the DI algorithm increases with the increase
of the proportion of hot spots. For the 0.001 hot-spots case, Figure 5 shows that the
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SI algorithm has an ry of 0.19, but the Rl algorithm has 0.35. For the 0.1 hot-spots
case, the convergence ratios of the DI algorithm are close to those observed from the
previous experiments where the system initially has a uniform workload distribution.
However, the speed of the DI algorithm will not increase much even if the system
further increases the proportion of hot-spots. One reason for this is that, in the 0.001
case, a neighborhood could have one or zero sender with a larger probability at the
beginning of the experiment. Since the DI algorithm only selects one receiver for a
sender, the DI algorithm resolves fewer differences between the available capacities
of the nodes than the S7 algorithm which can select many receivers for one sender.
Therefore, we conclude that the workload distribution has little impact on the con-
vergence speed of the S7 algorithm (with convergence ratios of 1 around 0.2), but, it
has an impact on the DI algorithm, which reduces the convergence speed when the
workload distribution is extremely skewed.

3.6 Churn

In this subsection, we investigate the effectiveness of diffusive load balancing in a
system that experiences churn. Churn occurs when nodes join or leave the system.
This involves changes of the overlay network and the distribution of workloads. We
analyzed the variance of the available capacities in a system with churn.

In the simulated system, churn is realized by adding or deleting nodes from the
network. We use the functions provided by the SSim library [29] (i.e. a library used
for discrete-event simulation) to schedule the events for joining and leaving nodes.
The events of nodes joining or leaving are modeled by a Poisson arrival process where
the inter-arrival times of these events follow an exponential distribution. In the follow-
ing, we use the term churn rate to measure the intensity of churn; it is defined as the
fraction of nodes that join or leave the system during one round of load balancing. In
this way, the changes of available capacities of nodes caused by churn and the reduc-
tion of the differences between these available capacities produced by the diffusive
load balancing are measured within the same time period. We assume that, for each
node that leaves, there is a node that joins so neither the total number of nodes nor the
system’s average available capacity changes. For example, when the churn rate is 0.1
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in a system with 1,000 nodes, 50 nodes will join and 50 nodes will leave during one
round. If the duration of a round is 7', the mean inter-arrival time of joining or leaving
events is %. Without load balancing, the standard deviation of the available capacities
will increase as time proceeds. This increase depends on the churn rate in the network.

Using the proposed diffusive load balancing scheme in a P2P system with churn,
we observed in our simulation experiments that the standard deviation of available
capacities depends linearly on the average workload of the system. According to the
analysis of Cybenko in [18], when a system with dynamic workload uses a synchro-
nous scheme, the variance of loads on nodes after a load balancing operation can be

a5 (w)

calculated as o2 (w’ ) =157 where 002 (w) is the variance of the dynamic workload

introduced during one round, and y is the convergence factor of the scheme. In a
P2P system like Chord, a leaving node passes its workload to its predecessor, and a
newly joined node takes over half of the workload of its successor. We assume that
all nodes have the same capacity C. The workloads of the nodes are represented by a
random variable / with a mean value . The system is load-balanced before a change
of the network (i.e. a single join or leave event). Therefore, the variance of available
capacities introduced by the change is:

og (ave) = og (C —1) =f:§(l)
QA=+ -D* sl
B N 4N

2

(3.9)

Therefore, according to Cybenko’s equation, we suggest that the standard deviation
of available capacities is a linear function of the average workload in the system. In
our experiments, we observed that the larger the average workload, the larger is the
standard deviation. Moreover, for systems that differ only on their average workloads,
the ratios of the standard deviation of available capacities to the average workload of
the systems (i.e. those with homogeneous nodes) are always the same. Therefore, we
define this ratio as the standard deviation of normalized available capacities and
use it as a parameter for comparing the performance of different decision algorithms.

The proposed scheme controls the standard deviation of available capacities (or nor-
malized available capacities) within a bound. In the following experiments, a system
uses the DI or ST algorithm with the skip-list or random-walk neighborhoods. Figure 6
shows the data for the first 20 rounds of load balancing. We observe that, after a few
rounds (e.g. 2 or 3 rounds), the system is in a steady state where the standard deviation
of available capacities (or normalized available capacities) and the proportion of loads
transferred are steady. We see that the average of the standard deviation of available
capacities in the steady state is bounded.

Also the size of the bound for the standard deviation of available capacities (or nor-
malized available capacities) depends on the decision algorithm. An algorithm with a
faster convergence speed can maintain a smaller bound for the system. For example,
for the case of the SI algorithm, the bound is about 30 % larger than for the DI algo-
rithm (0.15 for the DI algorithm and 0.2 for the SI algorithm). Furthermore, we note
that the bounds, for a given algorithm using different kinds of neighborhoods, are not
significantly different. Figure 6b indicates that the costs of load balancing are similar

@ Springer



666 Y. Qiao, G.v. Bochmann

50 T

DI, skip-list ——
DI, random ---x---

| Sl, skip-list ---%--- |
40 SI, random &

DI, skip-list —+—
Dl,random ---x---

| Sl,skip-list ---%--- |
0.8 Sl,random &

standard deviation of
normalized available capacities

proportion of loads transferred (%)

. .
0 2 4 6 8 10 12 14 16 18 20
round

(b)

Fig. 6 Effectiveness of diffusive load balancing in a system with churn at a rate of 0.1: a standard deviation
of normalized available capacities, and b proportion of loads transferred
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Fig. 7 The bound of the standard deviation of normalized available capacities in systems with varying
churn: a the standard deviation of normalized available capacities, and b proportion of loads transferred

for both decision algorithms. Both these algorithms invoke almost the same propor-
tions of loads transferred when the system is in the steady state. The proportion for
a decision algorithm does not depend on what neighbors are used: a skip-list overlay
network, or probed by random walks.

The system has its available capacities bounded by a higher value when the churn
has a larger rate. Also, the DI algorithm brings smaller bounds to the system than the
SI algorithm; the larger the churn rate, the larger is the difference between the two
algorithms. In the experiments of Fig. 7, the churn rates vary from 0.1 to 0.9 with an
increment of 0.1. A rate of 0.01 is also used as an exception. The bounds and their 95 %
confidence intervals were collected from the experiments which were run 20 times.
The average workload of a simulated system is equal to 5 requests/s. Figure 7a shows
the bounds when a system has different churn rates. In a system that has a churn rate of
0.1, the bound is around 0.7 (with a bound for normalized available capacity of 0.139
in the figure) for the DI algorithm with the overlay network neighborhoods. In this
system, few nodes would have an available capacity less than zero and be overloaded.
In the case that the system has churn with a rate of 0.9, the bound becomes 1.5 (with
a bound of normalized available capacity of 0.3 in the figure), and there are less than
10 % of nodes overloaded. We further observed that the bound is not a linear function
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of the churn rate. We observed that the size of the bound also depends on whether
the DI algorithm or ST algorithm is used. When the churn rate is as small as 0.01, the
bounds for the two algorithms are not significantly different. The difference between
these bounds increases when the rate increases. When the churn rate is as large as 0.9,
a system using the S7 algorithm would have a bound twice as large as a system using
the DI algorithm (0.6 for the SI algorithm, and 0.3 for the DI algorithm). However,
the system has fewer loads transferred when it uses the SI algorithm (Fig. 7b).

Although the size of the system does not change in the above experiments, the
bounds obtained in these experiments are realistic also when the system size may
change. In a real P2P system, the rates of node joining and leaving may be different.
In this case, the size of the system will change, e.g. the size will increase if the joining
rate is higher than the leaving rate. As long as the rate difference is a small fraction
of the leaving (or joining) rate, we expect that the bound of the standard deviation
of the normalized available capacity would be very close to the bound obtained for
the stationary system state in our simulations. When the system size changes, the
expected bound may therefore be obtained by interpolating the bounds obtained by
our simulations for the different fixed system sizes.

3.7 Heterogeneous node capacities

Since the proposed load balancing scheme equalizes the available capacities of nodes,
systems with heterogeneous nodes capacities can have similar mean response time
for their services. In a system without churn, the convergence of the scheme does
not depend on whether the nodes are homogeneous or heterogeneous. Therefore, our
experiments that use systems without churn in the previous sections are all valid. How-
ever, for a system with churn, the variation of workloads introduced by the leaving or
joining of nodes depends on the capacities of nodes. The larger-capacity nodes which
have larger workloads would induce larger variations than the smaller-capacity nodes
(assuming that all nodes have the same available capacity).

In the following experiments, the system has two types of nodes: small-capacity
nodes with a capacity of 10 requests/s, and large-capacity nodes with a capacity of
1,000 request/second. There are 1,000 nodes among which 0.1 % are large capac-
ity nodes, and the others are small capacity nodes. The churn rate is 0.1. In Fig. 8,
there are several extraordinary points with standard deviations much higher than other
points. These points are caused by the leaving or joining of the high capacity nodes.
As we observed in Sect. 3.5, the DI algorithm has larger convergence ratios in the
one-hot-spot case than the SI or RI algorithm. We propose to modify the DI algo-
rithm and allow the sender (or receiver) to distribute its excess workload (or available
capacity) to all the under-loaded (or overloaded) nodes in the neighborhood in the case
that there is only one overloaded (or under-loaded) node in the neighborhood. This
modification is expected to improve the performance of the DI algorithm to deal with
hot-spots. The solution in [15] that partitions a node into several virtual nodes and
locates these virtual nodes in different places of the overlay network is an alternative
approach.
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4 Decision algorithms dealing with large-size services

The sizes of services of P2P systems could be fine-grained or large. The size of a ser-
vice represents the resource requirements of the service, and it is equal to the amount
of resources that the service uses to respond a request. In the previous section, we saw
that the diffusive scheme can completely equalize the available capacities for a sys-
tem with fine-grained services. However, working in systems with large-size services,
the load balancing scheme can not exactly equalize the available capacities, because
the differences between available capacities can not be completely resolved if only
large-size services could be exchanged. In this subsection, we propose two decision
algorithms for the diffusive scheme to deal with large-size services.

The two algorithms are variations of an algorithm proposed in [19], which used a
sender-initiated policy and considered tasks with equal amounts of resource require-
ments. Our algorithms use a directory-initiated policy and consider the amount of
resource requirements of services instead of the number of services on the nodes.
They are intended for systems with homogeneous services (i.e., all services have the
same resource requirements) and for systems with heterogeneous services (i.e., ser-
vices have different resource requirements), respectively. We investigate the remaining
standard deviation of available capacities and the impact of the sizes of services on
this standard deviation. We use the same notations as in Sect. 3 to describe the algo-
rithms. As earlier, we assume that the overlay network would update the destination
of a shared object or a virtual server during a load transfer.

4.1 Decision algorithms for large sized services
4.1.1 Homogeneous services
Here we describe a decision algorithm called DIHomoService for the diffusive scheme

to deal with services of homogeneous size. Similar to the DI algorithm, this algo-
rithm calculates the loads for load transfers between pairs of senders and receivers.
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minmave, —ave,,ave, —ave,
5 tr= { A s A; }
L
6 iftr==0and avc, + L<avc, — L
7 tr=1
8 iftr>0
9 decide the transfer with the number of services as tr
10 remove x from SVect
11 remove 'y from RVect

12 else break
13 else break
14 End of Do

Fig. 9 The segment of DIHomoService algorithm replacing lines 5-9 of the DI algorithm shown in Fig. 1

It shares with the DI the process for identifying the states of nodes as overloaded or
under-loaded and selecting a pair of sender and receiver. However, it calculates the
number of services to be transferred rather than the amount of load to be transferred.
Figure 9 shows a segment of this algorithm. This segment replaces the lines 5-9 of
the DI algorithm shown in Fig. 1. We assume that the resource requirements of ser-
vices are equal to L. The number of services for a load transfer is calculated at line
5 where the symbol |x] is the floor function of a real number x, equal to the integer
part of x.

Following the above procedure, the diffusive load balancing procedure eventually
stops. We assume that the system has a static workload and no churn. Cedo et al. [1]
presented assumptions for a general model of a partially asynchronous load balanc-
ing scheme to converge or stop in a system with the equal-sized tasks. We show
that our scheme with the DIHomoService algorithm has stronger properties com-
pared with this general model. First, the proposed scheme allows only one node to
run an operation at a time in a neighborhood. This guarantees that the load status of
a neighborhood is always fresh and correct during an operation. Second, since the
DIHomoService decides load transfers for multiple pairs of senders and receivers, the
proposed scheme has a stronger load balancing power than the general model which
uses a sender-initiated policy for load transfers. Third, the DIHomoService also guar-
antees that avc), is less than avc). for a pair of sender and receiver. Hence, like the
general model, our scheme using the DIHomoService will eventually stop (in a system
with a static workload), and the system enters a globally stable state thereafter.

We further claim that after the system enters a globally stable state, the local load
imbalance (i.e. the maximum difference between the available capacities in a neighbor-
hood) is bounded to 2L. In the case that the decision algorithm of an operation decides
no load transfer to be done between two nodes, for example, between the sender s 1 of
SVect and the receiver r 1 of RVect, either avc, —aveg) < L orave,1 —ave < Lholds.
Then, the inequality avc,; — aveg; < 2L holds. In the neighborhood, there is no
receiver that could be located as a receiver for s1, and no sender that could be found
for r1. Hence, in the globally stable state, the local load imbalance (i.e. the difference
between the available node capacities between s1 and r1) is at most 2L. Therefore,
the global load imbalance of the system (i.e. the maximum difference between the
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w={]

5

6 P= {service € s}
7 Do forever
8

9

fr = min VCA’ —avcs,avc,—ach}

ls’(’le(rt = 0
10 if 1>0
]] lselect = max {lxervice S lr}
serviceeP
12 lf lSL’IL'Ct > 0
13 addvtoWifl =1,
14 ave, =ave, + 1,
15 ave, =ave, — 1,
16 remove v from P
17 else break
18 else break
19 End of Do
20 if W is not empty
21 send instruction to s and r for the load transfer containing the services in W
22 Sfrom s from SVect and r from RVect
23 else
24 remove s from SVect
25 if SVect is not empty
26 go to line 4
27 else break
28 End of Do

Fig. 10 The segment of DIHeteroService algorithm which replaces the lines 5-9 of the DI algorithm shown
in Fig. 1

available capacities) is bounded by 2LD where D is the diameter of the system (i.e.
the maximum of the minimum hop distance between any two nodes).

4.1.2 Heterogeneous services

The DIHeteroService algorithm deals with heterogeneous services; its segment that
replaces the line 5-9 of the DI algorithm is shown in Fig. 10. This segment mainly
selects the services from the sender s. This selection prevents a sender (or a receiver)
from becoming a receiver (or a sender) after the load transfer (see lines 7-19). In the
case that a sender has no services for a receiver (line 23), another sender is selected
for the same receiver, and the decision procedure continues (lines 24 through 26).
Using the arguments we used for the DIHomoService algorithm, we can show that
the load balancing with the DIHeteroService algorithm will stop in a system with a
static workload. Like the DIHomoService algorithm, the DIHeteroService algorithm
reduces the differences between the available capacities of the nodes in each operation.
Also, when the distribution of the loads in the system is unknown, in a globally stable
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state, the local imbalance is bounded by 2/,ax Where I 1s the maximum resource
requirement of the services, and the global load imbalance is bounded by 2/ax D.

4.2 Analysis of the algorithms

Using simulation experiments, we investigated the two above decision algorithms in
terms of their convergence speeds, numbers of load transfers, and the remaining stan-
dard deviations of available capacities. We assume that each load transfer requires the
same amount of resources, such as CPU or bandwith, even though they may include
multiple services. Therefore, a larger number of load transfers indicates a higher cost
of load balancing. The impact of the resource requirements of services (i.e. the sizes
of services) is also investigated. The simulated system has a configuration similar
to the previous experiments. In the following experiments, the system installs large-
sized services or small-sized services. These services are randomly distributed over
the nodes at the beginning of an experiment, and the average available capacity is 5
requests/s. For example, for a system with large-sized homogeneous services, L is
set to 2.5 requests/s for a service, which is of the same order as the node capacity.
Therefore, a node can host at most 4 services. For a system with small-sized homoge-
neous services, L is set to 0.25 requests/s, which is one tenth of that of a large service.
A node can host at most 40 such services. For the systems hosting heterogeneous ser-
vices, services have their resource requirements uniformly distributed between 0 and
a preconfigured maximum, e.g., 2.5 requests/s for a system with large-sized services,
and 0.25 requests/s for a system with small-sized services.

The decision algorithms converge faster in the systems with smaller services, and
the standard deviation of available capacities are smaller in these systems. Table 1
shows the mean value and the 90 % confidence interval (CI) for values collected
from 20 runs of experiments. In all of the experiments, the diffusive load balancing
stops after a small number of rounds (e.g. at most 4 rounds). The r; of the decision
algorithms are smaller than their r,. Furthermore, | for a system hosting small ser-
vices is smaller than for a system hosting large services. This indicates that small
services facilitate load balancing. Since the load balancing operations could select the
small services in the heterogeneous systems for further resolving load unbalances,
the available capacities of the nodes in these systems can have a smaller standard
deviation in subsequent rounds. However, moving services for load balancing in these
heterogeneous systems introduces more load transfers. The number of load transfers
in a heterogeneous system is about three times larger than in a homogeneous system
hosting only the maximum-sized services. From Table 1, we also see that the global
load imbalance of a system in the stable state is much smaller than the bound calcu-
lated in Sect. 4.1. The predicated global load imbalance is bounded by 2L D, but the
experiments show a value of around L or 2L.

We observed that, in a system using the diffusive scheme, the sizes of services
have little impact on the standard deviation of the available capacities when churn is
noticeable. In the following experiments, the churn rate is 0.1 or 0.9. The four sys-
tems described above are used. Table 2 shows the bounds of the standard deviation
of available capacities and the average numbers of load transfers in each round for
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Table 1 Results for the DIHomoService and DIHeteroService decision algorithms with a skip-list overlay
neighborhood

Small services Large services

Homo Hetero Homo Hetero

Number of load transfers

Mean 1825.9 5414.6 617.65 1608.05

90 % CI 25.44 64.46 5.86 17.17
'y

Mean 0.034 0.013 0.141 0.124

90 % CI 0.002 0.001 0.009 0.002
rz

Mean 0.88 0.324 0.99 0.99

90 % CI 0.039 0.016 0.005 0.001
Standard deviation of available capacities

Mean 0.09 0.012 0.49 0.355

90 % CI 0.01 0.001 0.032 0.006
Maximum difference of available capacity

Mean 0.36 0.139 4.5 2.64

90 % CI 0.047 0.014 0.377 0.116

Table 2 The effectiveness of the scheme in systems with churn

Small services Large services
Homo Hetero Homo Hetero
Rate for churn: 0.1
Bound* 0.75 0.805 0.83 0.79
Number of load transferred 841 2,048 122 708
Rate for churn: 0.9
Bound* 1.68 2.29 1.82 1.68
Number of load transferred 2,609 3,326 817 2,229

* The bound of the standard deviation of available capacities

the four simulated systems. When the churn rate is 0.1, the four systems have their
bounds close to 0.8 in their steady states; these bounds are not significantly different
(see Table 2). A system has its bound increased when the churn rate increases. When
the rate is 0.9, the heterogeneous system hosting small services has a bound of around
2.2, and the other systems have a bound of around 1.6 (see Table 2). These bounds
are close to those in systems with fine-grained services (see Sect. 3.6). This indicates
that, in a system with churn, the size of services has little impact on the bound of the
standard deviation of available capacities. However, the numbers of load transfers are
largely different (see Table 2). The systems hosting large services are favored; the load
balancing operations introduce fewer load transfers.
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Table 3 Comparison of load balancing schemes for P2P systems

Structure Decision Information Transfer Location
component policy policy policy
Distributed Directories A directory collects Directory-initiated Nodes registered
directory load statuses of in each directory
(d-directory) [8] registered nodes
k-ary tree [10] Inner nodes Tree-root aggregates Directory-initiated Nodes in the
of the tree load statuses of nodes sub-trees of a
through the tree decision
structure, and the component

average load status of
the system is
disseminated to leaves

Random probing  Each node A node collects the load ~ Sender-initiated Nodes that were
[12] statuses of a set of probed
randomly selected
nodes
Diffusive scheme  Each node A node collects the load ~ Directory-initiated Nodes in the
statuses of nodes in its neighborhood
neighborhood

5 Discussion and conclusion
5.1 Comparison of load balancing algorithms

The proposed diffusive load balancing technique is different from other techniques
proposed for P2P systems. First, the proposed technique equalizes the available capac-
ities of nodes so that the mean response times of services could be similar. Other
techniques equalize other kinds of performance aspect. Some of them (e.g. [2,3,12])
equalize the amount of data or the numbers of virtual servers on nodes, and some
others (e.g. [8,10]) equalize the utilizations of nodes. With those techniques, a system
that has nodes with heterogeneous capacities may have largely varying mean response
times for its services. Second, we analyzed the effectiveness of the proposed scheme in
terms of convergence speed and the remaining standard deviation of available capac-
ities in the case of churn. These kinds of analysis display the statistical properties of
load balancing more clearly than an analysis based on load imbalance (i.e. the differ-
ence between the maximum and the minimum loads of nodes) as in [3,11,12], or the
proportion of requests failed or succeeded as in [5,7,8].

Third, the proposed technique uses a diffusive scheme. In order to differentiate the
diffusive scheme from the other schemes, we compare in the following the proposed
diffusive scheme with three other typical schemes for P2P systems: the distributed
directory, k-ary tree, and random probing (see Table 3). These schemes are different in
the way they decide load transfers. In the distributed directory scheme, the number of
directories is pre-configured. The effectiveness of the scheme depends on the number
of directories and the interval between the two consecutive load balancing operations
of a directory. For example, for a large-size system, the scheme with a small number
of directories is similar to a scheme with a central directory. For a system of small size,
the scheme with a large number of directories is similar to a distributed scheme using
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random probing. Different from the distributed directory scheme, the random probing
scheme and the diffusive scheme let every node in the system make these decisions.
Therefore, the two schemes are more scalable compared with the distributed direc-
tory scheme with a fixed number of directories. The k-ary tree scheme uses the inner
tree-nodes to make decisions for load transfers. Therefore, the number of decision com-
ponents is a fraction of the number of nodes in the system, and the scheme is scalable.

In terms of the Information policy, among the four schemes, only the k-ary tree
scheme uses a tree structure to aggregate the global load status information and to
disseminate this information to each node. As we reviewed in Sect. 2.1, the global
information of a system easily becomes stale if the system has a dynamic workload.
Moreover, churn in a P2P system induces fluctuations of the tree-structure in addition
to variations of workload. This further degrades the accuracy of the global load status
information. Furthermore, Shen et al. [7] showed that the k-ary tree needs more mes-
sages to implement its Information policy. The other three schemes all use the load
status information collected from a subset of nodes. Also, without using the global
information, they are more effective in dealing with the dynamics of the P2P system.

Among these schemes, only the random probing scheme uses a sender-initiated
Transfer policy for a load transfer. The other schemes use a directory-initiated pol-
icy where a decision component selects a sender and a receiver for a load transfer.
Our previous experiments showed that the directory-initiated policy is superior to the
sender-initiated policy.

Among these schemes, the distributed directory and k-ary schemes spend fewer
messages on load balancing operations, but they spend extra messages on constructing
the load balancing structure. For example, in a system using the distributed directory
scheme, the load balancing operations use 2N messages in one round in the case that
the system has N nodes, including those for load status reports and load transfers.
However, these nodes also use O (N log N) messages to register in the directories,
and they change their registrations from time to time for achieving global load-bal-
ance. In a system using the k-ary scheme, an information operation uses 2(N — 1)
messages, including the messages for load status aggregation and dissemination. This
system uses N log; N messages in total to resolve load unbalance in the worst case,
when half of the nodes are overloaded and all located in the same sub-tree of the root,
and the load balancing requests are individually sent to different nodes. However, the
procedure that constructs a tree based on a DHT uses O (N log N) messages. This
procedure calls a lookup procedure to map a tree node to a real node in the DHT.
Moreover, the message cost on maintaining the tree in a system depends on the churn
in the system. The larger the churn rate, the larger the message cost.

The message cost of the diffusive scheme or the random probing scheme) is not
impacted by the churn of the system since they do not construct control structures. In a
system using diffusive load balancing, the load balancing operations use O (N log N)
messages in one round, including those for collecting load statuses of neighbors and
for load transfers. The message cost of the random probing scheme depends on the
accuracy requirement for the estimation of the load status in the system. The scheme
in [12] uses O(log N) messages (or steps) for each probe, and O (log N) probes for an
operation. Then, in a round, the message cost is O (N log> N) in total. We conclude
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that the diffusive scheme requires fewer messages than the random probing scheme in
a round.

To further distinguish the random probing scheme proposed in the literature and
the diffusive scheme, we implemented a simulation of the random probing scheme
and investigated its convergence speed. Similar to the experiment in Sect. 3.4, the
operating node of an operation randomly picks Llogz N J nodes in the system as the
neighborhood for load balancing. The random probing scheme uses a sender-initiated
policy. In the case that the running node turns out to be a sender (its available capac-
ity is larger than the average available capacity of the nodes in the neighborhood),
the running node locates the node with the smallest available capacity as a receiver.
We compared two decision algorithms that are popular in random probing schemes.
One algorithm lets the sender equalize its available capacity with one receiver, in the
following called equalization algorithm. Another algorithm lets the sender and the
receiver have their available capacities equal to the neighorhood average, in the fol-
lowing called neighborhood average algorithm. The other parameters of the simulated
system are configured as for the experiments in Sect. 3.

Figure 11 shows that the two decision algorithms are different in their convergence
ratios. The equalization algorithm converges faster than the neighborhood average
algorithm. However, the equalization algorithm induces 15 % more load transfer than
the neighborhood average algorithm (the equalization algorithm moves 45 % and the
other moves 30 % of the total workload). Compared with the data shown in Fig. 4b,
the convergence speed of the equalization algorithm is close to that of the S7 algorithm
using random neighborhood, which is slower than the DI algorithm. The experiment
further indicates that random probing schemes with a sender-initated policy converge
much slower than the diffusive scheme with a directory-initiated policy.

5.2 Searching for services that are moved

Load balancing normally implies the movement of services from an overloaded node
to an under-loaded node. Such transfer will in general make the searching for these
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services more difficult. P2P systems normally establish their overlay networks in such
a way that it provides efficient searching, possibly through a distributed hash table
(DHT). In the following we mention two design alternatives to implement service
transfers without interference with the searching algorithm.

One alternative is to foresee for each service (or object) two nodes: (1) the owner
node (which is the destination of the searching algorithm for this service), and (2) the
host node which stores and executes the service. The service is accessed indirectly;
first the owner node is reached. This node forwards the request to the host node. When
the service is moved, the address of the host node in the owner node is updated.

Another alternative is the use of virtual servers. Each node contains a certain num-
ber of virtual servers, and the virtual servers are the units to be transferred between
the nodes. The virtual servers maintain an overlay network among themselves which
can be used for searching. When a virtual server is moved, all its neighbor virtual
servers will have to update their routing table with the address of the node where
the moved virtual server will be located. Therefore the searching is not affected by
the load movement. The load balancing algorithm running on a physical node may
use the routing tables of its virtual servers to select the neighbors to be used for load
balancing. In a sense, this leads to random neighborhoods for load balancing without
using random walks; the overhead of random walks is avoided.

5.3 Conclusion

We proposed a diffusive load balancing scheme for P2P systems in this paper. This
scheme focuses on equalizing the available capacities of the nodes in the system so
that the services on these nodes could have similar mean response times. Nodes in a
P2P system asynchronously run the load balancing operations. Since these operations
use the structure of an overlay network to identify their neighborhoods, they do not
introduce extra overheads for maintaining these neighborhoods that are required for
collecting the load information.

The effectiveness of decision algorithms for the diffusive scheme is discussed in
detail. The Complete Balancing (CB) algorithm exactly equalizes the loads on the
nodes in a neighborhood, and therefore converges fastest. Also, its convergence speed
does not depend on what kind of neighborhood is used: the skip-list neighborhood
or the random neighborhood. The Directory-initiated (DI) algorithm is superior to
the Sender-initiated (SI) or Receiver-initiated (RI) algorithm since its convergence
speed is close to the CB algorithm. The convergence speed of the SI (or R]) algorithm
improves when it uses the neighborhoods constructed by random-walks. Especially,
in situations with a small number of hot spots (for example, 0.001 or 0.01 of nodes are
hot spots) these algorithms perform better than DI. This advantage disappears when
the proportion of hot spots becomes larger (e.g. 0.1). The diffusive scheme is very
scalable; its convergence speed increases when the size of a system increases. The
message complexity of the load balancing operation performed by a node is close to
O(log N) in a system with N nodes.

When churn occurs, the diffusive scheme is able to keep the standard deviation of
available capacities within a bound. The bound is larger when the system has a larger
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churn rate. The DI algorithm brings the available capacity into a smaller bound than
the S (or RI) algorithm. We note that in a system with homogeneous nodes, the bound
of the available capacities is a linear function of the average workload in the system.

We also designed load balancing decision algorithms for systems with large-size
services; however, the sizes of services have little impact on the effectiveness of load
balancing. The scheme converges faster for smaller-sized services since its operations
invoke more services to be transferred, and the reduction of the differences between
the available capacities is larger. However, when churn occurs, the bound of the stan-
dard deviation of the available capacities is not affected by the sizes of services. For a
specific churn rate, the systems with different large-size services have similar bounds.
The impact of the churn rate on the bound is much larger than the impact of the sizes
of services.

The proposed diffusive load balancing scheme could be augmented with other
mechanisms to guarantee the quality of services. One quality of service requirement
is the mean response times of services. When a system uses the proposed diffusive load
balancing, the services that the system provides have similar mean response times.
From the perspective of performance, services may have different requirements on
their mean response times. When a mechanism that controls the mean response times
for individual services is combined with the proposed load balancing scheme, the
services in a system could have different mean response times while the nodes have
the same available capacity.
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