
Performance Modeling of Distributed Collaboration
Services

Toqeer Israr
School of Information Technology and

Engineering (SITE)
University of Ottawa

800 King Edward Avenue, Ottawa,
Ontario, Canada, K1N 6N5

1-613-562 5800 x 6433

tisra051@uottawa.ca

 Gregor v. Bochmann
School of Information Technology and

Engineering (SITE)
University of Ottawa

800 King Edward Avenue, Ottawa,
Ontario, Canada, K1N 6N5

1-613-562 5800 x 6205

bochmann@site.uottawa.ca

ABSTRACT
This paper deals with performance modeling of distributed
applications, service compositions and workflow systems. From
the functional perspective, the distributed application is modeled
as a collaboration involving several roles, and its behavior is
defined in terms of a composition from several sub-collaborations
using the standard sequencing operators found in UML Activity
Diagrams and similar formalisms. For the performance
perspective, each collaboration is characterized by a certain
number of independent input events and dependent output events,
and the performance of the collaboration is defined by the
minimum delays that apply for a given output event in respect to
each input event on which it depends. We use a partial order to
model these delays. The paper explains how these minimum
delays can be measured through testing. It also provides general
formulas by which the performance of a composed collaboration
can be calculated from the performance of its constituent sub-
collaborations and the control structure which determines the
order of execution of these sub-collaborations. Proofs of
correctness for these formulas a given and a simple example is
discussed throughout the paper.

Categories and Subject Descriptors
D.2.8[Software Engineering]: Metrics - Performance measures

General Terms
Algorithms, Measurement, Performance, Verification.

Keywords
performance modeling, software performance, partial order,
collaborations, UML activity diagrams, distributed applications,
web services

1. INTRODUCTION
Various kinds of models are used for a system design and
development process. Amongst several notations, some are UML
Activity Diagram[15], Use Case Maps (UCM)[5], the Process
Definition Language(XPDL), Business Process Execution
Language (BPEL), Web Services Choreography Description
Language (WS-CDL) [19] and Petri Nets. All these mentioned

notations can potentially be decomposed into sub activities and
further into sub-sub-activities. Most of these notations, though,
assume the basic activities in the decomposition to be allocated to
a single system component. However, most of the applications
have activities which are modeling collaborations between several
system components, for instance an interaction between a client
and a server. To this end, a modeling paradigm based on
collaborations has been proposed [1] which can be represented
through a combination of UML Collaboration diagrams and a
partially ordered set of input and outputs.

While the realization of distributed designs for such collaboration
services often pose tricky questions for the correctness of the
required communication protocols in terms of the messages being
exchanged between the different system components participating
in the realization of the distributed service (see for instance [1]
and [6]), we concentrate in this paper on the performance aspects
of such collaborations. We use the concept of partial orders to
model the temporal relationships between the different sub-
activities within a collaboration, and use ideas from the PERT
(Project Evaluation and Review Technique) technique [8]
commonly used for project management. We also build on a
testing technique developed for systems that implements a
behavior defined in terms of a partial order relationship between
input events and output events [4], and show how a similar
technique can be applied for performance analysis of distributed
applications. We base our analysis on the collaboration roles
involved and we make the assumption that each role can be
implemented by a multi-threaded component.

The paper is structured as follows. In Section 2, we review the
modeling paradigm based on collaborations and introduce an
example. This section also describes the rules that underlie the
concepts of strong and weak sequencing. In Section 3, we discuss
how such system models can be modeled using partial orders. In
Section 4, we introduce performance considerations, mainly
related to the delays implied by the execution of the different sub-
activities within collaborations. A general timing constraint is
established which determines the earliest time that a given output
event of a collaboration can be produced. Inspired by the testing

procedure of [4], we will also show how the parameters
determining the performance of a collaboration can be measured.
In Section 5, we propose and prove formulas to calculate the
performance of composite collaborations, and applied to a
simplified version of the running example introduced earlier.

2. MODELING DISTRIBUTED
COLLABORATION SERVICES: AN
EXAMPLES
An example of Cab Dispatcher System (CDS) is presented in
Figure 1.0a. It consists of 5 sub-collaborations and 3 roles –
client, dispatcher and cab. For each of these roles there will exist
an input event (client requesting cab, dispatcher being available,
and cab being available) and three output events (client reaches
their destination and makes payment to driver, cab signs off, and
dispatcher signs off). These input and output events are initiating
and terminating events, respectively of this CabDispatcher
collaboration. Initiating event[1] represents the starting of an
action in the collaboration, for which there are no other actions in
that collaboration that precedes that action. Similarly the
terminating event [1] represents the end of an action in a
collaboration, for which there is no other action in a collaboration
that succeeds this action in that flow of execution.

These initiating and terminating events should not be confused
with the starting and the ending events. The starting event
represents the starting of the actions in a collaboration for a single
component, for which there are no other actions in that
collaboration for that component that precede that action.
Similarly, an ending event represents the end of an action in a
collaboration for a single component, for which there are no other
actions in a collaboration for that component, that succeed that
action. A starting event can be an initiating event but does not
have to be whilst an initiating event has to be one of the starting
events. Similarly, an ending event can be a terminating event but
does not have to be whilst a terminating event has to be one of the
ending events.

In order to define the behaviour of a collaboration, we use
Bochmann’s [1] diagram notation, based on most of UML
Activity Diagram constructs as shown in Figure 1.0a. For each of
these sub-collaborations, initiating and starting events are
represented by dark dots “●” while ending and terminating events
are represented by vertical bars “|”. More discussion on events
will follow in context of partial ordering. We also note that initial
node not only models the start of all the flows in a collaboration,
but also represents the starting of all the roles involved.

We consider the example of cab dispatcher system. The client
(Cl) requests a cab from the dispatcher (Di). The cab, when
available, comes in and the dispatcher adds the cab to the queue
of available cabs. The dispatcher also concurrently services the
client’s requests. The client, whilst waiting for the cab has the
option to cancel the cab. Once there is a cab in the queue, the
dispatcher assigns the cab to the client and goes back and waits
for more cabs and clients. The dispatcher does this for n times

and after that, the dispatcher ends the shift. Meanwhile, the cab
takes the client to the destination and is paid for the services
rendered, upon which the sequence for the cab and for the client
then ends. This system can accept new clients and drivers, which
would be serviced as long as the dispatcher continues to loop and
execute.

w

w
w

w

R:
Request
Cab

D
iCl

I: Initialize
& add to Q CabDi

C:
Cancel DiCl

w

m: Meet
& Drive

CabCl

A:
Assign
Cab

CabDi

Figure 1.0a – Collaboration of Cab Dispatcher System

2.1 Strong and Weak Sequencing
Between the sub-collaborations in Figure 1.0a, there is a choice of
weak and strong sequence operators [1] to be used. Two
collaborations C1 and C2 are said to be strongly sequenced when
all the sub-collaborations of C1 are be completed before any sub-
activity of C2 starts. However, weak sequencing between C1 and
C2 means that each role locally applies sequencing to the local
sub-collaborations of C1 and C2, that is, a role may start with
sub-collaborations that belong to C2 as soon as it has completed
all its local sub-collaborations that are part of C1. Strong
sequencing implies weak sequencing, but not inversely. In weak
sequencing, if a role is not involved in C1, it may start with sub-
collaborations of C2 even before C1 begins its execution.

In our example of Figure 1.0b and 1.0c, let us consider 2
collaborations – S1: Send Info followed by S2: Send Info. Send
Info in both collaborations has the exact same behaviour – R1
sends a message to R2, and based on that message, R2 does some
processing and then terminates.

If we consider strong sequencing, as shown by the label “s” on
sequencing arc in Figure 1.0b, then all the terminating
events(belonging to only R2), completes its processing in S1:Send
Info, before the initiating events of S2:Send Info can occur. This
would mean the R2 has to complete its processing in S1:Send Info
before R1 in S2: Send Info may start. Also note, the time of the
initiating event of S2: Send Info is the time when all of the
terminating events occur (in this case, there is only 1 terminating
event).

S2: Send
Info

R2R1

S1: Send
Info

R2R1

w

Figure 1.0b – Weak Sequencing

S2: Send
Info

R2R1

S1: Send
Info R2R1

s

Figure 1.0c – Strong Sequencing

Now, let us consider weak sequencing between “S1: Send Info”
and “S2: Send Info”(as shown by “w” on the sequencing arc of
Figure 1.0c). This implies the actions of each role of “S2:
SendInfo” may start as soon as those roles have completed their
actions belonging to the previous collaboration, in this case “S1:
Send Info”. Hence, as soon as the R1 sends the message to R2 in
S1:Send Info, R1 can start sending a message for S2:Send Info.
The important thing is that R1 need not to wait for R2 to complete
its execution of S1:Send Info before R1 starts its execution in S2:
Send Info.

3. DESCRIBING COLLABORATIONS
WITH PARTIAL ORDERS
3.1 Review of Partial Orders
Inspired by Partial Order Input Output Automata (POIOA) [4], an
extension of Input Output Automata, we introduce Partial Order
Systems (POS). In a POS, each collaboration has a set of
independent initiating events. These initiating events trigger the
execution of some internal actions resulting in a set of output
events. Figure 3.0a shows a POS corresponding to a simple
collaboration involving three independent inputs and three
outputs. The outputs are not ordered relative to one another
directly but each output has a dependency on the inputs as
indicated by the arrows, “ ”. For instance, event CO1’ can only
occur after the occurrence of event CI1, but for event CO2’ to
occur, both (CI1 and CI2) must occur first. We can write this as
(CI1 CO1’), (CI1 CO2’) and (CI2 CO2’)).

There also exists a set of derived dependency amongst the inputs
and the outputs relative to each other also, shown by the dashed
arrow in Figure 3.0a. One such dependency is event CO3’ occurs
after CI2. Since (CI2 CI3) and (CI3 CO3’), then it is
intuitive to derive (CI2 CO3’). Other derived dependencies
can also be derived due to local ordering, where the output event

of a role has to occur after the input of the same role in the same
collaboration.

C

3 input events

3 output events

3 input events

3 output events

CI1 CI2 CI3

CO1’ CO2’ CO3’

CI1 CI2 CI3

CO1’ CO2’ CO3’

Figure 3.0a – The POS corresponding to a simple

collaboration

Having an operator to model alternatives is a very common
and a useful concept in UML. However, we had to
improvise as Partial Ordering does not allow modeling of
alternative paths. Inspired by the choice symbol in
UCM[5], we introduce a new symbol in Partial Ordering to
represent a choice in a system. As can be seen in Figure
3.0b, it is a rectangular box with multiple branches
stemming out, with each branch having an event associated
with it. This will be illustrated with an example later on.

I2 I3

or

I2 I3

I1

I1

Figure 3.0b – Choice representation in POS

3.2 Modeling with Partial orders
In this section, we would like to discuss the POS resulting from a
given collaboration. For a given collaboration, each initiating and
starting event translates into an input event of a POS, and each
terminating and ending event translates into an output event of a
POS.

Figure 4.0a shows a POS corresponding to Assign Cab sub-
collaboration, from Figure 1.0a, involving 1 initiating event
(initiated by dispatcher), 1 starting event for driver, and 2
terminating events, cab getting assigned and dispatcher updating
the cab available queue. Direct and derived dependencies are
shown using the solid and the dashed arcs respectively.

Assign
Cab

AI1

AO1’

AI2

AO2’

Dispatcher Driver

Figure 4.0a – POS of the Assign Cab sub-collaboration

3.2.1 Modeling Weak and Strong Sequencing with
Partial orders

As discussed before, there could be strong and weak sequencing
between any two collaborations. In Figure 1.0a, AssignCab is
weakly sequenced with Meet&Drive, which is abstracted by
ClientServing in Fig 4.0b. This to help us realize when each role
becomes available, before and after the weak sequenced
operation.

MI1

MO2’MO1’

MI2

Meet
& Drive

Assign
Cab

AI1

AO1’

AI2

AO2’

Dispatcher CabClient

CO1 CO2 CO3

CI1 CI2 CI3

Client
Serving

Figure 4.0 b – POS of 2 weakly sequence collaborations

In ClientServing, local ordering applies for the starting and
initiating events of AssignCab. This means as soon as there are
inputs available for Cab and Dispatcher, they are passed onto
AssignCab. Since Client is involved only in Meet&Drive, client
may potentially start Meet&Drive as soon as there is an input for
Client at ClientServing.

MI1

MO2’MO1’

MI2

Meet
& Drive

Assign
Cab

AI1

AO1’

AI2

AO2’

Dispatcher CabClient

CO1 CO2 CO3

CI1 CI2 CI3

AOF

Figure 4.0 c – POS of 2 strongly sequence collaborations

Since AssignCab and Meet&Drive are weakly sequenced, local
ordering applies amongst the roles involved. Hence, the cab can
start as soon as it completes AssignCab. Since dispatcher is not
involved in Meet&Drive, it does not wait for Meet&Drive to be
completed and it can start its next collaboration after
ClientServing. The client could have potentially started
Meet&Drive before the completion of AssignCab, but it would
not have been able to since cab is the only initiating role in
Meet&Drive and hence client has to wait for the cab to start
Meet&Drive before it starts to execute.

In Figure 4.0 c, we model the same two sub-collaborations as we
did Figure in 4.0b, but now we assume they are strongly
sequenced. As discussed before, this means that all the initiating
events in Meet&Drive will occur only and only once all the
terminating events of the previous collaboration, AssignCab, have
occurred. We call this event Final Action event – when all the
terminating events have occurred, denoted by AOF (Final Output
of sub-collaboration AssignCab). This also gives us the time of
the initiating events for the next collaboration, Meet&Drive,
which is the same time as of the Final Action of the previous
collaboration, AssignCab.

3.2.2 Modeling Cab Dispatcher System with Partial
orders
In Figure 4.0d, we model the Cab Dispatcher System of Figure
1.0a as a Partially Ordered System, where the dependencies are
again shown by arrowheads. In Figure 1.0a, we can see that there
are three roles involved, driver, dispatcher and the client, and
hence 3 initiating events, namely I1, I2, and I3 are shown in
Figure 4.0d. Input I1 leads to RI1 and I3 leads to II2, which are
both a simple of case of initiating the RequestCab and
Initiatlize&AddtoQ collaboration.

Client DriverDispatcher

or

I1
I4

back to I2

RI1

RO1’

RI2 II1

IO1’

I3

II2

IO2’

CI1

CO1’

AI1

RO2’

CI2
AI2

MI1

MO2’MO1’

AO1’

I2
or

O1

MI2

AO2’

Request
Cab

Initialize &
Add to Q

Assign
Cab

Meet &
Drive

Cancel

Figure 4.0 d – POS of the detail collaboration ProcessOrder

POS of RequestCab sub-collaboration has only one initiating
event RI1, one starting event RI2, one terminating event RO1’
and one ending event RO2’. Hence, we can see there are

dependencies between the two inputs, RI1 and RI2. The output
event RO1’ will happen only after RI1 due to local ordering and
same is true for RO2 and RO2’.

POS of other sub-collaborations follow as described above, where
the ordering relationships are realized using the event types
(initiating, starting, ending, terminating), weak and strong
sequencing and local ordering relationships.

4. PERFORMANCE CHARACTERISTICS
OF PARTIAL ORDER SPECIFICATIONS

4.1 Direct & Indirect Dependency Amongst
Execution Threads in a Single Activity
It is quite common to have concurrent input events for a single
collaboration. Sometimes there are direct dependencies amongst
these events which are straightforward to realize while other time
there are indirect dependencies.

Direct dependency is when an event is waiting on the occurrences
for one (or more) other events. For example, in Figure 5.0, o2 is
directly dependent on inputs i1 and i2.

i1

o1

i2

o2

A

Figure 5.0 – Collaboration with Dependent & Independent

Execution Threads
However, indirect dependency is when an event, e1, does not
directly affect another event, e2, but could rather trigger some
actions internally, which would have some effects on e2. This is
usually the case when there are some shared resources being
accessed by multiple threads of control. For example, in Figure
5.0, o1 is only directly dependent on only i1 and not on i2 or o2.
However, now let us assume that during the execution of i1 and
i2, both access the same database. One scenario can arise where
one thread has a lock on the database, which in effect, makes the
other thread wait for the database longer than without the lock.
This sort of dependency will be called indirect dependency as one
execution thread is affecting the execution time of the other
thread indirectly.

For this paper, we only consider direct dependencies and assume
that there are no indirect dependencies among different events.

4.2 Adding Performance Parameters to
Partial Orders
As discussed, a collaboration can be represented as a set of
partially ordered input and output events. We propose if a

dependency exists between events e1 and e2, that dependency is
written as oe1

e2 and the corresponding delay between e1 and e2
would be Δde1

e2. oe1
e2 means that e2 succeeds e1 and de1

e2 is the
time difference between the event e1 and e2, also known as
Execution Time Delay. A time delay between 2 events, e1 and
e2, where there is no delay due to any dependencies from any
other events other than e1, is called Minimum Execution Time
Delay (METD), denoted by Δ e1

e2. We write t e for the time instant
when event e occurs. For a given collaboration, we write I for the
set of input events and O for the set of output events. For an input
ix ε I, we write EB(ix) = { iy ε I, iy ≠ ix } meaning “Every Input
But” ix.

4.3 Deriving Performance Parameters using
Test Suite
We are interested in Minimum Execution Time Delay, de1

e2 and
the ordering relationship between the initiating and the output
events. Bochmann et al., in [4] discuss an approach for testing
systems specified as Partial Order Input/Output Automata
(POIOA). They propose a testing methodology for systems
specified as POIOA, and compare it with the case of traditional
asynchronous I/O automata. Using their model and methodology,
they reduce the complexity in testing as well as reduce the
number of tests required for testing transitions with concurrent
inputs.

We adapt their testing methodology for our needs. For their
testing methodology, the authors assume the input events of a
given collaboration could be dependent on the output events of
the same collaboration. In our POS, we restrict this kind of
dependency and do not allow the input events to be dependent on
the output events of the same collaboration.

We adapt their testing methodology to realize the ordering
relationship between the initiating and the output events and
measure the Minimum Execution Time Delay between these
events as follows.
For each input event ix ε I, the following test suite should be
executed:
Step 1. Allow all the input events in EB(ix) to occur and allow
their resultant actions to be executed to the fullest. This could
result in a set of some output events, which we call S1ix.
Step 2. Now allow the input event ix to occur and allow the
resulting actions to be executed to the fullest. Observe the set
S2ix of output events produced from this execution. Measurement
of time between output om ε S2ix and the input ix will yield
Minimum Execution Time Delay, dix

om.

Since the production of event om ε S2ix was due to the input event
ix, this clearly shows there is a dependency of each output event
in set S2ix on ix.

Continuing with further analysis, we can see that once step 1 and
step 2 are repeated for all x in collaboration C, we should then
examine each of the output events in the sets S2ix. An output

event om is dependent on all of the input event ix which produced
the set S2ix, that contains the event om {om ε S2ix, om ε S2iy, x≠y,
then om is dependent on both ix and iy}.

In Step 2, the Minimum Execution Time Delay, Δix

om, is
measured also between an input event ix ε I and the output event
om ε S2ix. This time delay does not include time for any waiting
due to any dependencies or such since all the remaining events
and their relating primitive actions have already been allowed to
execute to their fullest in Step 1.

The nature of the partial order imposes that the earliest time that
an output event O can be executed is at a time t O that satisfies for
all input events, I, for which there is a oI

O that exist in the partial
order: t I + ΔI

O ≤ t O. Event O can be dependent on multiple input
events. Event O can not occur until executions from all of these
events are completed and then and only then can event O can
occur. This means that the earliest possible execution time for
event O is:

 tO = max I (t I + ΔI
O), (Earliest Time)

where the maximum is taken over all input events I on which
event O depends on

5. DERIVING GENERAL FORMULAS FOR
STANDARD SEQUENCING OPERATORS

Bochmann and his group in [1], has developed and implemented a
methodology to derive component designs from global service
and workflow specifications based on the more common
sequencing operators described in UML Activity Diagrams and
High-Level MSCs such as weak sequence, strong sequence, weak
while loop, strong while loop, and choice. They illustrate this
with an example of a telemedicine consultation service involving
multiple roles. For this global specification, they use their
transformation rules based on the sequencing operators to derive
each of the role’s behaviour.

We derive the performance of the global collaboration based on
the performance of each sub-collaboration. We model the sub-
collaborations with the above defined notations, and represent
them as partial orders. We wish to derive the general
performance formulas which we can apply to the sequencing
operators of sub-collaborations to yield the performance metrics
of the global collaboration.

We already have analyzed and calculated the time instant of the
output events produced relative to the input events which these
output events depend on and produced the well-defined formula
(Earliest Time).

We seek the time instant of the output event (tCO) for a composed
collaboration C, provided it has some j input events.
Collaboration C is an abstraction of collaboration A and
collaboration B with the above discussed sequential operators.

To calculate the time of the output event, we rewrite (Earliest
Time) formula as:
tCOt = max x=1…k (tCIx + ΔCIx

COt), (1)
where there are k inputs which have a dependency on output
event Ot

We propose (1) can be applied to any of the above sequencing
operators but each with its own definition of ΔCIj

COt. In the next
section, we propose and provide proofs for the various definition
of Minimum Execution Time Delay ΔCIj

COt for collaborations
composed by the above discussed sequencing operators.

5.1 Strong Sequence
Figure 6.0 shows strong sequencing between two collaborations A
and B. As discussed already, we use Final Action event to
represent the event when all the terminating events have occurred
in A as shown in Figure 6.0.

Proposition 1.0:
As shown in Figure 6.0a, if two collaborations, collaboration A
with k inputs and k’ outputs and collaboration B with m inputs
and m’ outputs, are strongly sequenced, then the time of the
output is:
tCOt = max x=1…k (tAIx + maxy=1..k’(ΔAIx

AOj) (2)
+ maxs=1..m(ΔBIs

BOt)),

A

B

AI1 AIk

AO1 AOk'

BI1 BIm

BO1 BOm'

C

CI1 CIk

CO1’ COm’

AOF

Figure 6.0a – POS equivalent Figure 6.0b - abstraction

Proof:

tAOF is by definition the maximum of tAOj for ∀ j inputs:
tAOF = maxy=1..k’(tAOy), (3)
where there are k inputs and k’ outputs for A

From (1), we already know the time instant of the output events
for collaboration A:
tAOy = maxx=1..k (tAIx + ΔAIx

AOj) (4)

Using this definition of the time of the output for A (4) in (3), we
get:
tAOF = maxy=1..k’(maxx=1..k(tAIx + ΔAIx

AOy)) (5)

We can rewrite (5) as:
tAOF = maxx=1..k (tAIx + maxy=1..k’(ΔAIx

AOy)) (6)

The time instant for the output event of collaboration B is defined
(similar to A’s) as:
tBOt = tCOt = max s=1..m (tBIs + ΔBIs

BOt) (7)
where there are m inputs and m’ outputs for B

To calculate the fastest execution, we consider time of the
initiating events of collaboration B is the same as the time for the
final action event of collaboration A, therefore:
tBIs = tAOF for s = 1…m (8)

Knowing (8), we can use (6) in (7):
tCOt = max s=1..m (maxx=1..k (tAIx + (10)

maxy=1..k’(ΔAIx
AOy)) + ΔBIs

BOt)

 and manipulating the formula similar to what we already did
earlier for A, we get:
tCOt = maxx=1..k (tAix + maxy=1..k’(ΔAIx

AOy) + (11)
maxs=1..m (ΔBIs

BOt))
which is the same as (2), hence proven!

5.2 Weak Sequence

Figure 7.0a shows weak sequencing between two collaborations
A and B, hence local synchronization between the components of
collaboration A and B. What we want is the time of the output
events of collaboration B in terms of the time of the input events
of collaboration A. To help us do this, we create a collaboration
C equivalent of collaboration A weakly sequenced with
collaboration B.

A

B

AI1 AIk

AO1 AOk'

BI1 BIm

BO1 BOm'

C

CI1 CIk

CO1’ COm’

 Figure 7.0 a – POS equivalent Figure 7.0b - abstraction

Proposition 2.0:
As shown in Figure 7.0, if two collaborations, A and B, are
weakly sequenced, then the time instant of an output event BOt is:
tBOt = max x=1..k (tAIx + ΔAIx

BOt), (12)
where ΔAIx

BOt = maxs=1..m(ΔAIx
AOy + ΔBIs

BOt) (13)

Proof:

Since this is a weak sequencing, there is no need for the output
events to synchronize and hence there is no final action. This
renders the time of the input of the next collaboration to the same
as output of the previous collaboration for the same role:

tBIs = tAOy, (14)
where component s is the same as component y,

We can reuse (4) and (7) for weak sequencing as they give the
basic definition of the time of the outputs for each collaboration.

This makes it quite similar as it is the same as strong sequencing
except instead of time of final action of the collaboration A, we
use the time of the output of individual roles in Collaboration A.

We use (14) in (7) to get:
tBOt = max s=1..m (tAOy + ΔBIs

BOt) (15)
where there are m inputs and m’ outputs for B

Applying the definition of tAOx from (4) in (15):
tBOt = max s=1..m (maxx=1..k (tAIx + ΔAIx

AOj) + ΔBIs
BOt) (16)

And manipulating the formula as did in strong sequencing, we
get:
tBOt = maxx=1..k (tAix + max s=1..m (ΔAIx

AOj + ΔBIs
BOt)) (17)

and if we define ΔAIx
BOt as:

ΔAIx
BOt = max s=1..m (ΔAIx

AOj + ΔBIs
BOt) (18)

then we can rewrite (17) as:
tBOt = maxx=1..k (tAix + ΔAIx

BOt) (19)

which is the same as (12) and (13), hence proven.

5.3 Strong While Loop

Figure 8.0 shows collaboration A executes n amount of times
strongly sequenced. This, as before, means all the terminating
events of collaboration A need to synchronize at the event, AOF(i)
for the ith iteration before (i+1) iteration begins. What we want is
the time of the output events of collaboration A for nth iteration in
terms of the time of inputs of the 1st iteration of collaboration A.
To help us do this, we create a collaboration C equivalent of
collaboration A looping n times strongly sequenced.

Proposition 3.0:
As shown in Figure 8.0, if collaborations A is strongly sequenced
for n amount of times, then the time instant of the output event for
the ith iteration, AOs(i), is

tAOy(i) = tAOF(1) + (n-2) * Trep + max AIx(i) (ΔAIx(i)

AOy(i)), (20)
where Trep= tAOF(i) - tAIx(i), 2 ≤ i ≤ n-1 (21)

i2 i3

AI1(i) AIk(i)

AO1(i) AOk'(i)

A

AOF(i)

back to i1

s

As

i1

Figure 8.0a – strong Figure. 8.0b – intuitive
 while loop modeling of strong while loop

Proof:

We do this in 3 steps:
1. Calculate the time delay, td1, of the Final Event output for the
1st iteration
td1= tAOF(1), where tAOF(1) is defined in (3) (22)

2. Input for every subsequent iterations, tAIx(i), is the time of the
Final Event output of the previous iteration tAOF(i-1), hence
tAIi(i) = tAOF(i-1) (23)

Since the starting time is the same for every time iteration, 2 ≤ i ≤
n-1, we can conclude the time delay, Trep, for every execution will
be the same also. Hence:
Trep = tAOF(i) - tAIx(i), 2 ≤ i ≤ n-1 (24)

So the time delay, td2, for the iterations from 2 to n-1 will be:
td2 = (n-2) * Trep (25)

AI1(2) AIk(2)

AO1(2) AOk'(2)C
V

A

AOF(2)

AI1(n-1) AI2(n-1)

AO1(n-1) AOk'(n-1)

A

AOF(n-1)

AI1(1) AIk(1)

AO1(1) AOk'(1)

A

AOF(1)

AI1(n) AIk(n)

AO1(n) AOk'(n)

A

td1

td2

td3

C

CI1(1) CIk(1)

CO1(n) COk’(n)
AOF(n-2)

…

Figure 8.0 c – unfolding Figure. 8.0 d- Abstraction

3. Since we do not know, what kind of execution is to be
followed, after the nth iteration of A, we do not wish to calculate
tAOF(n) (in case a weak sequence is followed after this iteration).
Hence we calculate the time delay for each output individually,
td3.
td3= max AIx(n) (ΔAIx(n)

AOy(n)) (26)

The time of the output event for nth iteration is the sum of all the
three above mentioned delays:
tAOy(i) = td1 + td2 + td3 (27)
tAOy(i) = tAOF(1) + (n-2) * Trep + max AIx(i) (ΔAIx(n)

AOy(n)) (28)
 where 2 ≤ i ≤ n,

which is the same as (20) and (21), hence proven.

5.4 Weak While Loop
Figure 9.0 shows collaboration A executes n amount of times
weakly sequenced, meaning only components synchronizing
locally. What we want is the time of the output events of the nth
iteration of collaboration A in terms of the time of the input
events of 1st iteration of collaboration A. To help us do this, we
create a collaboration C equivalent of collaboration A looping n
times weakly sequenced.

i2 i3

AI1(i) AIk(i)

AO1(i) AOk'(i)

A

back to i1

w

Aw

i1

Figure 9.0a – weak Figure 9.0b – POS
 while loop equivalent

i2 i3

AI1(i) AIk(i)

AO1(i) AOk'(i)

A

back to i1

i1

C

CI1(1) CIk(1)

CO1(n) COk’(n)

Figure 9.0c - abstraction

Proposition 4.0:
As shown in Figure 9.0, if collaborations A, where there are k
inputs, is weakly sequenced n amount of times, then the time
instant of the output event for the ith iteration, tAOy(i), is
tAOy(i) = max x=1..k (1) [tAIx(1) + ΔAIx(1)

AOy(1)] +
maxAIx(2) (ΔAIx(2)

AOy(2) + …
maxAIx(i-1)(ΔAIx(i-1)

AOy(i-1) +
maxAIx(i) (ΔAIx(i)

AOy(i)) (29)
Proof:
We use proof by induction to prove (29). We first proof for the
initial case, i=1:
i= 1:
tAOy(1) = max x=1..k (1) [tAIx(1) + ΔAIx(1)

AOy(1)] (30)
This holds true by definition of (4).

And now we assume if (30) holds true for i=n-1, then it must hold
true for i=n.
Writing (29) for i = n-1 yields
tAOy(n-1) = max x=1..k (1) [tAIx(1) + ΔAIx(1)

AOy(1)] +
max x=1..k (2) (ΔAIx(2)

AOy(2) + …
max x=1..k (n-2) (ΔAIx(n-2)

AOy(n-2) +
max x=1..k (n-1) (ΔAIx(n-1)

AOy(n-1)) (31)

and we know from (14), the time of the input of the next
collaboration to the same as output of the previous collaboration
for the same role, tAIx(n) = tAOx(n-1). Applying this to (31) and
adding the delay from the input to the output for the nth iteration
on both sides, we get:

ΔAIx(n)

AOy(n) + tAIy(n) =
max x=1..k (1) [tAIx(1) + ΔAIx(1)

AOy(1) +
max x=1..k (2) (ΔAIx(2)

AOy(2) + …
max x=1..k (n-2) (ΔAIx(n-2)

AOy(n-2) +
max x=1..k (n-1) (ΔAIx(n-1)

AOy(n-1)] +
ΔAIx(n)

AOy(n) (32)

We can take the maximum over the input for the nth iteration on
both sides. Note, on the right side, this only affects the newly
added delay for the nth iteration. Hence we get:
max x=1..k (n) (ΔAIx(n)

AOy(n) + tAIy(n)) =
max x=1..k (n) [tAIx(1) + ΔAIx(1)

AOy(1)] +
max x=1..k (2) (ΔAIx(2)

AOy(2) + …
max x=1..k (n-2) (ΔAIx(n-2)

AOy(n-2) +
max x=1..k (n-1) (ΔAIx(n-1)

AOy(n-1)) +
max x=1..k (1) (ΔAIx(n)

AOy(n)) (33)

Note the left side is the definition of the time of the output for the
nth iteration:
max x=1..k (n) (ΔAIx(n)

AOy(n) + tAIy(n)) =
max x=1..k (1) [tAIx(1) + ΔAIx(1)

AOy(1)] +
max x=1..k (2) (ΔAIx(2)

AOy(2) + …
max x=1..k (n-2) (ΔAIx(n-2)

AOy(n-2) +
max x=1..k (n-1) (ΔAIx(n-1)

AOy(n-1)) +
max x=1..k (n) (ΔAIx(n)

AOy(n)) (34)
which gives the same result whenr i = n, hence proven.

Unfortunately due to the nature of weak sequence loop, we have
not yet been able to come up with a generalized formula as we
have done with other formulas. We hope to accomplish this with
further study and simulations.

5.5 Concurrency
Figure 10.0 illustrates 2 collaborations executing in parallel. Each
of these collaborations could have as many roles involved as
required. These roles then can be implemented on to various
components. We assume a single processor component can map
one and only one role. However, if there is a multi-processor
component, then that multi-processor component is allowed to
implement as many roles as the number of processors it has. We
make this assumption so that even if there is more than one role
implemented by a single component, then those roles can execute
concurrently with true parallelism. With this assumption, for each
collaboration, we have then individual outputs for each role such
as in Figure 10.0.

Since the execution of each collaboration is considered
independent of each other, then the outputs do not have any
influence each other also. Hence, collaboration A and
collaboration B just becomes 2 collaborations which have
executed in parallel, with the time of their output events defined
by (35) and (36).

A B C
CI1 CIk

CO1 COk’

D
DI1 DIm

DO1 DOm’

Figure 10.0 – Collaborations Figure 10.b – POS
 in Parallel equivalent

Hence we can say the following for collaboration C, where there
are k inputs:
tCOy = maxx=1..k (tCIx + ΔCIx

COj) (35)
and similarly for collaboration D, where there are m inputs, we
can say:
tDOt = maxs=1..m (tCIs + ΔCIs

COt) (36)

5.6 Alternative
Figure 11.0 shows three collaborations with alternatives.
Collaboration A is weakly sequenced by either collaboration B
(scenario 1) or C (scenario 2). We analyze each scenario
separately to calculate their performance parameters. As can be
seen, once the models are decomposed in individual scenarios,
there is nothing new to analyze as this is again a simple analysis
of the weak sequencing as done before in Section 5.2. If there
was a strong sequence after collaboration A, that would yield in
another 2 sets of scenarios with strong sequencing between the 2
collaborations, and results strong sequencing from Section 5.1
would be applied. Hence, nor further analysis is required.

A

B C

A

AI1 AIk

AO1

B C

AOk'

CI1 CIb

CO1 COb’

BI1 BIm

BO1 BOm’

A

AI1 AIk

AO1 AOk’

or

Scenario 1 Scenario 2

w w

w

Figure 11.0 – Collaborations having Alternatives

Assuming collaboration A has k inputs and k’ outputs,
collaboration B has m inputs and m’ outputs and collaboration C
has r inputs and r’ outputs:
The time of the output of collaboration B for scenario 1 would be:
tBOt = max x=1..k (tAIx + ΔAIx

BOt) (37)
where ΔAIx

BOt = maxs=1..m(ΔAIx
AOy + ΔBIs

BOt) (38)

The time of the output of collaboration C for scenario 2 would be:
tCOb = max x=1..k (tAIx + ΔAIx

COb), (39)
where ΔAix

COb = maxa=1..r(ΔAIx
AOy + ΔCIa

COb) (40)

5.7 Example
We have simplified our original example of Figure 1.0a and its
corresponding POS of Figure 4.0d to that of Figure 12.0a and
12.0b to illustrate the use of above mentioned formulas. We have
removed the choice operator and the weak while loop, leaving the
client requesting for the cab, dispatcher initializing, dispatcher
assigning the cab driver and finally client and dispatcher meeting
& driving.

Note, the dispatcher role is common in RequestCab and
Initialize&AddtoQ but that does not mean that there is only one
dispatcher who is taking care of both requests. As discussed
previously, we assume the dispatcher in each of the collaboration
will be an independent implementation of dispatcher, to have true
concurrency. However, there is a dispatcher involved
immediately in the next collaboration AssignCab. We do here
assume that one of the dispatcher implementation is going to
continue in AssignCab. Since it could be either, the POS shows
that it the dispatcher in AssignCab has to wait for both of the
dispatchers in the previous collaboration to complete before it
may start its execution. For our analysis, we also simplify and
use just direct dependencies to calculate the performance metrics.

w

ww

w

R: Request
Cab

CDi I: Initialize
& add to Q

DrDi

A: Assign
Cab

DrDi

m: Meet &
Drive

CDr

Figure 12.0a – Simplified Cab Dispatcher System

Client DriverDispatcher

I1

RI1

RO1’

RI2 II1

IO1’

I3
II2

IO2’

AI1

RO2’

AI2

MI1

MO2’MO1’

AO1’

I2

MI2

AO2’

Request
Cab

Initialize &
Add to Q

Assign
Cab

Meet &
Drive

Figure 12.0 b – POS of Simplified Cab Dispatcher System

 Analysis

Request Cab
 Client output:

tRO1’ = tRI1 + ΔRI1
RO1’ (37)

 Dispatcher output:
tRO2’ = max j=1,2(tRIj + ΔRIj

RO2’) (38)

Initialize & Add to Q:
 Dispatcher output:

tIO1’ = max j=1,2(tIIj + ΔIIj
IO1’) (39)

 Driver output:
tIO2’ = tII2 + ΔII2

IO1’ (40)

Assign Cab:
 Dispatcher input:
 tAI1 = max (tRO2’, tIO1’) (41)

Using the definition of tRO2’, tIO1’ from (38) and (39), we
get:
tAI1 = max (max j=1,2(tRIj + ΔRIj

RO2’), (42)
 max j=1,2(tIIj + ΔIIj

IO1’))
 Dispatcher output:
 tAO1’ = tAI1 + ΔAI1

AO1’ (43)
Using the definition of tAI1 from (42):
tAO1’ = max (max j=1,2(tRIj + ΔRIj

RO2’), (44)
 max j=1,2(tIIj + ΔIIj

IO1’)) + ΔAI1
AO1’

 Driver input:
Since there is a direct dependency between event AI1
and AI2:

 tAI2 = tAI1, where tAI1 is defined in (42) (45)
 Driver output:
 tAO2’ = max j=1,2(tAIj + ΔAIj

DO2’) (46)

Meet & Drive:
 Driver input:

Since there is a direct dependency between event AO2’
and MI2:

 tMI2 = tAO2’, where tAO2’ is defined in (46) (47)
 Driver output using (13) and (14) due to weak sequencing:
 tMO2’ = tAI2 + max (ΔAI2

DO2’ + ΔMI2
MO2’) (48)

 Using the definition of input of tAI2 from (45) in (46):
 tMO2’ = max (max j=1,2(tRIj + ΔRIj

RO2’), (49)
max j=1,2(tIIj + ΔIIj

IO1’)) +
max (ΔAI2

DO2’ + ΔMI2
MO2’)

 Client input:
Since there is a direct dependency between event MI2
and MI1 and also a derived dependency due to local
ordering between RO1’ and MI1:

 tMI1 = max (tRO1’ , t MI2) (50)
 where t MI2 is defined in (47)
 Client output:
 tMO1’ = maxj=1,2 (tMIj + ΔMIj

MO1’) (51)

Using the formulas derived in earlier sections and knowing the
dependencies amongst the input and output events of the sub-
collaborations, we were able to get the time instant of the outputs
for each of the role involved in the complete collaboration.

5.8 Generalization to Performance
Distributions
In the performance analysis, throughout this paper, we have only
considered a fixed time for the time instants and for time delays.
However, reality begs to differ. Realistic scenarios also include
time delays and time instants which that may vary and could be
characterized by some kind of distribution – perhaps binomial,
exponential, etc. The distributions of the Minimum Execution
Time Delays can be measured by performing the Test Suite of
Section 4.3 several times and obtaining some statistics about the
possible values. The properties of the distribution can then be
realized by analyzing the resultant data, for each collaboration. If
the distribution of these time delays for each sub-collaboration are
given, we can then calculate the time delays for a composition of
these sub-collaborations. For the sequential execution of two sub-
collaborations, the folding operation on the respective distribution
can be used to obtain the distribution of the overall execution
delay, which is easily evaluated in the case of Normal
distributions. However, the determination of the distribution of
the maximum of two existing distributions is more complex. We
do not discuss these issues any further in this paper

[8] discusses Project Evaluation and Review Technique (PERT), a
methodology for planning and scheduling interrelated tasks in a
large system. PERT is a concept similar to our work here, except
for some differences. Its basic idea is to optimize time and
resource-constrained systems. The idea is based on building a
network model where the time delays are known, a concept very
similar to Dijktra’s shortest route algorithm. For PERT, the
problem is the determination of the path to the final goal that has
the maximum execution time and therefore determines the time
when the goal can be reached. In order to deal with the
distribution of execution times in the real world, PERT may
considers the minimum, maximum and most probable execution
time for each subactivity and, as a consequence, would be able to
determine the minimum, maximum and most probable overall
delay for reaching the goal.

6. FUTURE WORK
In the work presented in this paper, we assume that in the case of
a choice (e.g. among several alternatives, or for the repetition of a
loop) it is not known what the probability of each choice
alternative would be. However, in order to obtain a complete
performance model of an application, these probabilities must
also be considered. This is outside the scope of this paper. The
possibility of using distributions for characterizing the time delays

of collaborations would also be an interesting extension of this
work, as mentioned in Section 5.

We also note that not all of Bochmann’s [1] sequencing operators
were analyzed for performance. We still need to consider the
“Interruption” operator, which models a behaviour similar to a
“Interruption” activity in the UML Activity Diagram.

Implementation of the here proposed testing methodology and the
performance derivation in a tool environment and to extend the
algorithm for any possible scenarios which our work does not
support will also be the next logical step.

7. CONCLUSION
We use Bochmann’s [1] method of representation to model
collaborations and analyzing various scenarios. We proposed a
partial order representation to model these collaborations to help
us with the performance analysis of a distribution system. We
discuss the direct and indirect dependencies amongst
collaborations and adapt a testing methodology[4] to not only
check the direct dependencies between a set of output events and
input events, but also to measure the minimum time delay
between these events. Then we proposed a general formula for a
collaboration and proposed a set of formulas for various standard
sequencing operators for us to derive the performance of a global
collaboration given a set of sub-collaborations sequenced with
these sequencing operators.

We believe that this approach to the performance modeling of
distributed system designs is useful in many fields of application,
including distributed workflow management systems, service
composition for communication services, e-commerce
applications, or Web Services.

We plan to work on the tool support for the proposed testing
methodology and performance analysis. As well, we will also be
extending our set of formulas to support various operators not
considered in this paper as well as distributions for time delays.

Acknowledgements: We would like to thank Dr. Guy Jordan and
Tauseef Israr for many interesting discussions on the problems
and issues related to this paper.

8. REFERENCES
[1] Bochmann, G.V. Deriving component designs from global
requirements, in: Proceedings on International Workshop on
Model Based Architecting and Construction of Embedded
Systems (ACES), Toulouse, 2008, pp 55-69

[2] Bochmann, G.V. A General Transition Model of Protocols
and Communication Services, IEEE Transtions on
Communications COM-28, April 1980, pp 643-650

[3] Bochmann G.V. and Gotzhein, R. Deriving protocol
specifications from service specifications, Proc. ACM
SIGCOMM Symposium, 1986, pp 148-156.

[4] Bochmann, G.V., Haar, S., and Jourdan, G.V. Testing
Systems Specified as Partial Order Input/Output Automata,
Proceedings of the 20th IFIP TC 6/WG 6.1 International
Conference on Testing of Software and Communicating Systems:
8th International Workshop, Tokyo, 2008, pp 169-183

[5] Casselman, R. Use Case Maps for Object-oriented Systems,
Prentice Hall, New Jersey, 1995

[6] Castejón, H.N, Bræk, R., and Bochmann, G. v.,
“Realizability of Collaboration-based Service Specifications”.
Proc. Of the 14th Asia-Pacific Software Engineering Conference
(APSEC 2007), IEEE Computer Society, December 2007

[7] Castejón, H. N., Bræk, R., Bochmann, G.v., Realizability of
Collaboration-based Service Specification. in Asia-Pacific
Software Engineering Conference, Nov. 2007 pp73-80

[8] Chinneck, J., Practical Optimization: A Gentle Introduction,
online textbook, see
http://www.sce.carleton.ca/faculty/chinneck/po.html.

[9] Esparza, J. and Heljanko, K. Unfoldings - A Partial-Order
Approach to Model Checking, New York: Springer-Verlag, 2008

[10] Grabiec, B, Traonouez, L., Jard, C., Lime, D and Roux,
O.H. Diagnosis using unfoldings of parametric time petri nets. in
8th International Conference on Formal Modelling and Analysis
of Timed Systems (FORMATS 2010), September 2010, Vienna,
Austria. pp 137-151

[11] Kounev, S. Performance Modeling and Evaluation of
Distributed Component-Based Systems Using Queueing Petri
Nets, IEEE Transactions on Software Engineering, v.32 n.7, July
2006, p.486-502,

 [12] McMillan, K. Using Unfoldings to Avoid the State
Explosion Problem in the Verification of Asynchronous Circuits,
in Proceedings of the Fourth International Workshop on
Computer Aided Verification, 1992, p.164-177

[13] Merlin, P. and Faber, D.J. Recoverability of communication
protocols, IEEE Transaction Communication, vol. COM-24, no.
9, Sept. 1976.

[14] Naumovich, G., Clarke, L. and Cobleigh, J. Using partial
order techniques to improve performance of data flow analysis
based verification. In Proceedings of the ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, Toulouse, France, Sept. 1999.

[15] OMG, Unified Modeling Language (UML), Version 2.1.1,
February 2007

[16] Razouk, R.R. The Derivation of Performance Expressions
for Communication Protocols from Timed Petri Net models,
ACM SIGCOMM Computer Communication Review, v.14 n.2,
pp 210-217, June 1984

[17] Sifakis, J. "Use of Petri Nets for performance evaluation"; in
Measuring, modeling and evaluating computer systems, North-
Holland 1977, pp 75-93

[18] Wolper, P. and Godefroid, P. Partial-order Methods for
Temporal Verification. In Proc. 4th Int. Conference on
Concurrency Theory (CONCUR), volume 715 of Lecture Notes
in Computer Science, Springer, 1993. Pp 233–246

[19] W3C, Web Services Choreography Description Language
(WS-CDL), Version 1.0, December 2004

	1. INTRODUCTION
	2. MODELING DISTRIBUTED COLLABORATION SERVICES: AN EXAMPLES
	2.1 Strong and Weak Sequencing
	3. DESCRIBING COLLABORATIONS WITH PARTIAL ORDERS
	3.1 Review of Partial Orders
	3.2 Modeling with Partial orders
	3.2.1 Modeling Weak and Strong Sequencing with Partial orders
	3.2.2 Modeling Cab Dispatcher System with Partial orders

	4. PERFORMANCE CHARACTERISTICS OF PARTIAL ORDER SPECIFICATIONS
	4.1 Direct & Indirect Dependency Amongst Execution Threads in a Single Activity
	4.2 Adding Performance Parameters to Partial Orders
	4.3 Deriving Performance Parameters using Test Suite

	5. DERIVING GENERAL FORMULAS FOR STANDARD SEQUENCING OPERATORS
	5.1 Strong Sequence
	5.2 Weak Sequence
	5.3 Strong While Loop
	5.4 Weak While Loop
	5.5 Concurrency
	5.6 Alternative
	5.7 Example
	5.8 Generalization to Performance Distributions

	6. FUTURE WORK
	7. CONCLUSION
	8. REFERENCES

