Using diffusive load balancing to improve performance
of peer-to-peer systemsfor hosting services

Ying Qiao, Gregor v. Bochmann

School of Information Technology and Engineering
University of Ottawa
Ottawa, Canada
{yqiao074,bochmann}@site.uottawa.ca

Abstract. This paper presents a diffusive load balancingritlym for peer-to-
peer systems. The algorithm reduces the differeatése available capacities
of the nodes in the system using service migrati®te/een nodes in order to
obtain similar performance for all nodes. We prapafgorithms for handling
homogeneous services, i.e., services with equalires requirements, and for
heterogeneous services, i.e., services with divezseurce requirements. We
have investigated the effect of load balancing isimulated peer-to-peer
system with a skip-list overlay network. Our sintida results indicate that in
case that the churn (nodes joining or leaving)egligible, a system that hosts
services with small resource requirements can miairgqual performance for
all nodes with a small variance. In case that chsitnigh, a system that hosts
homogeneous services with large resource requittsmzan maintain equal
node performance within a reasonable variance meguonly few service
migrations.

Keywords. Load balancing; diffusive load balancing; peepasr systems;
distributed resource management.

1. Introduction

Peer-to-peer nodes are different by their resocagacities, geographic region, or on-
line time (i.e., time of being part of the peerpeer system). This diversity could
cause performance issues. For example, some pgeetorequests are delayed or
even lost by some nodes while other nodes arelidied balancing schemes, such as
[2], [5], [7] and [8], are proposed to dynamicalBallocate nodes or shared objects in
the system. Therefore, the services accessingdladject could have a short mean
response time.

We propose two different algorithms in this pap€hey are for a diffusive load
balancing scheme to decide load movements betwedgsrin a peer-to-peer system.
These two algorithms are the variations of an dlgor proposed in [9], where tasks
with the same unit of resource requirements aresidered. Our algorithms

2 YingQiao, Gregor v. Bochmann

implement a directory-initiated policy; they cormidthe amount of resource
requirements of services instead of the number esfices on nodes. They are
intended for systems with homogeneous services @le services have the same
resource requirements) and for systems with he¢er@gus services (i.e., services
with different resource requirements), respectiv8iymulation results indicate that,
with the diffusive load balancing, a system withtdnegeneous services is able to
maintain a small variance of node performance wtieurn (i.e., node joining or
leaving) is negligible. However, when churn is krg system hosting homogeneous
service is able to maintain the performance ofribées within a reasonable variance
and induces fewer service migrations than a sysiesting heterogeneous service.
Our scheme is different from other load balanciogesnes for peer-to-peer systems
from two points of view. First, dynamic schemeI{%] and [8] reduce the variance
of the utilizations of nodes. In case that the cdfgs of the nodes are different, this
may lead to a large variation of the response tireesn though the node utilizations
are equalized. Our scheme reduces the variancedsf performance by reducing the
difference of the available capacities of nodes atailable capacity of a node is the
processing power remained on the node after istimé serving all of its service
requests. When a service migrates, the resourceireetent of the service is
transferred from the load sender to the load rezeand both of the nodes have their
available capacity changed by the same amount.stheme in [7] decides node
movement with different formulas for peer-to-pegstems, where the load of a
cluster is shared among all the nodes of a clumter the number of nodes in the
sender and receiver cluster may be different. SEcour scheme does not rely on a
specific overlay network structure to aggregateltiael status of the system. Hence,
our scheme can be adopted in any peer-to-peemsysike the research in [8], we
assume that the overlay network would update tiséirdgion of a shared object or a
virtual server during a service migration.

We organize the rest of the paper as follows: 8ec2i briefly reviews existing load
balancing schemes for peer-to-peer systems anditfusive scheme proposed for
parallel computing systems. Section 3 presentpmposed diffusive scheme and its
algorithms. Section 4 discusses the results of raéveimulation experiments,
including the speed of load balancing and the nurnbeervice migrations involved.
We conclude our paper in Section 5.

2 Peer -to-peer load balancing and diffusive load balancing

2.1 Peer-to-peer load balancing

Peer-to-peer load balancing techniques can bendisshed by their different ways of
performing load balancing operations. Some techesqperform load balancing
operations when an object is inserted into a systewhen a node joins a system. For
example, a newly inserted object is placed on a&muith the lowest load among the
nodes randomly probed at that time [10], or a ngailyed node hosts virtual servers
that are taken from overloaded nodes [4]. Somenigaes dynamically relocate

Using diffusive load balancing to improve performance of peer-to-peer systems for hosting
services 3

objects between nodes that are consecutively ctehéa a ring or in a list. In order
to further improve the load balancing speed, thieshniques relocate an under-
loaded node by making the node leave its origiteteand rejoin the network as a
consecutive neighbor of an overload node [13] abd].[Some load balancing
techniques relocate virtual servers for load batan¢2], [5], and [8]. This kind of
load balancing does not split or merge virtual sesyand adds less overhead to the
overlay network than the other techniques. Ourudiffe load balancing scheme
relocates services like the methods in the lagtigray. Load balancing techniques for
peer-to-peer systems can be differentiated by #gsvhey collect status information
and the ways that they select load senders antveeseWe will further compare our
scheme with other methods in Section 4.

2.2 Diffusive load balancing

Synchronous and asynchronous diffusive load batgncan be distinguished. In the
case of synchronous load balancing, all nodes rioaé balancing operation at the
same time. As shown in [11], this synchronized afien results in load exchanges
that are similar to the diffusion of heat througts@id body. Asynchronous load
balancing does not require synchronous operationallonodes. The scheme in [3]
specifies that any overloaded node (called a s¢mstheuld take the initiative to send
part of its workload to under-loaded nodes (caleckivers), and after such a load
migration, the workload of the sender should s#lllarger than that of the receiver(s).
Experiments in real systems have shown that diftuklad balancing with immediate
neighbors deals well with dynamic changes of thekioad [1].

Diffusive load balancing schemes can also be djstshed by how they deal with
workloads of various sizes. Several papers assimagyfain tasks, that is, the sizes of
the workloads are very small compared with the us=o capacity of a node. In this
case, load balancing lets the workloads of all santeverge to a global average [11].
Papers of [15], [6], and [9] considered that theotece requirement of each task is
one (fixed sized) unit. The load balancing opersti@ventually lead to a global
system state which is stable (that is, no furtbedIexchanges occur), although this
state is not completely balanced. In fact, theedéfice of workloads between any two
nodes in a neighborhood could be as large as oite(without leading to a load
exchange). Therefore, the global load imbalancéhénstable state, defined by the
maximal difference of workloads between any twoewih the network, is bounded
by {leoad units, wher® is the diameter of the network.

2

3 Diffusive load balancing scheme for peer-to-peer systems

The proposed diffusive load balancing scheme alléwasl balancing operations
periodically run on each node. An operation undesgthree phases. At first, the
operation collects the load status of its neighborthe information phase. Then, it
makes decisions on service migrations in the datiphase. At the end, services are

4 Ying Qiao, Gregor v. Bochmann

transferred from load senders to load receiverghi service migration phase.
Operations executing on different nodes are notallp synchronized. These
operations may run concurrently on different nodesyever, a node involved in one
such operation will refuse the participation in #meo load balancing operation
initiated by one of its neighbors. In this way, tlead status information collected
from a neighbor during an operation is always azirre

We describe in the following two algorithms tha¢ aised in the decision phase. One
algorithm, named DIHomoService, is for a systemtihgshomogeneous services
with the identical resource requirements. Anothgorithm, named DIHeteroService,
is used for systems hosting heterogeneous serviegl diverse resource
requirements. These algorithms are derived fronrectbry-initiated (DI) algorithm
where the running node works as a directory foatiog senders and receivers. Our
results in [7] show that the DI algorithm is supetio a sender-initiated or a receiver-
initiated algorithm for load balancing.

We use here the following notations. The node finitates a load balancing
operation is called the running node of the operatind denoted as nade , the
neighborhood of the operation is the overlay-nekwof the running node and is
denoted a®} . A node in the neighborhood is ifledtas nodel . The number of
nodes inA is denotéd| . In case that a serfmegxamplen , with resource
requirement. migrates from node o , afterthigration, we have the available
capacity on nodes agg =avg, |, aag, =ave +l, whereavg amdc, dret
available capacities &f before and after theisemigration, respectively.

3.1 DIHomoService: DI algorithm for homogeneous services

The DI algorithm decides service migrations betwgmrssibly several pairs of
overloaded and under-loaded nodes within the neiditdod of the load balancing
operation. The algorithm calculates the averagelabla capacity of nodes in the

neighborhood using the formu_._ ;a\'q . Based on the average available node

Al
capacitaye, it classifies the nodgsin the neighborhood as either overloaded (if its

available capacity is smaller thiayc), under-loaded (if its available capacity is
larger thanayc), or average loaded. The algorithm stores theloaded nodes in

vector SVect and the under-loaded nodes in vecit@cR Then the algorithm decides
service migrations using the decision procedurenshm Fig. 1. A service has its
resource requirement equal to

Decision procedureFig. 1.(a) shows the procedure. For a pair of edtat have the
largest difference of their available capacitiesoam all of the nodes in the two
vectors (line 3 and 4), the procedure resolvesltiagl imbalance by calling the
selection function shown in Fig. 1.(b) (line 5).€Tkelection function returns the
number of services to be transferred. In the daeserto service can be transferred, the
procedure stops since it will not be able to scheduay other service migration in this
operation. In the other case the procedure dedlteservice migration. Then the
procedure goes back to line 2 to find another rpade

Using diffusive load balancing to improve performance of peer-to-peer systems for hosting
services 5

Selection functionThe function is shown in Fig. 1.(b). It calculatéhe required
available capacity for the sender and the proviglllable capacity for the receiver
according to the differences between their avalaalpacity anayg (line 1 and 2).
The minimum of the provided and the required aélacapacities is the load
difference that the algorithm should resolve (IB)e In case that the minimum is
larger than the resource requirement of a singtgicee the function returns the
integer part of the ratio of the minimum to theawse requirement of a service (line
5). Otherwise, it returns 1 in case that the ab&laapacity of the sender could be
still less than that of the receiver right aftee thervice migration. In this way, the
algorithm keeps the available capacities of nodiesest to the average.

Decision procedure: Selection(s,r)

1 Do forever 1 avc. . . =avc —av

2 if SVect and RVect are not empty) Cequrec A “
/I select a load receiver

3 selecty such that 3
z’:lVCy =]rjgee)éiavcj}

avc

provided

aV(;noved =m I n{aV(;equired' avcprovwded}

4 if gy S|
/Iselect a load sender 5 retﬁﬂ:vedav
4 select x sucthat W%J
ave, = minfave)

=avg —ave,

6 elseif -

5 w:= Selection(x, y); avg +1<avg -
6 ifw>0 7 return 1

7 decide the service migration 8 else

8 remove x from SVect 9 return 0

9 remove y from RVect
10 else break;
11 else break;

(a) (b)

Fig. 1. The DIHomoService algorithm: (a) the Decision maare, (b) the Selection function

We can see that, when following the above procedhee diffusive load balancing
eventually stops. We assume that the system hasi@aworkload. This means that no
new service joins or leaves the system, and theestqates of existing services do
not change. We also assume now that the peer-tosgsg&em has no churn. Research
in [15] presents assumptions for a general modeh gfartial asynchronous load
balancing scheme. These assumptions assure tbheme conforming to the general
model is able to converge or stop in a system whasles have the same load size.
We show that our scheme with the DIHomoService rdlym has stronger
assumptions than the general model. First, theqsexh scheme serializes the running
of its operations in neighborhoods with common mod€ompared with the
assumption of partial asynchronous message paséitiee general model, the local
serialization guarantees that the load status péighborhood is fresh and correct
during each operation. Second, the general modelnaess a sender-initiated load
movement. Since the scheme with DIHomoService @scikrvice migrations for
multiple pairs of senders and receivers, the schhasa stronger assumption by
invoking multiple sender-initiated service migratioin its operations. Third,

6 YingQiao, Gregor v. Bochmann

DIHomoService also guarantees tkg@t; is less thamay¢ for a pair of sender and

receiver. Hence, like the general model, our schevita DIHomoService will
eventually stop service migrations (in a systenhwsiiatic workload) and the system
enters a global stable state.

We further claim that after the system enters aajistable state, the local load
imbalance of the system (i.e., the maximum diffeeerof available capacities on
nodes in a neighborhood) 21 . When the decision algorithm of an operation duoats
find any service migration to be done between twdes, for example, between the

senderSlof Sand the receiver1 of R, eitherﬂq_a\,%lq Ol avg, -avg <I holds as
well as ayg,-avg, <2 In the case that there arg nodes in r, and
avdrp) <...< avar2) < avo(rl) , then no receiver could be located as a recearesf In
the case that there agenodes ins, and avqst) < avqs?) <. < avg(s) » then no sender

could be found forr1. Hence, in the global stable state, the local larize is the
difference of the available node capacities betwgendr1 which is at moszj .
Because of the local load imbalance, a maximal aldbad imbalance (i.e., the
maximum difference of the available capacities @fles in the system) can reach the
value 2p where D is the diameter (i.e., maximum of the miunn hop distance
between any two nodes) of the overlay network. \We an example to derive the
global load imbalance. We consider that a nede neighborhoods sends services

to r,in the neighborhoody in at mostp hops. We construct a path connecting the

. A A Ao

nodes according to the service migrations in thfg _ /s, _ /s, - ... - r, Where

r /Sﬂis a receiver in 5 and a sender i, . Since the local load imbalance is bound
by2i, the global load imbalance betwegand is bound by2p .

3.2 DIHeteroService algorithm: DI algorithm for heterogeneous services

The DIHeteroService algorithm deals with heterogeseservices. Compared with
the DIHomoService algorithm, the algorithm has fiedént selection function. The
function returns a vector containing the servicglected for service migration (Fig.
2.(a)). The function selects services with the madiresource requirements (line 4)
in order to assure that the total resource requrgrof the selected services will not
lead to a sender available capacity larger tharatialable capacity of the receiver
after the load transfer. After one migration pa&stbeen selected, the procedure
removes the sender and receiver from the SVecRAfett and continues the decision
phase until no further migration pair can be idédi

Following similar arguments as for the DIHomoSeevatgorithm, we can show that
the load balancing with the DIHeteroService aldonitwill stop in the case of static
workload. However, when the system reaches a glstaddle state, the local load
imbalance might not be the smallest. For exampletHe pairs1 andr1, even when
there is no service o1 that could be selected for a service migratiofis possible
that there are still some services in other sentest could be migrated ter to
reduce their available capacities. In order to inprthe decision procedure, we
replace the line 10 and 11 of the decision procedarFig. 1.(a) by the segment

Using diffusive load balancing to improve performance of peer-to-peer systems for hosting
services 7

shown in Fig. 2.(b). The Decision procedure of diperation stops when there is no
sender insor no receiver iR.

Like the DIHomoService algorithm, the DIHeteroSeevialgorithm reduces the

variance of the available capacities of the nodesach operation. Also, when the
distribution of services in the system is unknowha global stable state, the local
imbalance is bounded by where | is the request rate of a service with the

highest request rate, and the global load imbalenbeunded by p.

Selection (s,r): Decision procedure:
1 w:={1; 10 else
2 p ={{ } icel } 11 remove x from SVect
C1Service sy 12 if SVect is not empty
3 Do 13 go to line 4
4, = migp{lsemica} 14 else break;
5 i avg +l,, savg Iy,
6 then
7 add vto W iiv =l
8 avg = avg +l g,
9 avG :=avg — |,
10 remove v from P
11 continue
12 else
13 return W
() (b)

Fig. 2. The DIHomoService algorithm: (a) the Selectiondhion, (b) the segment replacing
line 10 and 11 of the Decision procedure in Fi¢a)l.

4. Experiments

The experimental measurements discussed in thisoseare obtained from a
simulated peer-to-peer system. The system hagdiskitructured overlay network,
as described for some classic peer-to-peer systikesChord and Pastry. In our
simulated overlay network, nodes are connectedantog, and each node is assigned
a position numbered from On -1 . Noj'e aian i will take nodes at positions
(i +2°)modN . (i + 2)ymodN ... (i + 21°%="NDymodN @S its neighbors. In the overlay
network, a node ha|jog,(N -1)| Out-degree connections aijog,(N -1)| in-degree
connections, and the diameter of the overlay griaco(ogN). We have built the

overlay network with the simulator of the eQuustsys [12] using one node per
cluster.

In the simulation, load balancing operations arbedaled by a discrete event
simulation library called “Ssim”. During each opoa, the running node collects the
load status of its neighbors in the skip-list ansess the DIHomoService or

8 YingQiao, Gregor v. Bochmann

DIHeteroService algorithm to decide service mignasi Service migrations are
realized by updating the location of sevices toribdes in the simulation. The time
elapsed during an operation is not simulated simeeassume that the neighborhood
does not change in such a short time. We calbund a simulated time period in
which each node runs one load balancing operagiot the standard deviation of the
available node capacities and the number of semiggations are collected at the
end of each round.

We investigate the effectivness of the diffusivaddalancing agorithms in systems
hosting homogeneous services or heterogeneousagrthe impact of the resouce
requirements of services is also examined by carifig small services (i.e., services
with small resource requirements) or large services, services with large resource
requirements) to these systems. The effectivenetfsedoad balancing is evaluated
from three points of view. First, the speed thatslistem approaches the global stable
state at is evaluated according to convergencestalihe convergence ratip of

round 7is equal to the ratio Ofavd) t0 g(avc™) , Wheres(avc) is the standard

deviation of the available node capacities at theé ef roundz. The ratio indicates
the degree of reduction of the standard deviatibithe available node capacities
during one round. A smaller convergence ratio iatis a higher load balancing
speed. Second, the number of service migratiorsoitzurred for load balancing is
concerned. We assume that each service migratiendspthe same amount of
resources, such as CPU and bandwith, even thougy ey contain different
numbers of services. A large number of service atigns indicates a high cost of
load balancing. Third, the standard deviation ddilable node capacities when the
system is in a stable state is concerned. Thiseglegree of load balancing that can
be obtained; as we will see, it depends on theedegf churn (as can be expected).
The simulated peer-to-peer system is configurech wib00 nodes. In case of
homogeneous nodes, the capacities of nodes)is 10 requests/second. In a
simulated system, the sum of the resource requimesyd services is equal to half of
the total capacity of the system; therefore, therage available capacity of nodes is 5
requests/second (and the average utilization ofsifsem is 50%). The simulated
systems install either a workload of large servimesf small services. These services
are randomly distributed to the nodes at the beéggnrof the experiments. For

example, for a system with large-sized homogeneservices, lis set as 2.5
requests/second for a service, which is in the sanmder as the node capacity.
Therefore, a node can host at most 4 servicesisybstem. For a system with small-

sized homogeneous servicdss set to 0.25 requests/second, which is one tehth
that of a large service. A node can host at mosset®ices in the system. For the
systems hosting heterogeneous services, serviogs thair resource requirements
uniformly distributed between 0 and a preconfiguretaximum, e.g., 2.5
requests/second for a system with large-sized sesyand 0.25 requests/second for a
system with small-sized services.

Table 1 shows the results collected from 20 runsxgferiements. The mean value
and the 90% confidence interval (ClI) for the medneach item are given. The
convergence ratios of the first rounds of all systems are smaller than the

convergence ratios of the seconds rounds. Thicate that, when load balancing
first starts, the balancing operations largely hesthe differences of available node

Using diffusive load balancing to improve performance of peer-to-peer systems for hosting
services 9

capacities. Furthermorg,for systems hosting small services is smaller tiat for

systems hosting large services. This indicates #maall services help the load

balancing to reduce the differences of the availalalpacities between nodes. Since
load balancing operations could select the smallices in heterogeenous systems,
the load balancing in these systems is able thidéuntesolve the load unbalance and
achieve a smaller standard deviation of availaldelencapacities in subsequent
rounds. However, moving services in the heterogesiesystems introduce more

service migrations. The number of service migratiom a heterogeneous system is
about three times of the number in a homogeneadstersyhosting the same services.
From the Table 1, we also observe that the glalzd imbalance of the system in the
stable state is much smaller than we expectedétid®e3. The predicated global load

imbalance is bound tgp, but the experiment shows a value arouady) .

Table 1. DIHomoService decision algorithm with skip-listeslay neighborhood and random
neighborhood

Homogeneous system Heterogeneous system
Small Large Small Large
services services services services
numberof| \1oan 1825.9 617.65 5414.6 1608.05
service
migrations 90% ClI 25.44 5.86 64.46 17.17
Mean 0.034 0.141 0.013 0.124
|4 90% ClI 0.002 0.009 0.001 0.002
Mean 0.88 0.99 0.324 0.99
Y2 90% ClI 0.039 0.005 0.016 0.001
Standard Mean 0.09 0.49 0.012 0.355
deviation 90% ClI 0.01 0.032 0.001 0.006
Global load| Mean 0.36 4.5 0.139 2.64
imbalance 90% ClI 0.047 0.377 0.014 0.116

To mimic the occurrence of churn, the simulatioagpam adds nodes into or deletes
nodes from the simulated peer-to-peer system duh@gxperiments. A newly joined
node could be positioned at a random place initfig and an existing node could be
randomly picked to leave the ring. At the beginnifigan operation, the running node
searches for its neighbors in the skip-list by thmsitions in the ring. We use a
Poisson arrival model to simulate the churn ocowein the system. We define a
relative churn rate, i.e. the churn occurrence ohtihe arrival model, as the number
of node joining and leaving within a round. For exde, when a system with 1000
nodes has a churn rate of 10%, the system would hawtal of 100 occurrences of
leaving or joining per round, and the mean timerivell between two consecutive
node joining or leaving iT over 50 wher¢T is the duration of a round. In this way,
the changes of available node capacities inducedhioyn and the deduction of the
differences on available node capacities causetidjoad balancing are evaluated in
the same time duration. A joining node takes owf ¢if the services of its successor
after it locates its position in the ring, and avieg node hands over its services to its
successor. We assume that a node leaves and anotlejoins at the same time, so
that, neither the total number of nodes nor theaesys average available capacity
changes. Without load balancing, the standard tewi@f available node capacities

10 YingQiao, Gregor v. Bochmann

always increases, and the degree of the increapends on a churn rate. For
example, in case the system has a churn rate of W0#n the system has run for 50
rounds, the standard deviation of the availableer@apacities is increased by a factor
of three. In case the churn rate is 90%, the standieviation is increased by a factor
of 7 after 50 rounds.

4 T T

T T
homo, small —— 4000 T h(‘)mo, 'sma\I' —0'— 1
354 homo, large ---x--- * homo, large ---x---
hetero, small ---*--- 3500 hetero, small ---*--- -
34 hetero, large =) H hetero, large ia)

standard deviation
number of service migrations

0 L L L L L L L L L 0
0O 5 10 15 20 25 30 35 40 45 50 0 10 15 20 25 30 35 40 45 50

round round

(@) b) (

o

4 — T T T

5000 T T T T T T T T
homo, small ——
homo, large ---x---
hetero, small ---%--- |

hetero, large &

T
homo, small ——
35 homo, large --->--- 4
hetero, small ------

hetero, large &~ | 4000 ;

3000

standard deviation

2000

number of service migration

1000 [, 4

0 ! ! ! ! ! ! ! ! !

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
round round
(c))(d

Fig. 3. Load balancing in a system with churn: (a) thend#ad deviation of available node

capacities when churn rate is 10%; (b) the numlbeseovice migrations when churn rate is
10%; (c) the standard deviation of available nodpacities when churn rate is 90%; (d) the
number of service migrations when churn rate is 9Q8tote: “homo” is for homogeneous

services, “hetero” is for heterogeneous servicemdll” is for services with small resource
usage, and “large” is for services with large resewsage)

We compare the effect of the load balancing topddormance of the systems when
they experience churn. When the systems have iigglighurn, for example, one
node joins or leaves in every 2 rounds, load batgncan quickly resolve the load
unbalance, and its effectiveness is close to thatva in the previous experiments.
Therefore, in this part, the systems with two défg churn rates are investigated
individually: a low rate as 10% and a high rate98%. Fig. 3 shows the standard
deviation of available node capacities and the rermobservice migrations in the first
50 simulation rounds. The standard deviation digiries around a certain value as
the system evolves, and we say that the systermsemtgeady state. At a steady state,

Using diffusive load balancing to improve performance of peer-to-peer systems for hosting
services 11

when the churn rate is 10%, the standard deviafionthe four systems are around
0.75 with no significant difference (Fig. 3.(a)).oMever, the number of service
migrations are largely diverse (Fig. 3.(b)). Themogeneous system hosting large
services has the fewest number of service migrafod the heterogeneous system
hosting small services has the largest numberrefceemigrations. This observation
indicates that the systems hosting large servicedavored by the load balancing
operations with fewer number of service migratioRgy. 3.(c) shows the standard
deviation of available node capacities when therchrate is 90%. Compared with
Fig. 3.(a), the standard deviation is increasetheferogeneous system hosting small
services has a distinct standard deviation of ak&dlnode capacities around 2.2, and
other systems have the standard deviation aroufid Hig. 3.(d) shows that a
homogeneous system hosting large services has eWwesf number of service
migrations, and this further confirms our intuitibased on Fig. 3.(b).

We compare in the following our scheme with othpreposed for peer-to-peer
systems. We differentiate them in terms of loadabaing policies. Similar to our
scheme, these schemes have information, decisich l@ad migration phases.
However, some schemes have these phases run sépdrat example, the schemes
proposed in [13] and [14] require a global loadtriisition map for their decision
phase. Their information and decision phases aparated. Research on dynamic
load balancing has shown that this kind of sepamatould cause the load status
information to become stale and thus reduce trexgfeness of load balancing. Also,
aggregating a global map induces message overBeate schemes, such as [5], use
random walks in their information phases, and thesmally have a sender-intitiated
policy in their decision phases. However, randontkg/@ost extra messages, and a
scheme with a sender-initiated policy convergesvsiothan a scheme with a
directory-initiated policy. Our work is similar foad balancing with a fixed number
of directories [8].

We further compare our research with others in seohthe parameters collected
from experiments. The research in the literatunesiier the maximum difference of
loads among nodes [13] or the portion of faileduesys [8] in the steady state of a
dynamic system. We investigate the standard dewiatf load distribution at
systems’ steady state, the convergence speed tatidalancing, and the number of
service migrations during the load balancing. Tdpgroach allows us to analyze the
effectiveness of load balancing from different pexgives.

5 Conclusions

We proposed a diffusive load balancing algorithm peer-to-peer systems. The
scheme reallocates shared objects on nodes anttbalthe available node capacities
on nodes. Therefore, the performance of nodes nslasi The load balancing
operations use the DIHomoService algorithm, i.&eatory-initiated algortihm for
systems hosting homogeneous services, or the Dibfsevice algorithm, i.e.,
directory-initiated algorithm for systems hostingtérogeneous services. The results
of the simulation experiments show that, when tharw is negligible, the small
services hosted by a heterogeneous system faildatl balancing. Hence, the node

12 YingQiao, Gregor v. Bochmann

performance of a heterogeneous system has a smai@nce than that of a

homogeneous system for the same services. Thetyedab show that, when the

systems have noticeable churn, the variances afidie performance of the systems
are not significantly different. However, a churittwa higher rate brings a larger
variance to a system. For example, when the chatenis 90%, the variance of node
performance is almost two times larger than thaenvthe churn rate is 10%. The
numbers of service migrations are also increase@y#em hosting large services
with homogeneous capacities always introducesetvedt service migrations.

Our load balancing scheme could be used to imptteeg@erformance of a large-scale
distributed systems that have characteristics tliiese of a peer-to-peer system. In
such systems, the variance of the delay of semégeests is imperative. Also, our
research indicates that, in order to have efficleatl balancing, the system should
have large-sized services in case that the syséasnhédterogeneous services.

References
1. Corradi, A., Leonardi, L., and Zambonelli, F. 199iffusive Load-Balancing Policies for
Dynamic ApplicationslEEE Concurrency, 1 (Jan. 1999), 22-31.

2. Zhu, Y. and Hu, Y. 2005. Efficient, Proximity-Awarteoad Balancing for DHT-Based P2P
SystemslEEE Trans. Parallel Distrib. Sys16, 4 (Apr. 2005), 349-361.

3. Bertsekas, D.P. and Tsitsiklis, J.N., Parallel dredributed computation: Numerical Methods,
Englewood Cliffs, NJ, 1999

4. Ledlie, J., Seltzer, M., “Distributed, secure |dzaancing with skew, heterogeneity and churn,”
in Proceedings of NFOCOM 2005. 24th Annual Joint Conference of tREE Computer and
Communications Societiesl.2, no., pp. 1419-1430 vol. 2, 13-17 March 2005

5. Shen, H. and Xu, C., 2007. Locality-Aware and ChRasilient Load-Balancing Algorithms in
Structured Peer-to-Peer Networks. |IEEE Transact@msParallel Distributed Systems. 18, 6
(June 2007), 849-862.

6. Song, J. 1994. A partially asynchronous and iteeasilgorithm for distributed load balancing.
Parallel Comput20, 6 (Jun. 1994), 853-868.

7. Qiao, Y. and Bochmann, G. v. 2009. A Diffusive Ldaalancing Scheme for Clustered Peer-to-
Peer Systems. IRroceedings of 15ICPADS. IEEE Computer Society, 842-847.

8. Surana, S., Godfrey, B., Lakshminarayanan, K., KRtpand Stoica, I. 2006. Load balancing in
dynamic structured peer-to-peer systems. Perfowal. B3, 3 (March 2006), 217-240.

9. Cortés, A., Ripoll, A., Cedd, F., Senar, M. A., abhdque, E. 2002. An asynchronous and
iterative load balancing algorithm for discretedaaodel.J. Parallel Distrib. Comput62, 12
(Dec. 2002), 1729-1746.

10. David R. Karger and Matthias Ruhl. 2004. Simplécédht load balancing algorithms for peer-
to-peer systems. In Proceedings of the sixteenttuanACM symposium on Parallelism in
algorithms and architectures (SPAA '04). ACM, Neark; NY, USA, 36-43.

11. Cybenko, G. 1989. Dynamic load balancing for dstted memory multiprocessotk.Parallel
Distrib. Comput.7, 2 (Oct. 1989), 279-301.

12. Locher, T., Schmid S., and Wattenhofer R., 2006uwesQ A Provably Robust and Locality-
Aware Peer-to-Peer System.Rnoceedings oP2P '06, (Sept. 2006), 3-11.

13. Vu, Q. H.; Ooi, B. C.; Rinard, M.; Tan, Kian-Led{istogram-Based Global Load Balancing in
Structured Peer-to-Peer Systenisfiowledge and Data Engineering, IEEE Transactions, o
vol.21, no.4, pp.595-608, April 2009

14. Li, M.; Lee, W.-C.; Sivasubramaniam, A.; , "DPTre&: Balanced Tree Based Indexing
Framework for Peer-to-Peer Systenfdétwork Protocols, 2006. ICNP '06. Proceedingshef t
2006 14th IEEE International Conference ovol., no., pp.12-21, 12-15 Nov. 2006

15. F. Cedo, A. Cortes, A. Ripoll, M. A. Senar, andLEque. 2007. The Convergence of Realistic
Distributed Load-Balancing Algorithms. Theory of @puting Systems 41, 4 (December 2007),
609-618

