
Performance Modeling of Distributed Collaboration 
Services 

Toqeer Israr 
School of Information Technology and 

Engineering (SITE) 
University of Ottawa 

800 King Edward Avenue, Ottawa, 
Ontario, Canada, K1N 6N5 

1-613-562 5800 x 6433 

tisra051@uottawa.ca 
 
 

 Gregor v. Bochmann 
School of Information Technology and 

Engineering (SITE) 
University of Ottawa 

800 King Edward Avenue, Ottawa, 
Ontario, Canada, K1N 6N5 

1-613-562 5800 x 6205 

bochmann@site.uottawa.ca 
 
 

ABSTRACT 
This paper deals with performance modeling of distributed 
applications, service compositions and workflow systems. From 
the functional perspective, the distributed application is modeled 
as a collaboration involving several roles, and its behavior is 
defined in terms of a composition from several sub-collaborations 
using the standard sequencing operators found in UML Activity 
Diagrams and similar formalisms. For the performance 
perspective, each collaboration is characterized by a certain 
number of independent input events and dependent output events, 
and the performance of the collaboration is defined by the 
minimum delays that apply for a given output event in respect to 
each input event on which it depends. We use a partial order to 
model these delays. The paper explains how these minimum 
delays can be measured through testing. It also provides general 
formulas by which the performance of a composed collaboration 
can be calculated from the performance of its constituent sub-
collaborations and the control structure which determines the 
order of execution of these sub-collaborations. Proofs of 
correctness for these formulas a given and a simple example is 
discussed throughout the paper.   

Categories and Subject Descriptors 
D.2.8[Software Engineering]: Metrics - Performance measures 

General Terms 
Algorithms, Measurement, Performance, Verification. 

Keywords 
performance modeling, software performance, partial order, 
collaborations, UML activity diagrams, distributed applications, 
web services 

1. INTRODUCTION 
Various kinds of models are used for a system design and 
development process.  Amongst several notations, some are UML 
Activity Diagram[15], Use Case Maps (UCM)[5], the Process 
Definition Language(XPDL), Business Process Execution 
Language (BPEL), Web Services Choreography Description 
Language (WS-CDL) [19] and Petri Nets.  All these mentioned 

notations can potentially be decomposed into sub activities and 
further into sub-sub-activities.  Most of these notations, though, 
assume the basic activities in the decomposition to be allocated to 
a single system component.  However, most of the applications 
have activities which are modeling collaborations between several 
system components, for instance an interaction between a client 
and a server.  To this end, a modeling paradigm based on 
collaborations has been proposed [1] which can be represented 
through a combination of UML Collaboration diagrams and a 
partially ordered set of input and outputs. 

 

While the realization of distributed designs for such collaboration 
services often pose tricky questions for the correctness of the 
required communication protocols in terms of the messages being 
exchanged between the different system components participating 
in the realization of the distributed service (see for instance [1] 
and [6]), we concentrate in this paper on the performance aspects 
of such collaborations. We use the concept of partial orders to 
model the temporal relationships between the different sub-
activities within a collaboration, and use ideas from the PERT 
(Project Evaluation and Review Technique) technique [8] 
commonly used for project management. We also build on a 
testing technique developed for systems that implements a 
behavior defined in terms of a partial order relationship between 
input events and output events [4], and show how a similar 
technique can be applied for performance analysis of distributed 
applications.  We base our analysis on the collaboration roles 
involved and we make the assumption that each role can be 
implemented by a multi-threaded component. 

 

The paper is structured as follows. In Section 2, we review the 
modeling paradigm based on collaborations and introduce an 
example.  This section also describes the rules that underlie the 
concepts of strong and weak sequencing.  In Section 3, we discuss 
how such system models can be modeled using partial orders. In 
Section 4, we introduce performance considerations, mainly 
related to the delays implied by the execution of the different sub-
activities within collaborations. A general timing constraint is 
established which determines the earliest time that a given output 
event of a collaboration can be produced. Inspired by the testing 



procedure of [4], we will also show how the parameters 
determining the performance of a collaboration can be measured.  
In Section 5, we propose and prove formulas to calculate the 
performance of composite collaborations, and applied to a 
simplified version of the running example introduced earlier.   

2. MODELING DISTRIBUTED 
COLLABORATION SERVICES: AN 
EXAMPLES 
An example of Cab Dispatcher System (CDS) is presented in 
Figure 1.0a.  It consists of 5 sub-collaborations and 3 roles – 
client, dispatcher and cab.  For each of these roles there will exist 
an input event (client requesting cab, dispatcher being available, 
and cab being available) and three output events (client reaches 
their destination and makes payment to driver, cab signs off, and 
dispatcher signs off).  These input and output events are initiating 
and terminating events, respectively of this CabDispatcher 
collaboration.  Initiating event[1] represents the starting of an 
action in the collaboration, for which there are no other actions in 
that collaboration that precedes that action.  Similarly the 
terminating event [1] represents the end of an action in a 
collaboration, for which there is no other action in a collaboration 
that succeeds this action in that flow of execution.   

 

These initiating and terminating events should not be confused 
with the starting and the ending events.  The starting event 
represents the starting of the actions in a collaboration for a single 
component, for which there are no other actions in that 
collaboration for that component that precede that action.  
Similarly, an ending event represents the end of an action in a 
collaboration for a single component, for which there are no other 
actions in a collaboration for that component, that succeed that 
action.  A starting event can be an initiating event but does not 
have to be whilst an initiating event has to be one of the starting 
events.  Similarly, an ending event can be a terminating event but 
does not have to be whilst a terminating event has to be one of the 
ending events.   

 

In order to define the behaviour of a collaboration, we use 
Bochmann’s [1] diagram notation, based on most of UML 
Activity Diagram constructs as shown in Figure 1.0a.  For each of 
these sub-collaborations, initiating and starting events are 
represented by dark dots “●” while ending and terminating events 
are represented by vertical bars “|”.  More discussion on events 
will follow in context of partial ordering.  We also note that initial 
node not only models the start of all the flows in a collaboration, 
but also represents the starting of all the roles involved.   

 

We consider the example of cab dispatcher system.  The client 
(Cl) requests a cab from the dispatcher (Di).  The cab, when 
available, comes in and the dispatcher adds the cab to the queue 
of available cabs.  The dispatcher also concurrently services the 
client’s requests.  The client, whilst waiting for the cab has the 
option to cancel the cab.  Once there is a cab in the queue, the 
dispatcher assigns the cab to the client and goes back and waits 
for more cabs and clients.  The dispatcher does this for n times 

and after that, the dispatcher ends the shift.  Meanwhile, the cab 
takes the client to the destination and is paid for the services 
rendered, upon which the sequence for the cab and for the client 
then ends.  This system can accept new clients and drivers, which 
would be serviced as long as the dispatcher continues to loop and 
execute.  
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Figure 1.0a – Collaboration of Cab Dispatcher System 

2.1 Strong and Weak Sequencing 
Between the sub-collaborations in Figure 1.0a, there is a choice of 
weak and strong sequence operators [1] to be used.  Two 
collaborations C1 and C2 are said to be strongly sequenced when 
all the sub-collaborations of C1 are be completed before any sub-
activity of C2 starts.  However, weak sequencing between C1 and 
C2 means that each role locally applies sequencing to the local 
sub-collaborations of C1 and C2, that is, a role may start with 
sub-collaborations that belong to C2 as soon as it has completed 
all its local sub-collaborations that are part of C1. Strong 
sequencing implies weak sequencing, but not inversely. In weak 
sequencing, if a role is not involved in C1, it may start with sub-
collaborations of C2 even before C1 begins its execution. 

 

In our example of Figure 1.0b and 1.0c, let us consider 2 
collaborations – S1: Send Info followed by S2: Send Info.  Send 
Info in both collaborations has the exact same behaviour – R1 
sends a message to R2, and based on that message, R2 does some 
processing and then terminates.   

 

If we consider strong sequencing, as shown by the label “s” on 
sequencing arc  in Figure 1.0b, then all the terminating 
events(belonging to only R2), completes its processing in S1:Send 
Info, before the initiating events of S2:Send Info can occur.  This 
would mean the R2 has to complete its processing in S1:Send Info 
before R1 in S2: Send Info may start.  Also note, the time of the 
initiating event of S2: Send Info is the time when all of the 
terminating events occur (in this case, there is only 1 terminating 
event).  
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Figure 1.0b – Weak Sequencing      
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Figure 1.0c – Strong Sequencing   

Now, let us consider weak sequencing between “S1: Send Info” 
and “S2: Send Info”(as shown by “w” on the sequencing arc of 
Figure 1.0c).  This implies the actions of each role of “S2: 
SendInfo” may start as soon as those roles have completed their 
actions belonging to the previous collaboration, in this case “S1: 
Send Info”.  Hence, as soon as the R1 sends the message to R2 in 
S1:Send Info, R1 can start sending a message for S2:Send Info.  
The important thing is that R1 need not to wait for R2 to complete 
its execution of S1:Send Info before R1 starts its execution in S2: 
Send Info. 

3. DESCRIBING COLLABORATIONS 
WITH PARTIAL ORDERS 
3.1 Review of Partial Orders 
Inspired by Partial Order Input Output Automata (POIOA) [4], an 
extension of Input Output Automata, we introduce Partial Order 
Systems (POS).  In a POS, each collaboration has a set of 
independent initiating events.  These initiating events trigger the 
execution of some internal actions resulting in a set of output 
events.  Figure 3.0a shows a POS corresponding to a simple 
collaboration involving three independent inputs and three 
outputs.  The outputs are not ordered relative to one another 
directly but each output has a dependency on the inputs as 
indicated by the arrows, “ ”.  For instance, event CO1’ can only 
occur after the occurrence of event CI1, but for event CO2’ to 
occur, both (CI1 and CI2) must occur first.  We can write this as  
(CI1 CO1’), (CI1  CO2’) and (CI2  CO2’)).   

 

There also exists a set of derived dependency amongst the inputs 
and the outputs relative to each other also, shown by the dashed 
arrow in Figure 3.0a.  One such dependency is event CO3’ occurs 
after CI2.  Since (CI2  CI3) and (CI3  CO3’), then it is 
intuitive to derive (CI2  CO3’).  Other derived dependencies 
can also be derived due to local ordering, where the output event 

of a role has to occur after the input of the same role in the same 
collaboration. 
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Figure 3.0a – The POS corresponding to a simple 

collaboration 

Having an operator to model alternatives is a very common 
and a useful concept in UML.  However, we had to 
improvise as Partial Ordering does not allow modeling of 
alternative paths.  Inspired by the choice symbol in 
UCM[5], we introduce a new symbol in Partial Ordering to 
represent a choice in a system.  As can be seen in Figure 
3.0b, it is a rectangular box with multiple branches 
stemming out, with each branch having an event associated 
with it.  This will be illustrated with an example later on.  

I2 I3

or

I2 I3

I1

I1

 
Figure 3.0b – Choice representation in POS  

3.2 Modeling with Partial orders 
In this section, we would like to discuss the POS resulting from a 
given collaboration.  For a given collaboration, each initiating and 
starting event translates into an input event of a POS, and each 
terminating and ending event translates into an output event of a 
POS.   

 

Figure 4.0a shows a POS corresponding to Assign Cab sub-
collaboration, from Figure 1.0a, involving 1 initiating event 
(initiated by dispatcher), 1 starting event for driver, and 2 
terminating events, cab getting assigned and dispatcher updating 
the cab available queue.  Direct and derived dependencies are 
shown using the solid and the dashed arcs respectively.       
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Figure 4.0a – POS of the Assign Cab sub-collaboration  



3.2.1 Modeling Weak and Strong Sequencing with 
Partial orders 

 
As discussed before, there could be strong and weak sequencing 
between any two collaborations.  In Figure 1.0a, AssignCab is 
weakly sequenced with Meet&Drive, which is abstracted by 
ClientServing in Fig 4.0b.  This to help us realize when each role 
becomes available, before and after the weak sequenced 
operation. 
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Figure 4.0 b – POS of 2 weakly sequence collaborations 

In ClientServing, local ordering applies for the starting and 
initiating events of AssignCab. This means as soon as there are 
inputs available for Cab and Dispatcher, they are passed onto 
AssignCab.  Since Client is involved only in Meet&Drive, client 
may potentially start Meet&Drive as soon as there is an input for 
Client at ClientServing. 
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Figure 4.0 c – POS of 2 strongly sequence collaborations 

 
Since AssignCab and Meet&Drive are weakly sequenced, local 
ordering applies amongst the roles involved.  Hence, the cab can 
start as soon as it completes AssignCab.  Since dispatcher is not 
involved in Meet&Drive, it does not wait for Meet&Drive to be 
completed and it can start its next collaboration after 
ClientServing.  The client could have potentially started 
Meet&Drive before the completion of AssignCab, but it would 
not have been able to since cab is the only initiating role in 
Meet&Drive and hence client has to wait for the cab to start 
Meet&Drive before it starts to execute. 

 

In Figure 4.0 c, we model the same two sub-collaborations as we 
did Figure in 4.0b, but now we assume they are strongly 
sequenced.  As discussed before, this means that all the initiating 
events in Meet&Drive will occur only and only once all the 
terminating events of the previous collaboration, AssignCab, have 
occurred.  We call this event Final Action event – when all the 
terminating events have occurred, denoted by AOF (Final Output 
of sub-collaboration AssignCab).  This also gives us the time of 
the initiating events for the next collaboration, Meet&Drive, 
which is the same time as of the Final Action of the previous 
collaboration, AssignCab. 

 

3.2.2 Modeling Cab Dispatcher System with Partial 
orders 
In Figure 4.0d, we model the Cab Dispatcher System of Figure 
1.0a as a Partially Ordered System, where the dependencies are 
again shown by arrowheads.  In Figure 1.0a, we can see that there 
are three roles involved, driver, dispatcher and the client, and 
hence 3 initiating events, namely I1, I2, and I3 are shown in 
Figure 4.0d.  Input I1 leads to RI1 and I3 leads to II2, which are 
both a simple of case of initiating the RequestCab and 
Initiatlize&AddtoQ collaboration.   
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Figure 4.0 d – POS of the detail collaboration ProcessOrder 

POS of RequestCab sub-collaboration has only one initiating 
event RI1, one starting event RI2, one terminating event RO1’ 
and one ending event RO2’.  Hence, we can see there are 



dependencies between the two inputs, RI1 and RI2.  The output 
event RO1’ will happen only after RI1 due to local ordering and 
same is true for RO2 and RO2’. 

 

POS of other sub-collaborations follow as described above, where 
the ordering relationships are realized using the event types 
(initiating, starting, ending, terminating), weak and strong 
sequencing and local ordering relationships. 

4. PERFORMANCE CHARACTERISTICS 
OF PARTIAL ORDER SPECIFICATIONS 
 

4.1 Direct & Indirect Dependency Amongst 
Execution Threads in a Single Activity 
It is quite common to have concurrent input events for a single 
collaboration.  Sometimes there are direct dependencies amongst 
these events which are straightforward to realize while other time 
there are indirect dependencies. 

 

Direct dependency is when an event is waiting on the occurrences 
for one (or more) other events.  For example, in Figure 5.0, o2 is 
directly dependent on inputs i1 and i2.  
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i2

o2

A

 
Figure 5.0 – Collaboration with Dependent & Independent 

Execution Threads 
However, indirect dependency is when an event, e1, does not 
directly affect another event, e2, but could rather trigger some 
actions internally, which would have some effects on e2.  This is 
usually the case when there are some shared resources being 
accessed by multiple threads of control.  For example, in Figure 
5.0, o1 is only directly dependent on only i1 and not on i2 or o2.   
However, now let us assume that during the execution of i1 and 
i2, both access the same database.  One scenario can arise where 
one thread has a lock on the database, which in effect, makes the 
other thread wait for the database longer than without the lock.  
This sort of dependency will be called indirect dependency as one 
execution thread is affecting the execution time of the other 
thread indirectly. 

 

For this paper, we only consider direct dependencies and assume 
that there are no indirect dependencies among different events.  

 

4.2 Adding Performance Parameters to 
Partial Orders 
As discussed, a collaboration can be represented as a set of 
partially ordered input and output events.    We propose if a 

dependency exists between events e1 and e2, that dependency is 
written as oe1

e2 and the corresponding delay between e1 and e2 
would be Δde1

e2.  oe1
e2 means that e2 succeeds e1 and de1

e2 is the 
time difference between the event e1 and e2, also known as 
Execution Time Delay.  A time delay between 2 events, e1 and 
e2, where there is no delay due to any dependencies from any 
other events other than e1, is called Minimum Execution Time 
Delay (METD), denoted by Δ e1

e2.  We write t e for the time instant 
when event e occurs.  For a given collaboration, we write I for the 
set of input events and O for the set of output events.  For an input 
ix ε I, we write EB(ix) = { iy ε I, iy ≠ ix } meaning “Every Input 
But” ix.   

 

4.3 Deriving Performance Parameters using 
Test Suite 
We are interested in Minimum Execution Time Delay, de1

e2 and 
the ordering relationship between the initiating and the output 
events.  Bochmann et al., in [4] discuss an approach for testing 
systems specified as Partial Order Input/Output Automata 
(POIOA).  They propose a testing methodology for systems 
specified as POIOA, and compare it with the case of traditional 
asynchronous I/O automata.  Using their model and methodology, 
they reduce the complexity in testing as well as reduce the 
number of tests required for testing transitions with concurrent 
inputs.  
 
We adapt their testing methodology for our needs.  For their 
testing methodology, the authors assume the input events of a 
given collaboration could be dependent on the output events of 
the same collaboration.  In our POS, we restrict this kind of 
dependency and do not allow the input events to be dependent on 
the output events of the same collaboration.   
 
We adapt their testing methodology to realize the ordering 
relationship between the initiating and the output events and 
measure the Minimum Execution Time Delay between these 
events as follows. 
For each input event ix ε I, the following test suite should be 
executed: 
Step 1. Allow all the input events in EB(ix) to occur and allow 
their resultant actions to be executed to the fullest.  This could 
result in a set of some output events, which we call S1ix.   
Step 2. Now allow the input event ix to occur and allow the 
resulting actions to be executed to the fullest.  Observe the set 
S2ix of output events produced from this execution.  Measurement 
of time between output om ε S2ix and the input ix will yield 
Minimum Execution Time Delay, dix

om. 
 

Since the production of event om ε S2ix was due to the input event 
ix, this clearly shows there is a dependency of each output event 
in set S2ix on ix. 
 
Continuing with further analysis, we can see that once step 1 and 
step 2 are repeated for all x in collaboration C, we should then 
examine each of the output events in the sets S2ix.  An output 



event om is dependent on all of the input event ix which produced 
the set S2ix, that contains the event om {om ε S2ix, om ε S2iy, x≠y, 
then om is dependent on both ix and iy}.   
 
In Step 2, the Minimum Execution Time Delay, Δix

om, is 
measured also between an input event ix ε I and the output event 
om ε S2ix.  This time delay does not include time for any waiting 
due to any dependencies or such since all the remaining events 
and their relating primitive actions have already been allowed to 
execute to their fullest in Step 1.   
 
The nature of the partial order imposes that the earliest time that 
an output event O can be executed is at a time t O that satisfies for 
all input events, I, for which there is a oI

O that exist in the partial 
order: t I + ΔI

O ≤ t O.  Event O can be dependent on multiple input 
events.  Event O can not occur until executions from all of these 
events are completed and then and only then can event O can 
occur.  This means that the earliest possible execution time for 
event O is: 

 tO = max I (t I + ΔI
O),   (Earliest Time) 

where the maximum is taken over all input events I on which 
event O depends on  

5. DERIVING GENERAL FORMULAS FOR 
STANDARD SEQUENCING OPERATORS 
 
Bochmann and his group in [1], has developed and implemented a 
methodology to derive component designs from global service 
and workflow specifications based on the more common 
sequencing operators described in UML Activity Diagrams and 
High-Level MSCs such as weak sequence, strong sequence, weak 
while loop, strong while loop, and choice.  They illustrate this 
with an example of a telemedicine consultation service involving 
multiple roles.  For this global specification, they use their 
transformation rules based on the sequencing operators to derive 
each of the role’s behaviour.  
 
We derive the performance of the global collaboration based on 
the performance of each sub-collaboration.  We model the sub-
collaborations with the above defined notations, and represent 
them as partial orders.  We wish to derive the general 
performance formulas which we can apply to the sequencing 
operators of sub-collaborations to yield the performance metrics 
of the global collaboration.   
 
We already have analyzed and calculated the time instant of the 
output events produced relative to the input events which these 
output events depend on and produced the well-defined formula 
(Earliest Time).  
 
We seek the time instant of the output event (tCO) for a composed 
collaboration C, provided it has some j input events.  
Collaboration C is an abstraction of collaboration A and 
collaboration B with the above discussed sequential operators.   
 

To calculate the time of the output event, we rewrite (Earliest 
Time) formula as:  
tCOt = max x=1…k (tCIx + ΔCIx

COt),   (1) 
where there are k inputs which have a dependency on output 
event Ot

 
We propose (1) can be applied to any of the above sequencing 
operators but each with its own definition of ΔCIj

COt.  In the next 
section, we propose and provide proofs for the various definition 
of Minimum Execution Time Delay ΔCIj

COt for collaborations 
composed by the above discussed sequencing operators. 
 

5.1 Strong Sequence 
Figure 6.0 shows strong sequencing between two collaborations A 
and B.  As discussed already, we use Final Action event to 
represent the event when all the terminating events have occurred 
in A as shown in Figure 6.0.   
 
Proposition 1.0: 
As shown in Figure 6.0a, if two collaborations, collaboration A 
with k inputs and k’ outputs and collaboration B with m inputs 
and m’ outputs, are strongly sequenced, then the time of the 
output is: 
tCOt = max x=1…k (tAIx + maxy=1..k’(ΔAIx

AOj)   (2) 
+ maxs=1..m(ΔBIs

BOt)),  
  

A

B

AI1 AIk

AO1 AOk'

BI1 BIm

BO1 BOm'

C

CI1 CIk

CO1’ COm’

AOF

 
Figure 6.0a – POS equivalent              Figure 6.0b - abstraction 
 
Proof: 
 
tAOF is by definition the maximum of tAOj for ∀ j inputs:  
tAOF =  maxy=1..k’(tAOy),    (3) 
where there are k inputs and k’ outputs for A 
 
From (1), we already know the time instant of the output events 
for collaboration A: 
tAOy = maxx=1..k (tAIx + ΔAIx

AOj)   (4) 
       
Using this definition of the time of the output for A (4) in (3), we 
get: 
tAOF =  maxy=1..k’(maxx=1..k(tAIx + ΔAIx

AOy))  (5) 
 
We can rewrite (5) as: 
tAOF =  maxx=1..k (tAIx + maxy=1..k’(ΔAIx

AOy))  (6) 
 



The time instant for the output event of collaboration B is defined 
(similar to A’s) as: 
tBOt = tCOt = max s=1..m (tBIs + ΔBIs

BOt)    (7) 
where there are m inputs and m’ outputs for B 
 
To calculate the fastest execution, we consider time of the 
initiating events of collaboration B is the same as the time for the 
final action event of collaboration A, therefore: 
tBIs = tAOF for  s = 1…m    (8) 
 
Knowing (8), we can use (6) in (7): 
tCOt = max s=1..m (maxx=1..k (tAIx +    (10) 

maxy=1..k’(ΔAIx
AOy)) + ΔBIs

BOt)   
 
 and manipulating the formula similar to what we already did 
earlier for A, we get: 
tCOt = maxx=1..k (tAix + maxy=1..k’(ΔAIx

AOy) +   (11) 
maxs=1..m (ΔBIs

BOt))     
which is the same as (2), hence proven! 
 

5.2 Weak Sequence 
 
Figure 7.0a shows weak sequencing between two collaborations 
A and B, hence local synchronization between the components of 
collaboration A and B.  What we want is the time of the output 
events of collaboration B in terms of the time of the input events 
of collaboration A.  To help us do this, we create a collaboration 
C equivalent of collaboration A weakly sequenced with 
collaboration B. 
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 Figure 7.0 a – POS equivalent Figure 7.0b - abstraction 
 
Proposition 2.0: 
As shown in Figure 7.0, if two collaborations, A and B, are 
weakly sequenced, then the time instant of an output event BOt is: 
tBOt = max x=1..k (tAIx + ΔAIx 

BOt ),   (12) 
where  ΔAIx

BOt  = maxs=1..m(ΔAIx
AOy + ΔBIs

BOt)  (13) 
 
Proof: 
 
Since this is a weak sequencing, there is no need for the output 
events to synchronize and hence there is no final action.  This 
renders the time of the input of the next collaboration to the same 
as output of the previous collaboration for the same role: 
 
tBIs = tAOy,     (14) 
where  component s is the same as component y, 

 
We can reuse (4) and (7) for weak sequencing as they give the 
basic definition of the time of the outputs for each collaboration. 
 
This makes it quite similar as it is the same as strong sequencing 
except instead of time of final action of the collaboration A, we 
use the time of the output of individual roles in Collaboration A.   
 
We use (14) in (7) to get: 
tBOt = max s=1..m (tAOy + ΔBIs

BOt)   (15) 
where there are m inputs and m’ outputs for B 
 
Applying the definition of tAOx from (4) in (15): 
tBOt = max s=1..m (maxx=1..k (tAIx + ΔAIx

AOj) + ΔBIs
BOt) (16) 

 
And manipulating the formula as did in strong sequencing, we 
get: 
tBOt = maxx=1..k (tAix + max s=1..m (ΔAIx

AOj + ΔBIs
BOt)) (17) 

and if we define ΔAIx
BOt as:  

ΔAIx
BOt = max s=1..m (ΔAIx

AOj + ΔBIs
BOt)   (18) 

 
then we can rewrite (17) as: 
tBOt = maxx=1..k (tAix + ΔAIx

BOt)    (19) 
 
which is the same as (12) and (13), hence proven. 
 
5.3 Strong While Loop 
 
Figure 8.0 shows collaboration A executes n amount of times 
strongly sequenced.  This, as before, means  all the terminating 
events of collaboration A need to synchronize at the event, AOF(i) 
for the ith iteration before (i+1) iteration begins.  What we want is 
the time of the output events of collaboration A for nth iteration in 
terms of the time of inputs of the 1st iteration of collaboration A.  
To help us do this, we create a collaboration C equivalent of 
collaboration A looping n times strongly sequenced.  
 
Proposition 3.0: 
As shown in Figure 8.0, if collaborations A is strongly sequenced 
for n amount of times, then the time instant of the output event for 
the ith iteration, AOs(i), is  
 
tAOy(i) = tAOF(1) + (n-2) * Trep + max AIx(i) (ΔAIx(i)

AOy(i) ),    (20) 
where Trep= tAOF(i) - tAIx(i),    2 ≤ i ≤ n-1 (21) 
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Figure 8.0a – strong    Figure. 8.0b – intuitive  
       while loop                               modeling of strong while loop 
 



Proof: 
 
We do this in 3 steps: 
1. Calculate the time delay, td1, of the Final Event output for the 
1st iteration 
td1= tAOF(1), where tAOF(1) is defined in (3)  (22) 
 
2. Input for every subsequent iterations, tAIx(i), is the time of the 
Final Event output of the previous iteration tAOF(i-1), hence  
tAIi(i) = tAOF(i-1)     (23) 
 
Since the starting time is the same for every time iteration, 2 ≤ i ≤ 
n-1, we can conclude the time delay, Trep, for every execution will 
be the same also.  Hence: 
Trep = tAOF(i) - tAIx(i),  2 ≤ i ≤ n-1   (24) 
 
So the time delay, td2, for the iterations from 2 to n-1 will be: 
td2 =  (n-2) * Trep     (25) 
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Figure 8.0 c – unfolding                Figure. 8.0 d- Abstraction 
 
3. Since we do not know, what kind of execution is to be 
followed, after the nth iteration of A, we do not wish to calculate 
tAOF(n) (in case a weak sequence is followed after this iteration).  
Hence we calculate the time delay for each output individually, 
td3. 
td3= max AIx(n) (ΔAIx(n)

AOy(n) )         (26) 
 
The time of the output event for nth iteration is the sum of all the 
three above mentioned delays: 
tAOy(i) = td1 + td2 + td3    (27) 
tAOy(i) = tAOF(1) + (n-2) * Trep + max AIx(i) (ΔAIx(n)

AOy(n) )   (28) 
 where  2 ≤ i ≤ n, 
 
which is the same as (20) and (21), hence proven. 
 

5.4 Weak While Loop 
Figure 9.0 shows collaboration A executes n amount of times 
weakly sequenced, meaning only components synchronizing 
locally.  What we want is the time of the output events of the nth 
iteration of collaboration A in terms of the time of the input 
events of 1st iteration of collaboration A.  To help us do this, we 
create a collaboration C equivalent of collaboration A looping n 
times weakly sequenced. 

i2 i3

AI1(i) AIk(i)

AO1(i) AOk'(i)

A

back to i1

w

Aw

i1

 
Figure 9.0a – weak                            Figure 9.0b – POS   
          while loop                                           equivalent 
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Figure 9.0c - abstraction 

Proposition 4.0: 
As shown in Figure 9.0, if collaborations A, where there are k 
inputs, is weakly sequenced n amount of times, then the time 
instant of the output event for the ith iteration, tAOy(i), is  
tAOy(i) =  max x=1..k (1) [tAIx(1) + ΔAIx(1) 

AOy(1) ] +   
maxAIx(2)  (ΔAIx(2) 

AOy(2)    +  … 
maxAIx(i-1)(ΔAIx(i-1) 

AOy(i-1) +  
maxAIx(i)  (ΔAIx(i) 

AOy(i) )  (29)  
Proof: 
We use proof by induction to prove (29).  We first proof for the 
initial case, i=1:  
i= 1: 
tAOy(1) = max  x=1..k (1)  [tAIx(1) + ΔAIx(1) 

AOy(1) ]   (30) 
This holds true by definition of (4). 
 
And now we assume if (30) holds true for i=n-1, then it must hold 
true for i=n. 
Writing (29) for i = n-1 yields 
tAOy(n-1) = max x=1..k (1)  [tAIx(1) + ΔAIx(1) 

AOy(1) ] +   
max x=1..k (2)   (ΔAIx(2) 

AOy(2) +  … 
max x=1..k (n-2) (ΔAIx(n-2) 

AOy(n-2) +  
max x=1..k (n-1) (ΔAIx(n-1) 

AOy(n-1))  (31) 
  



and we know from (14), the time of the input of the next 
collaboration to the same as output of the previous collaboration 
for the same role, tAIx(n) = tAOx(n-1).  Applying this to (31) and 
adding the delay from the input to the output for the nth iteration 
on both sides, we get: 
 
ΔAIx(n) 

AOy(n) + tAIy(n) =  
max  x=1..k (1)  [tAIx(1) + ΔAIx(1) 

AOy(1) +   
max x=1..k (2)   (ΔAIx(2) 

AOy(2) +  … 
max x=1..k (n-2) (ΔAIx(n-2) 

AOy(n-2) +  
max x=1..k (n-1)   (ΔAIx(n-1) 

AOy(n-1) ] +  
ΔAIx(n) 

AOy(n)   (32) 
 

 
We can take the maximum over the input for the nth iteration on 
both sides.  Note, on the right side, this only affects the newly 
added delay for the nth iteration.  Hence we get: 
max x=1..k (n) (ΔAIx(n) 

AOy(n) + tAIy(n)) = 
max  x=1..k (n)  [tAIx(1) + ΔAIx(1) 

AOy(1) ] +   
max x=1..k (2) (ΔAIx(2) 

AOy(2) +  … 
max x=1..k (n-2) (ΔAIx(n-2) 

AOy(n-2) +  
max x=1..k (n-1) (ΔAIx(n-1) 

AOy(n-1)) +  
max x=1..k (1)    (ΔAIx(n) 

AOy(n))  (33) 
 

Note the left side is the definition of the time of the output for the 
nth iteration:  
max x=1..k (n) (ΔAIx(n) 

AOy(n) + tAIy(n)) = 
max  x=1..k (1)  [tAIx(1) + ΔAIx(1) 

AOy(1) ] +  
max x=1..k (2)    (ΔAIx(2) 

AOy(2) +  … 
max x=1..k (n-2)  (ΔAIx(n-2) 

AOy(n-2) +  
max x=1..k (n-1)  (ΔAIx(n-1) 

AOy(n-1)) +  
max x=1..k (n)    (ΔAIx(n) 

AOy(n))  (34) 
which gives the same result whenr i = n,  hence proven. 

 
Unfortunately due to the nature of weak sequence loop, we have 
not yet been able to come up with a generalized formula as we 
have done with other formulas.  We hope to accomplish this with 
further study and simulations. 
 
5.5 Concurrency 
Figure 10.0 illustrates 2 collaborations executing in parallel.  Each 
of these collaborations could have as many roles involved as 
required.  These roles then can be implemented on to various 
components.  We assume a single processor component can map 
one and only one role.  However, if there is a multi-processor 
component, then that multi-processor component is allowed to 
implement as many roles as the number of processors it has.  We 
make this assumption so that even if there is more than one role 
implemented by a single component, then those roles can execute 
concurrently with true parallelism.  With this assumption, for each 
collaboration, we have then individual outputs for each role such 
as in Figure 10.0. 
 
Since the execution of each collaboration is considered 
independent of each other, then the outputs do not have any 
influence each other also.  Hence, collaboration A and 
collaboration B just becomes 2 collaborations which have 
executed in parallel, with the time of their output events defined 
by (35) and (36). 
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CO1 COk’

D
DI1 DIm
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Figure 10.0 – Collaborations               Figure 10.b – POS  
                 in Parallel                                       equivalent 
 
Hence we can say the following for collaboration C, where there 
are k inputs: 
tCOy = maxx=1..k (tCIx + ΔCIx

COj)   (35) 
and similarly for collaboration D, where there are m inputs, we 
can say: 
tDOt = maxs=1..m (tCIs + ΔCIs

COt)     (36) 
 
5.6 Alternative 
Figure 11.0 shows three collaborations with alternatives.  
Collaboration A is weakly sequenced by either collaboration B 
(scenario 1) or C (scenario 2).  We analyze each scenario 
separately to calculate their performance parameters.  As can be 
seen, once the models are decomposed in individual scenarios, 
there is nothing new to analyze as this is again a simple analysis 
of the weak sequencing as done before in Section 5.2.  If there 
was a strong sequence after collaboration A, that would yield in 
another 2 sets of scenarios with strong sequencing between the 2 
collaborations, and results strong sequencing from Section 5.1 
would be applied.  Hence, nor further analysis is required. 
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Figure 11.0 – Collaborations having Alternatives 

Assuming collaboration A has k inputs and k’ outputs, 
collaboration B has m inputs and m’ outputs and collaboration C 
has r inputs and r’ outputs: 
The time of the output of collaboration B for scenario 1 would be: 
tBOt = max x=1..k (tAIx + ΔAIx 

BOt )   (37) 
where  ΔAIx

BOt  = maxs=1..m(ΔAIx
AOy + ΔBIs

BOt)  (38) 
 
The time of the output of collaboration C for scenario 2 would be: 
tCOb = max x=1..k (tAIx + ΔAIx 

COb ),   (39) 
where  ΔAix

COb  = maxa=1..r(ΔAIx
AOy + ΔCIa

COb)  (40) 



5.7 Example 
We have simplified our original example of Figure 1.0a and its 
corresponding POS of Figure 4.0d to that of Figure 12.0a and 
12.0b to illustrate the use of above mentioned formulas.  We have 
removed the choice operator and the weak while loop, leaving the 
client requesting for the cab, dispatcher initializing, dispatcher 
assigning the cab driver and finally client and dispatcher meeting 
& driving.   
 
Note, the dispatcher role is common in RequestCab and 
Initialize&AddtoQ but that does not mean that there is only one 
dispatcher who is taking care of both requests.  As discussed 
previously, we assume the dispatcher in each of the collaboration 
will be an independent implementation of dispatcher, to have true 
concurrency.  However, there is a dispatcher involved 
immediately in the next collaboration AssignCab.  We do here 
assume that one of the dispatcher implementation is going to 
continue in AssignCab.  Since it could be either, the POS shows 
that it the dispatcher in AssignCab has to wait for both of the 
dispatchers in the previous collaboration to complete before it 
may start its execution.  For our analysis, we also simplify and 
use just direct dependencies to calculate the performance metrics. 
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Figure 12.0a – Simplified Cab Dispatcher System 
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Figure 12.0 b – POS of Simplified Cab Dispatcher System 

 Analysis 

Request Cab 
 Client output: 

tRO1’ = tRI1 + ΔRI1
RO1’   (37) 

 Dispatcher output: 
tRO2’ = max j=1,2(tRIj + ΔRIj

RO2’)   (38) 
 
Initialize & Add to Q: 
 Dispatcher output: 

tIO1’ = max j=1,2(tIIj + ΔIIj
IO1’)    (39) 

 Driver output: 
tIO2’ = tII2 + ΔII2

IO1’     (40) 
 
Assign Cab: 
 Dispatcher input: 
  tAI1 = max (tRO2’, tIO1’)   (41)
  

Using the definition of tRO2’, tIO1’ from (38) and (39), we 
get: 
tAI1 = max (max j=1,2(tRIj + ΔRIj

RO2’),  (42) 
               max j=1,2(tIIj + ΔIIj

IO1’))   
 Dispatcher output: 
  tAO1’ = tAI1 + ΔAI1

AO1’   (43) 
Using the definition of tAI1 from (42): 
tAO1’ = max (max j=1,2(tRIj + ΔRIj

RO2’),  (44) 
 max j=1,2(tIIj + ΔIIj

IO1’)) + ΔAI1
AO1’ 

 Driver input: 
Since there is a direct dependency between event AI1 
and AI2:

  tAI2 = tAI1, where tAI1 is defined in (42)  (45) 
 Driver output: 
  tAO2’ = max j=1,2(tAIj + ΔAIj

DO2’)  (46) 

 
Meet & Drive: 
 Driver input: 

Since there is a direct dependency between event AO2’ 
and MI2:  

  tMI2 = tAO2’, where tAO2’ is defined in (46) (47) 
 Driver output using (13) and (14) due to weak sequencing: 
  tMO2’ = tAI2 + max ( ΔAI2

DO2’ + ΔMI2
MO2’)  (48) 

  Using the definition of input of tAI2 from (45) in (46): 
 tMO2’ = max (max j=1,2(tRIj + ΔRIj

RO2’),  (49) 
max j=1,2(tIIj + ΔIIj

IO1’)) +  
max ( ΔAI2

DO2’ + ΔMI2
MO2’)   

 Client input: 
Since there is a direct dependency between event MI2 
and MI1 and also a derived dependency due to local 
ordering between RO1’ and MI1:  



  tMI1 = max (tRO1’ , t MI2)     (50) 
  where t MI2 is defined in (47) 
 Client output: 
  tMO1’ = maxj=1,2 (tMIj + ΔMIj

MO1’)  (51) 
 
Using the formulas derived in earlier sections and knowing the 
dependencies amongst the input and output events of the sub-
collaborations, we were able to get the time instant of the outputs 
for each of the role involved in the complete collaboration.  

 

5.8 Generalization to Performance 
Distributions 
In the performance analysis, throughout this paper, we have only 
considered a fixed time for the time instants and for time delays.  
However, reality begs to differ.  Realistic scenarios also include 
time delays and time instants which that may vary and could be 
characterized by some kind of distribution – perhaps binomial, 
exponential, etc.  The distributions of the Minimum Execution 
Time Delays can be measured by performing the Test Suite of 
Section 4.3 several times and obtaining some statistics about the 
possible values. The properties of the distribution can then be 
realized by analyzing the resultant data, for each collaboration.  If 
the distribution of these time delays for each sub-collaboration are 
given, we can then calculate the time delays for a composition of 
these sub-collaborations.  For the sequential execution of two sub-
collaborations, the folding operation on the respective distribution 
can be used to obtain the distribution of the overall execution 
delay, which is easily evaluated in the case of Normal 
distributions. However, the determination of the distribution of 
the maximum of two existing distributions is more complex. We 
do not discuss these issues any further in this paper 
 
[8] discusses Project Evaluation and Review Technique (PERT), a 
methodology for planning and scheduling interrelated tasks in a 
large system.  PERT is a concept similar to our work here, except 
for some differences.  Its basic idea is to optimize time and 
resource-constrained systems.   The idea is based on building a 
network model where the time delays are known, a concept very 
similar to Dijktra’s shortest route algorithm.  For PERT, the 
problem is the determination of the path to the final goal that has 
the maximum execution time and therefore determines the time 
when the goal can be reached. In order to deal with the 
distribution of execution times in the real world, PERT may 
considers the minimum, maximum and most probable execution 
time for each subactivity and, as a consequence, would be able to 
determine the minimum, maximum and most probable overall 
delay for reaching the goal. 

6. FUTURE WORK 
In the work presented in this paper, we assume that in the case of 
a choice (e.g. among several alternatives, or for the repetition of a 
loop) it is not known what the probability of each choice 
alternative would be. However, in order to obtain a complete 
performance model of an application, these probabilities must 
also be considered. This is outside the scope of this paper. The 
possibility of using distributions for characterizing the time delays 

of collaborations would also be an interesting extension of this 
work, as mentioned in Section 5. 
 
We also note that not all of Bochmann’s [1] sequencing operators 
were analyzed for performance.  We still need to consider the 
“Interruption” operator, which models a behaviour similar to a 
“Interruption” activity in the UML Activity Diagram. 
 
Implementation of the here proposed testing methodology and the 
performance derivation in a tool environment and to extend the 
algorithm for any possible scenarios which our work does not 
support will also be the next logical step. 
 

7. CONCLUSION 
We use Bochmann’s [1] method of representation to model 
collaborations and analyzing various scenarios.  We proposed a 
partial order representation to model these collaborations to help 
us with the performance analysis of a distribution system.  We 
discuss the direct and indirect dependencies amongst 
collaborations and adapt a testing methodology[4] to not only 
check the direct dependencies between a set of output events and 
input events, but also to measure the minimum time delay 
between these events.  Then we proposed a general formula for a 
collaboration and proposed a set of formulas for various standard 
sequencing operators for us to derive the performance of a global 
collaboration given a set of sub-collaborations sequenced with 
these sequencing operators. 
 
We believe that this approach to the performance modeling of 
distributed system designs is useful in many fields of application, 
including distributed workflow management systems, service 
composition for communication services, e-commerce 
applications, or Web Services. 
 
We plan to work on the tool support for the proposed testing 
methodology and performance analysis.  As well, we will also be 
extending our set of formulas to support various operators not 
considered in this paper as well as distributions for time delays. 
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