
Distributed B-tree with Weak Consistency

Shah Asaduzzaman and Gregor v. Bochmann

University of Ottawa, Ottawa, ON, K1N 6N5, Canada,
{asad, bochmann}@site.uottawa.ca

Abstract. B-tree is a widely used data-structure indexing data for ef-
ficient retrieval. Highly parallel operations are desired by modern-day
cloud computing platforms on high-volume and highly dynamic sets of
data. This motivates decentralized indexing structures for data-organization
that avoid any performance bottleneck. In a decentralized B-tree, parts
of the structure are distributed among different processors and some
parts are replicated. Maintaining strong consistency among the repli-
cated states of distributed data-structures has been found problematic
in large-scale cloud platforms. We show in this paper that data retrieval
can be performed correctly with much weaker consistency criteria among
the replicated parts of the distributed B-tree. To accommodate the dy-
namic changes concerning the data insertion/deletion and the distribu-
tion of retrieval load, the state of the B-tree is updated by splitting and
merging tree-nodes. We provide update algorithms that work under the
weak consistency criteria and maintain them. The update operations are
initiated independently by individual processors and modify the states
of only a few processors in their immediate neighbourhood.

1 Introduction

Massive-scale computing platforms such as computing clouds frequently operate
on huge volumes of data. Highly parallel operations are desired by such platforms
due to the large number of processing units they have. Consequently, appropri-
ate organization of the data is required such that the high-volume and highly
dynamic data set is efficiently accessed and updated without any performance
bottleneck.

B-tree is a widely used and well-understood data-structure to index data for
efficient retrieval. Highly parallel operations are desired by modern-day cloud
computing platforms on high-volume and highly dynamic sets of data. This
motivates decentralized indexing structures for data-organization.

In fact, the biggest concern for the cloud computing model, identified in
the discussion on the cloud computing research agenda [5] and afterwards, is
the enormous overhead and the resulting infeasibility of the strong consistency
model assumed in many well-known operations in distributed systems. Thus,
it is desired that distributed and replicated-state data structures be designed
in a way that they can tolerate some degree of inconsistency and still function
appropriately. This motivates us to design a distributed implementation of the



B-tree data structure that works with weak consistency among its replicated
components but provides strong consistency in terms of search semantics.

In this paper we identify the consistency conditions that are sufficient for
correct and efficient search operation on the distributed B-tree indexing data
structure (Section 3). We then define algorithms for updating the data structure
keeping these consistency conditions maintained (Section 4). The data structure
is generalized for key-spaces of arbitrary dimensions. The system model, assump-
tions and the particular way of distributing the B-tree structure are introduced
in Section 2.

2 System Model and Assumptions

2.1 B-tree structure

We consider the B+-tree variant of the B-tree, which is possibly the most widely
used variant of the data structure. In a B+-tree, all nodes have the same struc-
ture. Each of the leaf nodes maintains data-keys pertaining to a certain range
in the key-space. Each internal node effectively maintains a list of entries, each
containing a key-range and a pointer to some other node corresponding to this
range. B-trees were designed for indexing one-dimensional data-spaces. So, the
ranges were effectively expressed by integer data-keys, or points in the linear
key-space.

Among the design goals of B-trees were (a) efficient use of disk blocks, and
(b) keeping the search tree balanced while growing or shrinking. For efficient
disk access, the size of the data stored in each node is maintained to be equal
or close to integral multiples of the size of a disk block. A global parameter d
defines the maximum number of entries to be held by a node. The root node
of the tree describes the whole key-space or key-universe and each of the other
nodes describes a portion or sub-range of the data-universe. Describing a range
means dividing the range into sub-ranges and maintaining pointers to the child
nodes, each of which describes one sub-range. If n is the number of child pointers
or sub-ranges described by a node, n− 1 data-keys are used to divide the range
into n sub-ranges. The relation dd/2e ≤ n ≤ d is maintained for all nodes.

We use a generalization of B-tree for key-spaces of arbitrary dimensions,
instead of a single dimension. Thus, we avoid any particular way of expressing
the division of ranges, such as by points for one dimension as in a B-tree, or
by lines or rectangles for two-dimensions as in Rtree [8] or Quad-tree [7]. We
assume that each tree-node maintains the definitions of N sub-ranges of the
whole range it describes, along with one pointer to another tree-node for each
of the sub-ranges. Figure 1(a) shows an example of such B-tree. In the rest of
the paper, the term B-tree will be used to denote a centralized implementation
of such a generalized tree-based indexing structure.

2.2 Distributed Implementations of B-tree

When a huge number of data records are indexed, for the sake of distributing
the storage and access load, instead of storing the whole B-tree in one computer,



the data-structure is realized using a large number of computers or processing
nodes. For disambiguation between tree-nodes and processing nodes, we denote
the latter as processor, while node refers to tree-nodes.

Node-wise distribution The intuitive method for distributing the tree data
structure is to place each tree-node on one processor. The scalable distributed
B-tree proposed by Aguilera et al. [2] and the tablet hierarchy in the internal rep-
resentation of Google’s Bigtable [6] structure use such representations. Although
this allows the update algorithms on the structure for data insertion/deletion
to be similar to the centralized version, the processors holding the root or the
higher level tree-nodes get overburdened with search traffic. A typical solution
to this problem, used in both [2] and [6], is caching or replicating the higher level
nodes of the tree in the user or client computers, such that traversing higher level
nodes can be avoided. However, this involves additional overhead for maintain-
ing consistency among the replicas, and may not be suitable for highly dynamic
data sets.

Decentralized distribution An alternative distribution of the tree structure is
possible, following the decentralized design philosophy, assigning equal workload
and the same role to each processor node. So, instead of assigning the responsi-
bility of one tree-node to one processor, one branch of the tree, i.e. the path from
root to a leaf node, is assigned to one processor. Thus, the higher level tree-nodes
are, in a sense, replicated in proportion to their usage, and hence, the workload
due to traversal operations is equally distributed among the processors.

To represent a branch of the tree, each processor i maintains a routing table
data structure RTi with multiple levels, each level representing one node of the
branch. Level l of RTi, denoted as RT l

i , corresponds to a level-l node of the B-
tree. RT l

i is a set of entries or tuples 〈r, j〉, together describing a range LRl
i in the

key-space. Each r is a sub-range of LRl
i and the corresponding j refers to some

processor j (may be i itself) that holds the level l−1 node of the B-tree describing
r, that is, RT l−1

j represents the child node and LRl−1
j = r. Representation of

one branch to the leaf-node f for the example B-tree in Figure 1(a) is shown in
Figure 1(b).

Because non-leaf nodes are replicated in multiple processors, one for each
branch, there are multiple options for j if l − 1 is a non-leaf level, and any one
of them may be chosen for the entry 〈r, j〉. Also, the range r for different entries
in RT l

i are non-overlapping and the union of these ranges constitutes LRl
i (this

is the same as in a normal B-tree). The lowest level, RT 0
i corresponds to a leaf

node of the B-tree, and stores the set of keys in the range LR0
i delegated to

processor i, and the pointers to corresponding data items. Note that the size of
the tree state maintained at each processor is O(logN), where N is the total
number of keys in the whole structure.

A similar distributed implementation of a tree structure has been proposed
in [10], called DPTree. Although a DPTree builds the tree-structure on top
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Fig. 1. A B-tree and its consistent decentralized implementation. The leaf-level tree-
nodes are referred by small letters (a, b, c, ...) and the processors holding the corre-
sponding leaf-nodes are referred by capital letters (A,B,C, ...)



of a distributed hash table used to name and discover the tree nodes, such
decentralized structure can be maintained without such overlay, as shown in [3]

2.3 Assumptions

We assume an asynchronous message-passing distributed system [4], where each
processor contains its own local memory (or persistent storage), the processors
communicate among them through messages, all processors run the same pro-
gram and there is no master clock to synchronize the events in the processors.

We follow a peer-to-peer model, where the search operation can be initi-
ated from any processor. Thus, the client application may consider any of the
processors in the distributed B-tree as a portal to the search service.

For fault-tolerance, a processor in our model may be realized by a small clus-
ter of computers, replicating the state of one processor. Details of implementing
a fault-tolerant processor from faulty processing nodes may be found at [11]. We
assume that a message sent to another processor is eventually received by that
processor in finite amount of time, although messages may be delivered out of
order. The message channels may be made reliable through use of an end-to-end
transport protocol [1]. We assume a complete network model, where any pro-
cessor is able to send messages to any other processor as long as the address of
that processor is known.

3 Search and Updates in Decentralized B-tree

3.1 Search Algorithm

To search a target key dt (or a range rt) in the decentralized B-tree, the primary
goal is to find the processor i (or a set of processors P ) such that dt ∈ LR0

i

(or
⋃

i∈P LR
0
i ⊇ rt). The search can be initiated from any processor. Navigation

of the request from the initiator to the target processor is performed by Algo-
rithm 1. The initiator processor calls the Algorithm 1 with level l parameter
equal to the topmost level of its own routing table.

For range search, instead of finding one 〈r, j〉 ∈ RT l
i , all 〈r, j〉|r ∩ rt 6= φ are

looked up and the navigation proceeds next level to all the j’s in parallel. The
time complexity of both point and range search algorithms are clearly O(logN),
although the message complexity is higher for the range search ( O(N) in the
worst case, if all the processors are included in rt).

3.2 Updates in a Consistent Decentralize B-tree

The data structure needs to be updated as keys are inserted or deleted. The B-
tree data structure grows with key-insertion by splitting a node when the number
of entries overflows, and shrinks with key-deletion by merging two sibling nodes.
In the decentralized B-tree, leaf level split and merger are simple. However,
because non-leaf nodes are replicated in many processors, split/merge operations



Algorithm 1 Search(i, dt, l)

1: Initiator: processor i
2: Condition: a query received to resolve dt at level l
3: Action:
4: if l = 0 then
5: Result is processor i
6: else
7: Find 〈r, j〉 ∈ RT l

i s.t. dt ∈ r
8: Forward the query to j as Search(j, dt, l − 1)
9: end if

in non-leaf levels require a large number of nodes to be updated atomically, which
may require the updates to be coordinated by a single master processor. In the
worst case, when the state of the root node is changed, the update needs to be
atomically propagated to all the processors.

Figure 2(a) illustrates the split of the tree node f after insertion of data
element 63 by maintaining a single consistent view of the tree at each processors.
Splitting at the leaf level is relatively simple. Part of the data-keys at processor
F is now moved to a new processor F2. Because the level-1 tree node is modified,
level-1 at processors E and G need to be updated. Also, whichever processor held
F responsible for its level-0 range [60, 65) need to be updated about the change.

When the level-1 tree-node, containing the range [50, 70) needs to be split
(Figure 2(b)), it involves splitting the level-1 of processors E, F , F2 and G.
This causes the level-2 tree-node to have one new entry, which requires all the
processors E through K to add an entry at their level-2. Finally, whichever
processors held any of E, F , F2 or G responsible for its level-1 range now need
to update their pointers. Thus even a level-1 split for consistent B-tree with
fanout of only 2− 4 involves atomic update of the states at 10− 12 processors.

The huge overhead of large-scale atomic updates in the consistent decentral-
ized B-tree structure motivates us to look for weaker consistency conditions that
are easy to maintain through much smaller-scale updates, and yet sufficient for
correct search operations.

3.3 How Much Consistency is Needed?

Here we define consistency conditions among the components of the decentral-
ized B-tree structure maintained by different processors that are sufficient for
ensuring the correctness of the search operation through Algorithm 1, but weaker
than the constraint that all component-states are consistent with a single global
B-tree.

First, any processor should be able to initiate the search, so every processor
should maintain a description of the key-space universe (U) at the topmost level
of its routing table. We call this condition invariant of universal coverage –

– AU : ∀i : LRm
i = U , where m is the highest level in RTi
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Figure 1



For correct navigation, if an entry 〈r, j〉 is in RT l
i , then its target j must

describe at least the range r at level l − 1. Formally, this defines the invariant
of navigability –

– AN : ∀i∀l : 〈r, j〉 ∈ RT l
i ⇒ r ⊆ LRl−1

j

Another condition is necessary depending on the semantics of the search
operation. If we allow different processors to have overlapping local ranges at
the leaf level, then for a search query dt, dt ∈ LR0

i ∩ LR0
j , i 6= j, Algorithm 1

ensures delivery of the query to at least one of i and j. This result is correct,
if all keys in LR0

i ∩ LR0
j are available in both RT 0

i and RT 0
j . If overlapping

coverage of ranges by different processor does not imply such exact replication
of all keys in the common range, then the usual semantics of search requires
the query to reach all such processors. To keep things simple, we impose the
following invariant of disjoint local range –

– ALR: ∀i∀j : i 6= j ⇒ LR0
i ∩ LR0

j = φ

Theorem 31 AU , AN and ALR are sufficient conditions for correctness of ex-
act and range search operations in the decentralized B-tree using Algorithm 1.

Proof. Line 8 of Algorithm 1 ensures that the algorithm proceeds at least one
level towards level 0 at each hop. Thus the algorithm terminates in a number of
steps not larger than the maximum number of levels in the routing table of any
processor.

At each hop in the navigation, an entry 〈r, j〉 ∈ RT l
i , dt ∈ r must always

be found at Line 7. AU ensures that such an entry is always found at the top-
most level of the initiating processor. AN ensures that, if such an 〈r1, p〉 is found
at level l of current processor i, an entry 〈r2, q〉, dt ∈ r2 can be found at level
l − 1 of the next hop processor p. So, by induction, we observe that the query
is finally forwarded to a processor p s.t. LR0

p 3 dt. ALR ensures that only one
such processor exists. The proof can be easily extended to show the correctness
of the range-search algorithm.

The decentralized B-tree structure that maintains the conditions AU , AN

and AR, in general, is a weakly-consistent structure, because several conditions
valid in the consistent decentralized B-tree structure have been relaxed. For
example, the equality relation in the condition ∀i∀l : 〈r, j〉 ∈ RT l

i ⇒ r = LRl−1
j

valid for the consistent structure is relaxed to the inclusion (⊇) relation. Also, in
the consistent structure, each level of the routing table contains a self-pointer,
i.e. the condition ∀i∀l > 0 : ∃〈r, i〉 ∈ RT l

i is valid, but this is not maintained in
the weakly-consistent structure. In addition, the number of levels of the routing
table may be different for different processors. The condition that each node in
the tree must maintain a number of entries n such that dd/2e ≤ n ≤ d, is also
relaxed. The lower and upper limits are now rather soft-limits. As a result, the
cascaded split or merge operations are treated as separate update operations.

Figure 3 shows how a weakly-consistent B-tree structure may grow through
insertion of data-keys. Initially, through the first three steps, the view of the tree
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remains consistent for all three processors A, B and C. From step-4 onwards, dif-
ferent processors may have different views of the tree. It may be noted that with
such weak-consistent updates, the view of the data structure at some processors
may no longer remain a single connected tree. Rather, the view may be of sev-
eral disconnected segments of the tree. Nevertheless, each processor maintains
sufficient information to route any search query originated at any processor.

The update operations are initiated independently and asynchronously by
individual processors. Compared to the updates in a consistent B-tree shown
in Figure 2, which, even for a level-1 split, require updating the states of a
large number of processors atomically, updates here are much less invasive. For
example, starting from the same states as in Figure 2, weak-consistent updates
at level-1 could be initiated independently by the processors E,F ,F2 and G, and
each of them would involve the states of 3 − 4 processors known to them by
routing table entries. The algorithms presented in the next section will explain
these asynchronous updates.

Although the weak consistency leads different processors to maintain different
views of the tree, the search operation remains correct and can be initiated from
any processor. The search always progresses one level at each hop, and thus,
terminates after a number of hops equal to the maximum height of the tree (i.e.
the maximum level in the routing table) in any of the views.

4 Updates with Weak Consistency

In this section we describe the atomic update operations needed to adapt the
decentralized B-tree structure when data keys are inserted or deleted, or when
some processor is overloaded. The basic insertion and deletion operations works
similarly as in traditional B-tree, i.e. first the target key (or its position) is
searched, and then the deletion or insertion is performed. Insertion of keys may
cause overflow in a leaf level node, which then splits, and the split may be
cascaded to higher level nodes. Similarly deletion of keys cause underflow and
triggers merger of nodes. Because lower and upper limits in the number of entries
are now soft-limits, the cascading splits (or mergers) are treated as separate
atomic operations. Here we define the atomic split and merge update operations
for leaf level and non-leaf level separately. The update algorithms assume that
the three consistency conditions AU , AN and ALR are satisfied when the update
is started, and assure that the conditions will be satisfied again when the update
completes.

The update algorithms are triggered independently by any processor. One
principle followed in the design of the update algorithms is to modify the states
of a minimal number of processors. Specifically, the modification is limited to the
neighbour processors only, i.e. the processors known to the local routing table
of the initiating processor. To facilitate the updates, an additional table called
backward pointer table is maintained by each processor (the table of processor
i is denoted as BKi). For any processor i, BKi has the same number of levels
as RTi. j ∈ BKl

i if and only if 〈r, i〉 ∈ RT l+1
j .



Each update operation may need to modify the states (routing tables) of a
few neighbouring processors. To ensure correctness in the presence of concurrent
updates, some concurrency control mechanism must ensure atomicity of each
update. To allow a higher degree of parallelism, a version-number-based opti-
mistic transaction protocols may be used [9]. In this method, a counter or version
number is maintained for the state of each processor. The version number is in-
cremented whenever the state is successfully modified. The initiating processor
that executes the update algorithm reads the necessary states along with their
version numbers. After computing the modified state locally, it then attempts
to commit the new states to appropriate processors. The update transaction is
aborted if any of the states in the write-set has a different version number than
the one that was read initially. Aborted transactions are retried at a later time.
While describing the update algorithms, we clearly mention which processor ini-
tiates it (initiator), and which state in which processors are read (Readset) and
updated (Writeset). Version control may be applied at different granularities on
the states. Each row of RT and BK tables at each processor may be separately
versioned for maximum parallelism.

4.1 Split Algorithms

Algorithm 2 describes the procedure to split the local range LR0
i of processor

i into 2 disjoint ranges LR1 and LR2, and offloading LR2 to a newly recruited
processor j. Because i looses part of LR0

i , ∀p ∈ BK0
i , RT 1

p need to add entries
pointing to the new processor j instead of i for the lost part of the range. BK0

i

may include i if RT 1
i has a self-entry (Lines 10-17). In addition to the leaf level,

the topmost level of the new processor j’s routing table, RTm
j is initialized by a

replica of RTm
i (Line 18). Mid-levels of RTj remains empty. For the nodes newly

pointed to by j at level m, their backward pointers are updated (Line 19).

Algorithm 3 is executed when processor i wants to offload some entries from
its routing table RT l

i at level l > 0. Unlike the case of leaf-level split, no new
processor is recruited here. So, the major challenge here is to find an existing
processor j, whose routing table at the same level, RT l

j , either already contains

some entries covering some common range with LRl
i, or, have some space to

take few entries from RT l
i . In a consistent distributed B-tree, ∀j|〈r, j〉 ∈ RT l

i ,
RT l

j = RT l
i . Thus, neighbours in RT l

i are natural target for offloading part of

RT l
i . In the weak-consistent structure, it is not certain that such a j will be

found in RT l
j , so, other neighbours are searched including all backward pointers.

Also, in the leaf-level split, the mid-levels of the new processor’s routing table
are kept empty. Non-leaf level splits are initiated for the lowest overloaded level.
So, there is high possibility of finding a j in RT l

i with empty space in RT l
j .

Once a suitable j is found, the update procedure is straightforward. The en-
tries are transferred from RT l

i to RT l
j and BKl−1

p are updated for the processors
corresponding to the transferred entries (Lines 8-13). Then for the processors in
BKl

i , i.e. those who held i responsible for some part of LRl
i, now need to update

for the range shifted to j, by adding a new entry in the level l+1 of their routing



Algorithm 2 SplitLeafNode(i)

1: Initiator: processor i
2: Condition: RT 0

i is overloaded, in terms of storage or access load
3: Readset = {LR0

i , RTi, BK
0
i , ∀p∈BK0

i
RT 1

p }
4: Writeset = {RT 0

i , LR0
i , BK0

i , RT 0
j ,LRj , BK0

j , RTm
j , ∀p∈BK0

i
RT 1

p ,

∀p∈RTm
i
BKm−1

p }
5: Action:
6: Partition RT 0

i into 2 disjoint sets of keys D1, D2 and LR0
i into 2 disjoint ranges

LR1, LR2, accordingly
7: Find 1 new processor j
8: RT 0

i ← D1, LR0
i ← LR1

9: RT 0
j ← D2, LR0

j ← LR2

10: for ∀p ∈ BK0
i do

11: there must exist 〈x, i〉∈RT 1
p

12: if x\LR1 6=φ then
13: RT 1

p ← RT 1
p \〈x, i〉 ∪ {〈x∩LR1, i〉, 〈x∩LR2, j〉}

14: BK0
j ← BK0

j∪{p}
15: end if
16: if x∩LR1 = φ then BK0

i←BK0
i \{p} endif

17: end for
18: RTm

j ← RTm
i , where m is the topmost level of RTi

19: ∀p|〈r, p〉 ∈ RTm
i : BKm−1

p ← BKm−1
p ∪ {j}

tables. Backward pointers of i and j are also updated accordingly (Lines 12-12).
Finally, if the topmost level of RT l

i is split, one additional level is added to hold
the pointer to the transferred range, such that the whole universe is described.

4.2 Merge Algorithms

When there are too few data items in a processor i, it decides to release itself by
merging its items and routing table with those of another processor. Algorithm 4
describes the update procedure for such a merger. A suitable partner j for the
merger is found in RT 1

p , where p points to i for some range x ⊆ LR0
i . If RT 1

p is
pointing to j for some other range y, then after the merger, the two entries 〈x, i〉
and 〈y, j〉 can be merged into 〈x∪y, j〉. Because processor i is being released, all
levels of its routing table are merged with the corresponding level of j’s routing
table (Line 8). Accordingly, ∀l∀p∈BKl

i
: RT l+1

p are updated (Line 9).
Similar to level-0 merger, if any other level l of the routing table of a processor

i is found underloaded, the entries of that level can be merged with the same-
level entries in another processor. The merging partner, j is found in similar way
as before, from ∀p∈BKl

i
RT l+1

p , so that after the merger one entry is eliminated

there (Line 10). If RT l+1
p is the topmost level, and contains only one entry after

the merger, that level may potentially be eliminated (Line 13).

Theorem 41 The update algorithms, Algorithms 2, 3, 4 and 5 maintain the
invariants AU , AN and ALR.



Algorithm 3 SplitNonLeafNode(i, l)

1: Initiator: processor i
2: Condition: |RT l

i |, has too many entries or causing too much routing load
3: Readset = {RT l

i , BKl
i , ∀p|〈r,p〉∈RTi∨p∈BKi

: RT l
p (to find j), ∀p∈BKl

i
RT l+1

p }
4: Writeset = {RT l

i , BKl
i , RT

l
j , BKl

j , ∀p∈BKl
i
RT l+1

p }
5: Action:
6: Find j|〈r, j〉∈RTi ∨ j∈BKi s.t. RT l

j have some space for at least 2 entries or LRl
j

has some overlap with LRl
i. Multiple such j (say, jk) may be chosen.

7: Partition LRl
i into two disjoint subsets Es and Ex, and partition LRl

i into disjoint
ranges Rs and Rx accordingly. Rx may be partitioned into multiple sub-ranges Rxk

according to available jk.
8: for ∀k do
9: RT l

jk
← RT l

jk
∪ Exk

10: RT l
i ← RT l

i \Exk

11: ∀p|〈r, p〉 ∈ Exk : BKl−1
p ← BKl−1

p \{i} ∪ {jk}
12: end for
13: for ∀p∈BKl

i do
14: there must exist 〈x, i〉 ∈ RT l+1

p

15: if x\Rs 6=φ then
16: RT l+1

p ←
RT l+1

p \〈x, i〉 ∪ {〈x∩Rs, i〉}
⋃
∀k{〈Rxk , jk〉}

17: BKl
j←BKl

j∪{p}
18: end if
19: if x∩Rs = φ then BKl

i←BKl
i\{p} endif

20: end for
21: if RT l

i is the topmost level in RTi then
22: RT l+1

i ← {〈Rs, i〉}
⋃
∀k{〈Rxk , jk〉}, BK

l
i←BKl

i ∪ {i}
23: end if

Algorithm 4 MergeLeafNode(i)

1: Initiator: processor i
2: Condition: RT 0

i has too few keys
3: Readset = {RTi, ∀p∈BK0

i
RT 1

p }
4: Writeset = {RTj , ∀l∀p∈BKl

i
RT l+1

p }
5: Action:
6: Select j|j 6=i∧〈r, j〉∈

⋃
∀p∈BK0

i
RT 1

p

7: RT 0
j ← RT 0

j ∪RT 0
i , LR0

j ← LR0
j ∪ LR0

i

8: ∀lRT l
j ← RT l

j ∪RT l
i

9: ∀l∀p∈BKl
i : replace i by j in RT l+1

p and merge ranges as necessary
10: Release processor i



Algorithm 5 MergeNonLeafNode(i, l)

1: Initiator: processor i
2: Condition: RT l

i has too few data items
3: Readset = {RT l

i , ∀p∈BKl
i
RT l+1

p }
4: Writeset = {RT l

i , RT l
j , ∀p∈BKl

i
RT l+1

p }
5: Action:
6: Select j|j 6=i∧〈r, j〉∈

⋃
∀p∈BKl

i
RT l+1

p

7: RT l
j←RT l

j∪RT l
i , merge ranges in RT l

j as necessary
8: if l is not the topmost level of RTi then
9: RT l

i←φ
10: ∀p ∈ BKl

i : replace i by j in RT l+1
p , and merge entries as necessary

11: end if
12: if for any p ∈ BKl

i , RT
l+1
p is the top-most level of RTp and contains only one

entry pointing to p then
13: Delete RT l+1

p and remove p from BKl
p

14: end if
15: BKl

i←φ

Proof. AU : Algorithm 2 maintains AU in the newly joined processor j by copying
the top level of the routing table of i (Line 18). In Algorithm 3, the range LRl+1

p

in ∀p ∈ BKl
i remains unchanged after the modification in Line 13. If RT l

i is
the topmost level in RTi then the additional update in Line 22 ensures AU for
processor i. In Algorithm 4, processor i is released and processor j takes all the
entries of RTi for all levels, so AU is maintained for j. In Algorithm 5, RT l

i is
not emptied if l is the topmost level (Line 9). The removal of topmost level of
RTp with only one entry (Line 13) does not violate AU either.

AN : AN can be violated only when LRl
i for some processor i and some

level l is reduced. In Algorithm 2, LR0
i is reduced, and so, RT 1

p is updated for
∀p ∈ BK0

i to maintain AN (Line 13). A similar update is performed in Line 16
of Algorithm 3, for reduction in LRl

i, in Line 9 of Algorithm 4 for removal of
∀lRT l

i , and in Line 10 of Algorithm 5 for removal of RT l
i .

ALR: Violation of ALR is possible only when RT 0
i is created or extended

for any i. In Algorithm 2, LR0 is modified for processors i and j only, and no
overlap is formed (Line 9). In Algorithm 4, LR0

i and LR0
j are merged into LR0

j ,
and then processor i is removed. So no overlap is created. Algorithms 3 and 5
do not modify LR0 of any processor.

In an elementary state of the decentralized B-tree structure, when there is
only one processor having only one level in its routing table, all the invariants
AU , AN and ALR are valid. So, by induction over successive updates, it can be
proved using Theorem 41 that all three invariants are always maintained for the
structure. Also, all four update algorithms work assuming the three invariants
only. Validity of the backward pointers are also maintained in these algorithms
whenever a forward pointer is updated.



5 Conclusion

We have demonstrated that it is possible to distribute a B-tree for data retrieval
over a large number of processors with partial replication of the interior nodes
of the tree over the different processors without full consistency. Enforcing only
weak consistency conditions necessary for the correct operation of the retrieval
function, it is possible to define tree update operations that can be initiated by
one of the processors and would involve only the local state of the tree and the
state in a few neighbour nodes, without requiring simultaneous updates in all
processors that have a replica of the state being updated.

We have proved that the new update algorithms maintain our weak consis-
tency conditions and that these conditions guarantee correct operation of the
data retrieval algorithm that requires L steps where L is the depth of the B-tree.

We plan to study in the future whether the depth of the tree obtained over a
long period of tree update operations can be maintained at the optimal level of
L = log(N) where N is the number of processors in the system. We also plan to
determine the average number of processors involved in a single split or merge
update operation, and perform a more thorough comparison between the two
decentralized B-tree organizations with full and weak consistency, to determine
the performance of the update operations in the two settings.
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