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Abstract. We consider the following problem: For a system consisting of two 
components, the behavior of one component is known as well as the desired 
global behavior. What should be the behavior of the second component such 
that the behavior of the composition of the two conforms to the desired 
behavior ? - This problem has been called "submodule construction" or 
"equation solving"; and in the context of supervisory control, it is the problem 
of designing a suitable controller (second component) which controls a given 
system to be controlled (first component). Solutions to this problem have been 
described in the context of various specification formalisms and various 
conformance relations.  This paper presents a new formulation of this problem 
and its solution in first-order logic. It is also shown how the solutions for 
submodule construction in various specification formalisms can be derived 
from the solution in logic. The simple proof of correctness for the logic solution 
is then used to justify the particular forms of solutions in the different 
specification formalisms, such as (a) synchronous rendezvous at several 
interfaces, and (b) interleaved rendezvous (labeled transition systems). 

1. Introduction 

In automata theory, the notion of constructing a product machine S from two given 
finite state machines MA and MB , written M = MA x MB, is a well-known concept (see 
Figure 1(a)). This notion is very important in practice since complex systems are 
usually constructed as a composition of smaller subsystems, and the behavior of the 
overall system is in many cases equal to the composition obtained by calculating the 
product of the behaviors of the two subsystems. Here we consider the inverse 
operation, called “equation solving” or “submodule construction”: Given the 
composed system M and one of the components MA, what should be the behavior of 
the second component MB such that the composition of these two components MA and 
MB will exhibit a behavior equal to M. That is, we are looking for the value of X 
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which is the solution to the equation MA x  X  = M (see Figure 1(b)). This problem is 
an analogy of integer division, which provides the solution to the equation N1 * X = 
N for integer values N1 and N. In integer arithmetic, there is in general no exact 
solution to this equation; therefore integer division provides the largest integer which 
multiplied with N1 is smaller than N. Similarly, in the case of equation solving for 
machine composition, we are looking for the most general machine X which 
composed with MA satisfies some conformance relation in respect to M. In the 
simplest case, this conformance relation is trace inclusion. 

              
Fig. 1. (a) two communicating components; (b) submodule construction problem 

A first paper of 1980 [1] (see also [2]) gives a solution to this problem for the 
case where the machine behavior is described in terms of labeled transition systems 
(LTS) which communicate with one another by interleaved rendezvous interactions  
(see also [3] for a more formal treatment).  This work was later extended to the cases 
where the behavior of the machines is described in CSP [4] (with behavioral 
equivalence as conformance relation) [5], by finite state machines (FSM) 
communicating through message queues [6], by input/output automata (IOA) [7, 8, 9] 
([7] considers bisimulation as conformance relation), and by synchronous finite state 
machines [10, 11]. The case of extended state machine models including state 
variables and assertions about input and output parameters has also been studied [12]. 
The problem has also been formulated for databases using relational algebra [13].  

One application of this submodule construction method was considered in the 
context of the design of communication protocols, where the components MA and MB 
may represent two protocol entities that communicate with one another [2]. Later it 
was recognized that this method could also be useful for the design of protocol 
converters in communication gateways [15, 16], and for the selection of test cases for 
testing a module in a context [17].  

Independently, the same problem was identified in control theory for discrete 
event systems [18] as the problem of finding a controller for a given system to be 
controlled. In this context, the specification MA of the system to be controlled is 
given, as well as the specification of certain properties that the overall system, 
including the controller, should satisfy. If these properties are described by M, and the 
behavior of the controller is X, then we are looking for the behavior of X such that the 
equation MA x  X  = M is satisfied. Solutions to this problem are described in [19] 
using a specification formalism of labeled transition systems where a distinction of 
input and output is made (interactions of the system to be controlled may be 
controllable (which corresponds to output generated by the controller) or 
uncontrollable (which corresponds to input to the controller). This specification 
formalism seems to be equivalent to input/output automata (IOA) [20]. 

In some private discussions, Nina Yevtushenko pointed out that the formulas that 
describe the solutions of the equations for synchronous and interleaving automata, as 
described in [11] and [1], respectively, have a quite similar structure. Later, when 
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listening to a talk on stochastic relational databases by Cory Butz, I noticed that the 
same kind of equation solving problem can be formulated in the context of relational 
databases, and that the solution has again a quite similar structure. I have argued [13, 
9] that the problem of equation solving in relational databases is a generalization of 
the problem for synchronous and interleaving automata, and that also a solution for 
IOA can be derived from this more general problem. During the discussion after the 
presentation of my paper [9] at the FORTE conference, the question was raised 
whether this equation solving problem could also be formulated within the context of 
first-order logic.  

The purpose of this paper is to show that, in fact, the equation solving (or 
submodule construction) problem can be formulated in logic. It turns out that (a) a 
solution with a structure similar to the solutions mentioned above exists, and (b) a 
proof of the correctness of this solution is quite simple, apparently much simpler than 
the existing proofs of correctness for the solutions in the contexts mentioned above. 
We show in this paper how the solutions for submodule construction in different 
contexts can be derived from the general solution in the logic context. The proof of 
correctness from the logic context can therefore be used to justify the particular forms 
of solutions in the contexts of different specification formalisms. We consider in this 
paper the context of communicating system components using (a) synchronous 
rendezvous at several interfaces, or (b) interleaved rendezvous (that is, labeled 
transition systems). Other contexts are considered in [32], such as  synchronous (I/O) 
automata with complete or partial behavior specifications, interleaving IOA with 
complete or partial behavior specifications, and finite state machines with queued 
communication, as well as relational algebra for databases. These contexts include 
much of the previous work mentioned above and also some not so common modeling 
approaches. 

The paper is structured as follows: The next section presents the problem of 
equation solving in the general context of first-order logic. The main concepts and 
equations are established which are then referenced in the subsequent sections. In 
Section 3, the submodule construction problem is introduced in the context of 
modular system design where the overall system is composed out of several 
components and the behavior of one of the components is to be found. A modeling 
framework for synchronous communication between all the components is 
introduced. Section 4 shows how this modeling framework can be used to model 
interleaving semantics, as used by labeled transition systems (LTS). Section 5 
presents the conclusions.   

2. Equation solving in the logic context 

2.1. The logic context 

We use in this section first-order logic with typed variables. We consider a universe 
with three variables XA, XB, and XC that may take values from three domains DA , DB  
and DC , respectively. These domains may be infinite. Therefore, the set of possible 
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value assignments to the variables is U = DA × DB × DC . We write xA, xB, and xC for 
possible values of the variables XA, XB, and XC , respectively. 

We are interested in relationships between values of different variables. For 
instance, we may consider a relation R ⊂ DA × DB  which is a subset of pairs < xA, xB 
> of values of the variables XA and XB . We also use predicates to characterize sets. 
For instance, the relation R may be characterized by a predicate C(xA, xB) which is 
true exactly for those pairs < xA, xB > that are in R. 

2.2.  The equation solving problem 

In the following, we are interested in three relations RA ⊂ DB × DC, RB ⊂ DA × DC and 
RC ⊂ DA × DB . We write CA(xB, xC) , CB(xA, xC) , and CC(xA, xB) for their respective 
characterizing predicates.  We consider the following proposition which relates these 
three relations: 

∀ < xA, xB, xC >∈U :  <xB, xC> ∈ RA  ∧  <xA, xC> ∈ RB  ⇒  <xA, xB> ∈ RC   (1Rel)     

This proposition may be equivalently rewritten in terms of the predicates as follows:   

∀ < xA, xB, xC > ∈ U :   CA(xB, xC) ∧ CB(xA, xC)  ⇒  CC(xA, xB)    (1Pred) 

The problem of equation solving is the following: We assume that RA and RC are 
given. What are the properties of relation RB that ensure that proposition (1) is 
satisfied? – We would like to find a maximal solution RB

max to this problem, that is, 
RB

max together with RA and RC would satisfy (1), but any larger RB’ ⊃ RB
max would 

not satisfy this proposition.  

2.3. The maximal solution 

Starting from (1Pred), it is easy to see that the following predicate characterizes the 
maximal solution: 

CB
max(xA, xC)  =  ∀ xB ∈ DB :   CA(xB, xC)  ⇒  CC(xA, xB)                          (2)           

The right side of this definition can be equivalently transformed in several steps as 
follows: 
            ∀ xB ∈ DB :    ¬CA(xB, xC)  ∨  CC(xA, xB)    
            ∀ xB ∈ DB :    ¬ ( CA(xB, xC)  ∧  ¬CC(xA, xB)  )  
            ¬∃ xB ∈ DB :  CA(xB, xC)  ∧  ¬CC(xA, xB)   
which leads to the following equivalent expression for the maximal solution:  

CB
max (xA, xC)  =  ¬∃  xB ∈ DB :   CA(xB, xC)  ∧  ¬CC(xA, xB)  (3) 
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2.4. The realized subset of RC  

We note that in general not all pairs <xA, xB> ∈ RC could be “realized” by RA and 
RB

max .  

Definition: We say that a pair <xA, xB> ∈ RC is realizable by RA and RB if there exist 
a value xC ∈ DC such that  <xB, xC> ∈ RA and <xA, xC>  ∈  RB .  

We call the subset of RC that is realisable by RA and RB
max the maximally realisable 

subset of RC (or “product”), written RC
prod . We therefore have 

<xA, xB> ∈ RC
prod   iff   ∃  xC ∈ DC :  <xB, xC> ∈ RA ∧ <xA, xC> ∈ RB

max         (4) 

2.5. The reduced maximal solution 

We consider the relation RB
incompatible characterized by the following predicate: 

              CB
incompatible(xA, xC) =  ¬∃  xB ∈ DB :  CA(xB, xC) ∧ CC(xA, xB)  

Lemma: There is no <xA, xB> ∈ RC that is realizable by RA and RB
incompatible . 

Proof: Let us assume that there is a pair  <xA, xB> ∈ RC that is realizable by RA and 
RB

incompatible . According to the definition of “realizable”, this implies that there is a xC 
∈ DC such that <xB, xC> ∈ RA and <xA, xC>  ∈  RB

incompatible . Now, the definition of  
RB

incompatible implies that there is no x’B ∈ DB such that  CA(x’B, xC) ∧ CC(xA, x’B). 
However, this is a contradiction, since xB satisfies this condition for x’B.  

We conclude from the lemma above that those pairs <xA, xC> of RB
max that are in 

RB
incompatible do not contribute to the realization of RC

prod . We therefore may eliminate 
from the solution RB

max all pairs in RB
incompatible and still obtain the same set RC

prod of 
realizable pairs <xA, xB>. We call this the reduced maximal solution to the equation 
solving problem. It is characterized by the following predicate: 
       CB

red (xA, xC)  =  (  ∃  xB ∈ DB :   CA(xB, xC)  ∧  CC(xA, xB)  )   ∧ 
                                  ( ¬∃  xB ∈ DB :   CA(xB, xC)  ∧  ¬CC(xA, xB)  )                   (5)                        

2.6. Example 

DA = {a1, a2};  DB = {b1, b2, b3};  DC  = {c1, c2, c3, c4};   
RA = {<b1, c1 >, <b2, c2 >, <b1, c3 >, <b2, c3 >, <b3, c3 >};    
RC = {<a1, b1 >, <a2, b2 >, <a1, b3 >}; 
The relation corresponding to the predicate ¬CC(xA, xB) is the complement of RC in 
respect to the set of all tuplets in DA × DB , written ¬RC . The set of all tuplets in DA × 
DB is also sometimes called the “chaos“ over DA × DB , written ChaosA×B . We have 
ChaosA×B = {<a1, b1 >, <a2, b2 >, <a1, b3 >, <a1, b2 >, <a2, b1 >, <a2, b3 >}, where the 
last three tuplets are in ¬RC .  

Using Formula (3), we obtain  
                    RB

max 
 = ChaosA×C \ {<a1, c2 >, <a2, c1 >, <a1, c3 >, <a2, c3 >}  

              = {<a1, c1 >, <a2, c2 >, <a1, c4 >, <a2, c4 >} 
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where  “\”  is the set subtraction operator. 

We have RC
prod = {<a1, b1 >, <a2, b2 >} which is a subset of RC .  

We note that the tuplets <a1, c3 > and <a2, c3 > are in RB
incompatible , and the reduced 

maximal solution is RB
red 

 =  {<a1, c1 >, <a2, c2 >} . 

3. Submodule construction for synchronous systems 

3.1. Modeling systems consisting of several components  

State machines are often used as models for reactive systems that interact with their 
environment. Often one considers a system model which is the composition of several 
state machines. Therefore a state machine is normally a component within a system, it 
interacts with other components of the system and possibly also with the environment 
of the system; or the state machine represents the interactions of the whole system 
with its environment.  

A system component has one or more interfaces. An interface is a location where 
interactions with the environment of the component take place. Each interface i is 
associated with a domain Ii ; the elements of Ii are the possible interactions that may 
take place at that interface during a given time unit. We write  xi

(t) for the interaction 
that takes place at interface i at time unit t. Clearly, xi

(t) ∈ Ii for all t. We write xi for a 
sequence of interactions at interface i over a certain time period. We write Ii* for the 
set of all sequences that can be formed by concatenating interactions from the domain 
Ii . We have xi ∈ Ii* . 

We assume trace semantics for specification of the dynamic behaviour of a 
system, that is, the dynamic behavior of a system M is defined in terms of the set of 
possible execution histories that could occur during the execution of the component. 
For a system with n interfaces i (i = 1, …, n), an execution history consists of a tuplet 
< x1, x2, … xn > where xi (i = 1, …, n) is the sequence of interactions that occurred at 
interface i during the execution history. We therefore assume that the specification S 
of the dynamic behavior of M is given in the form of a (normally infinite) set of such 
tuplets. As in Section 2, instead of talking about the set S of tuplets, one may also talk 
about the predicate C that characterizes this set. 

Let us assume that the system consists of a certain number of components (sub-
systems) Cj (j = 1, …m), each connected to a certain number of interfaces. For 
instance C1 may be connected to interfaces i = 1, 3 and 6; and its behaviour predicate, 
therefore, will be of the form C1(x1, x3, x6). Let us assume that the system has 
performed synchronous interactions over t time units and the execution history eh = < 
x1, x2, … xn >  has been observed. Since all components were involved in this 
execution, the behaviour predicates of all components must be true for the interface 
interaction sequences xi in eh.  

We now ask the question: What could be the interactions xi
(t+1) at the interfaces   

(i = 1, …, n) during the next time unit (t+1). These interactions must satisfy the 
condition that the extended interaction sequences including that time unit, xi’ = xi 
concatenated-with xi

(t+1) , should also satisfy the behaviour predicates of all the 
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components. This means that all components must be ready to engage in the 
interactions xi

(t+1) at those interfaces to which they are connected. In other words, 
there is a kind of global rendezvous between all the components to agree on a set of 
interactions xi

(t+1) at the interfaces that are agreeable to all component. This also 
means that any resulting execution history will satisfy all component behaviour 
predicates; in other words, the behaviour predicate of a composition of several 
components is the conjunction of the behaviour predicates of all participating 
components. 

We note that the definition of this kind of synchronous rendezvous occurring 
simultaneously at several interfaces is a concept that would be difficult to be 
implemented in a distributed context. It is not clear whether this is a concept of 
practical importance, however, we think that it exhibits a theoretical simplicity that 
makes it interesting. Other more practical communication paradigms are discussed in 
the subsequent sections. 

Besides composition, there is another important operation for describing the 
behaviour of a system consisting of several components. This is the hiding of an 
interface that is not visible from a certain perspective. Let us consider a system 
configuration consisting of several components and n interfaces i (i = 1, …, n). We 
assume that the dynamic behaviour of the system is characterized by the predicate 
C(x1, x2, … xn). When one of the interfaces (say i) is hidden, we obtain a visible 
behaviour which only involves the non-hidden interfaces. We use the notation 
“hide(syn)

i (C(x1, x2, … xn)” to represent the predicate of this behaviour. As discussed in 
[23], this predicate has the following form: 
           < x1, … , xi-1, xi+1, …, xn > ∈ hide(syn)

i (C(x1, x2, … xn) )                 
                     iff  ∃ xi ∈ Ii* :  < x1, … , xi-1, xi, xi+1, …, xn >  ∈ C(x1, x2, … xn) 

3.2. Submodule construction  

We now consider a system configuration containing two components MA and MB as 
shown in Figure 2(a). Since the sequences at the three interfaces are constrained by 
the behaviour of the two components, we have the following predicate that 
characterizes the set of all possible execution histories of this system:  

∀ < xA, xB, xC > ∈ U :   CA(xB, xC) ∧ CB(xA, xC)   

where U = IA* × IB* × IC* is the universal set of execution sequences for a system 
architecture as shown in Figure 2(a).  

      
Fig. 2. Two components MA and MB; (b) also showing the desired overall behavior MC 

Let us now assume that the system consisting of the composition of the two 
components MA and MB is supposed to behave like a system MC characterized by the 
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predicate CC(xA, xB), as shown in Figure 2(b). Then we have the following 
requirement: 

                ∀ < xA, xB, xC > ∈ U :   CA(xB, xC) ∧ CB(xA, xC)  =  CC(xA, xB)          

If we suppose that the behavior defined by CC(xA, xB) represents a safety requirement, 
that is, all execution histories generated by the two components MA and MB must 
satisfy CC(xA, xB), then we have the requirement: 

             ∀ < xA, xB, xC > ∈ U :   CA(xB, xC) ∧ CB(xA, xC)  ⇒  CC(xA, xB)    (1syn) 

This formula is identical to Equation (1Pred) if we assume that the domains Di of 
Section 2 are sets of interaction sequences,  namely Di  = Ii* (for i = A, B and C).  

The equation solving problem introduced in Section 2 becomes, in the context of 
interacting state machines, the following “submodule construction problem”. We 
assume a system structure as shown in Figure 2(b). If the specification of MA is given 
in the form of CA(xB, xC), as well as the safety requirement CC(xA, xB) for the overall 
system, what is the most relaxed requirement for the dynamic behaviour of machine 
MB ? 

Since the proposition (1syn) is identical to (1Pred), we can use Formula (3) to obtain 
the most general behaviour of MB that satisfies (1syn). Using the hiding operator 
discussed in Section 3.1, we may rewrite Formula (3) as follows: 

   CB
max (xA, xC)  =  ¬ hide(syn)

B ( CA(xB, xC)  ∧  ¬CC(xA, xB)  )                       

We note that the negation can also be expressed by the complement in respect to the 
corresponding chaos behaviour, as in the Formula (3RelAlg) of Section 2.7. This leads 
to the following: 

CB
max (xA, xC) = IA* × IC* \ hide(syn)

B ((CA(xB, xC)  ∧ (IA* × IB* \ CC(xA, xB))) (3syn) 

It is important to note that the operators used in Formula (3syn) can be evaluated 
algorithmically if the infinite sets of sequences defined by CA(xB, xC) and CC(xA, xB) 
are regular sets, that is, are defined by a state machine with a finite number of states. 
The number of states of the machine representing the composition of two machines is 
smaller or equal to the product of the number of states of the two machines. The 
complement is straightforward to calculate in the case of deterministic state machines 
and can be realized by complementing the accepting and non-accepting states. 
Unfortunately, the hiding operator introduces in general non-determinism and the 
resulting non-deterministic behaviour description must be transformed into a 
deterministic description which is a problem of exponential complexity (see for 
instance [24]). We conclude that the complexity of the sub-module construction 
problem for regular state machines is in general exponential. 

The considerations concerning the realizability of all the sequences defined by 
CC(xA, xB) and the reduced maximal solution CB

red are identical to what was discussed 
in Section 2. We note that one would normally be interested in the reduced maximal 
solution for the component MB which is given by the following formula: 
    CB

red (xA, xC)  =  hide(syn)
B (CA(xB, xC)  ∧  CC(xA, xB) )  

                            \  hide(syn)
B ( (CA(xB, xC)  ∧  (IA* × IB* \ CC(xA, xB) ) )     (5syn) 
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3.3. Examples 

We present here two examples which are very similar to the example of Section 2.6. 
If we take the variable values ai, bj, and ck of Section 2.6 as the possible interactions at 
the interfaces IA, IB and IC, respectively, and impose no constraints on the order in 
which these interactions may take place, we obtain state diagrams for MA and MC 
with a single state having a transition for each tuplet in the respective relation RA or 
RC defined in Section 2.6. For example, for MC we obtain the state diagram of Figure 
3(a), and similarly for MA .  This example is isomorph to the example of Section 2.6 
and yields as reduced maximal solution a machine that allows the synchronous 
transitions <a1, c1 > and <a2, c2 > in an arbitrary order.  

To make this example a bit more interesting, we consider now that the behaviour 
of MC is given by the state diagram of Figure 3(b) which means that synchronous 
interaction tuplets <a1, b1 > and <a2, b2 > must alternate and one or more <a1, b3> may 
be inserted after a <a1, b1 > . In this case we obtain the reduced maximal solution 
shown in Figure 3(c).                        

 
Fig. 3. (a) behavior of a synchronous machine MC corresponding to the example of Section 2.6; 
(b) modified behavior of machine MC; (c) reduced maximal solution for the modified behavior 
of  MC 

4. Submodule construction for labeled transition systems 

4.1. Modeling interleaving semantics 

In this modeling framework, we also have rendezvous interactions at interfaces, but 
interleaving semantics is assumed, which means that at most one interaction (on a 
single interface) may occur during each time unit. We use in the following the same 
modelling framework used for synchronous machines, but introduce the following 
changes: 
− We allow an interface to have the value null during a given time unit, which means 

that no interaction takes place at this interface during this time unit. 
− In a system of several components with n interfaces, a possible execution history < 

x1, x2, … xn > must satisfy the following constraint, called interleaving constraint: 
               IC(x1, x2, … xn ) = for all t : xi

(t) ∈ Ii implies xj
(t) = null for all j ≠ i. 

Any execution history h = < x1, x2, … xn > that satisfies the interleaving 
constraint defines a linear (time) order for the (non-null) interactions at the interfaces. 
We write seq(h) for this sequence and call it the execution sequence corresponding to 
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h. For execution sequences over n interfaces, as above, we have seq(h) ∈ (Ι1 ∪ Ι2 
…∪ Ιn )* . Normally, the semantics of labelled transition systems is described in 
terms of these (finite and infinite) execution sequences and the possibilities of 
blocking after finite sequences. We will continue using the model of separate 
interaction sequences xi at the different interfaces, as introduced for synchronous 
communication; we thus obtain a uniform framework for treating systems with both 
types of communication, synchronous and interleaving. 

Definition (Equivalence of execution histories): Since only the execution sequences 
count for the semantics of labelled transition systems, we say that two execution 
sequences h1 and h2 are equivalent, written h1 ≅ h2 , if they define the same execution 
sequence, that is, seq(h1) = seq(h2).   

This corresponds to the so-called stuttering equivalence between execution 
sequences that contain at certain time units null-interactions at all interfaces. Clearly, 
we assume that any predicate defining the behaviour of a given system component has 
the same value for equivalent execution histories; the value should only depend on the 
corresponding execution sequence. 

The notion of equivalence between execution histories leads to a slightly 
modified definition of the hiding operator as follows: 
        < x1, …, xi-1, xi+1, …, xn > ∈ hide(LTS) 

i (C(x1, x2, … xn) )  
              iff  IC(x1, … , xi-1, xi+1, …, xn) 
               ∧   ∃ < x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘ > :  ( IC(x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘) 
                       ∧    < x1‘, … , xi-1‘, xi+1‘, …, xn‘ >  ≅  < x1, … , xi-1, xi+1, …, xn > 
                       ∧    < x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘ >  ∈ C(x1, x2, … xn)  ) 

4.2. Submodule construction 

Due to the interleaving constraints and the equivalence between execution histories, 
we have the following modified equations. Equation (1syn) becomes: 
  ∀ < xA, xB, xC > ∈ U : IC(xA, xB, xC) ∧ CA(xB, xC) ∧ CB(xA, xC) ⇒ CC(xA, xB)   (1LTS) 

Equation (2) becomes: 
  CB

max(xA, xC)  = IC(xA, xC)  ∧ ∀ < xA‘, xB‘, xC‘ > ∈ U :  
     IC(xA‘, xB‘, xC‘)  ∧  <xA‘, xC‘>  ≅ <xA, xC>   ∧  CA(xB‘, xC‘) ⇒ CC(xA‘, xB‘)   (2LTS) 

This definition of CB
max says that an execution history at the interfaces IA and IC is an 

allowed behavior for component MB if for all global execution histories < xA‘, xB‘, xC‘ 
> that have an equivalent behavior for MB, the satisfaction of CA leads to the 
satisfaction of CA . This modification to Equation (2) is introduced because the 
specification of the behavior for MB can only restrain the possible execution 
sequences of the component, but has no impact on which of the equivalent execution 
histories would be realized in collaboration with the other system components and the 
environment. 

Using a similar demonstration as for Equation (3) in Section 2, it is easy to see 
that Equation (2LTS) is equivalent to 
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      CB
max(xA, xC)  =  IC(xA, xC)  ∧  ¬∃ < xA‘, xB‘, xC‘ > ∈ U :  

              IC(xA‘, xB‘, xC‘) ∧ <xA‘, xC‘>  ≅ <xA, xC> ∧ CA(xB‘, xC‘)  ∧ ¬CC(xA‘, xB‘)   

Using the definition of the hiding operator above, this can be rewritten in the form 

 CB
max (xA, xC)  =  IC(xA, xC)  ∧  ¬ hide(as)

B ( CA(xB, xC)  ∧  ¬CC(xA, xB)  )    (3LTS) 

Using a similar demonstration as for Equation (5) in Section 2, we can show that the 
reduced maximal solution is given by the formula 
     CB

red (xA, xC)  =  hide(LTS)
B ( CA(xB, xC)  ∧  CC(xA, xB)   

                        ∧  ¬ hide(LTS)
B ( CA(xB, xC)  ∧  ¬CC(xA, xB)  )                              (5LTS) 

This solution was presented (using a different notation) in [1], which was the first 
paper on submodule construction to our knowledge. We note that this formula is the 
same as (5 syn), except that a different hiding operator is used. 

Like in the case of synchronous machines, these solutions may be evaluated 
algorithmically when the specifications of CA and CC are given in the form of regular 
languages (finite state machines). 

4.3. Example 

An example is shown in Figure 4. State diagrams representing the behaviour of MA 
and MC are shown (solid boxes) in Figure 4(a) and (b). The state diagram for MC also 
shows the Fail (F) state (a non-accepting state) and as well as the non-allowed 
transitions (dotted arrows). The behaviour of ( CA(xB, xC)  ∧  CC(xA, xB)  ) is shown in 
Figure 4(c); it represents the composition of the two state machines MA and MC . The 
diagram is incomplete, since transitions from a composed state where MC is in the 
Fail state are not shown. 

         
Fig. 4. (a, b) State diagrams representing the behavior of MA and MC 
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Fig. 4. (c) Behavior of the composition of MA and MC;   (d) the same after hiding interactions 
b1 and b2 and determination 

Figure 4(d) shows the state diagram obtained from Figure 4(c) after the following 
two steps: (a) hiding the interactions b1 and b1 at the interface IB , and (b) 
transforming the resulting non-deterministic machine into an equivalent deterministic 
one. Each state of the deterministic machine represent a subset of the states of the 
original non-deterministic machine, namely those that could be reached through 
transitions including the hidden ones (see for instance [24] for details). Since 
Equation (5LTS) only considers execution sequences that can be generated jointly by 
MA and MC and that can not reach the Fail state of MA, we do not need to explore the 
transitions for the resulting deterministic machine from any state that includes in its 
subset a state pair for which MC is in the Fail state. We conclude that Equation (5 LTS) 
results in the behaviour for MB as shown by the full arrows of Figure 4(d). 

4.4. Avoidance of deadlocks 

The solution equations discussed above do not consider the possibility of deadlocks 
since their derivation is based on trace semantics where the meaning of the 
specification of a component is the set of possible execution histories or execution 
sequences. In the context of submodule construction, it is common practice to avoid 
deadlocks by pruning those transitions in the obtained solution behaviour for MB that 
may lead to a deadlock. There are two steps in this pruning process: 
− If the obtained specification of MB (considered alone) contains a deadlock state 

(such as the state {<1×2>, <1×3>} in Figure 4(d)) then all transitions leading to 
this state should be pruned. This may in turn introduce other deadlock states for 
which the same kind of pruning should be performed, etc. (In the example of 
Figure 4(d), the transition labelled c4 should be eliminated). 

− Further deadlocks may be detected when the joint behaviour of MA and MB is 
evaluated (namely CC

prod as defined in Equation (4)). Again, transitions in MB that 
lead to a joint deadlock state should be pruned. As under Step (1) above, this may 
be a recursive process. Finally, a joint behaviour without deadlock is obtained; we 
may call this the “maximal non-blocking behaviour” for MC , or CC

non-block . In 
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certain cases, this behaviour may contain no transition, that is, the system blocks; 
this means that the given behaviour of MA is in some sense incompatible with the 
required system behaviour CC .  

        
Fig. 4. (e) behavior (containing a potential deadlock) obtained by the composition of MA and 
the MB obtained in Step 1 above; (f) final specification of the behavior of MB (avoiding the 
deadlock) 

In this example, the joint behaviour of MA and the behaviour of MB after Step (1) 
above is shown in Figure 4(e). (Note: the states si are the states shown in Figure 4d: s1 
= {<1,1>, <2,2>, <3,4>}, s2 = {<1,2>}, s3 = {<1,4>}, s4 = {<1,3>, <4,2>}). It contains 
a deadlock state, which may be eliminated by pruning the transition c4 in the 
behaviour of MB and the subsequent state s4 = {<1×3>, <4×2>}. This leads to the 
behaviour for MB shown in Figure 4(f). In this example, the whole required behaviour 
CC is realized, that is, CC

 non-block = CC . 

7. Conclusions 

The problem of submodule construction (or sometimes called equation solving) has 
some important applications for real-time control systems, communication gateway 
design, testing of embedded components, and component re-use for system design in 
general. Several algorithms for solving this problem have been developed based on 
different formalisms that are used for defining the dynamic behavior of the desired 
system and the existing submodule. In this paper, we have shown that this problem 
can also be formulated in a more general setting using first-order logic. It turns out 
that solutions to this problem in logic are quite simple. We show in this paper that 
these solutions (and their proof of correctness) can be mapped into the different 
specification formalisms considered in the earlier work. Therefore this paper 
provides, in a sense, new proofs of correctness for the solutions of the submodule 
construction problem described in earlier work.  

The different specification formalisms considered are system components using 
synchronized rendezvous interactions on several interfaces, or rendezvous with 
interleaving semantics (e.g. labeled transition systems). Input/output interactions and  
state machines with queued message passing are considered in a different paper [32]. 
It is important to note that in the case of regular behaviour specifications in the form 
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of finite state machines, the solutions to the submodule construction problem can 
derived by an algorithm which is, in general, of exponential complexity.  

We consider in this paper trace semantics, that is, the behaviour of the system, or 
of a component, is characterized by the set of possible execution histories. This is 
adequate for safety properties, but ignores issues of liveness, progress, absence of 
deadlocks and fairness (with the exception of Section 4.4 where deadlock avoidance 
is discussed). We believe that the issues of hard real-time properties (see for instance 
[19, 27, 28] ) could also addressed with the approach presented in this paper. 
However, we are not sure whether it could be helpful for dealing with liveness and 
progress properties (as for instance discussed in [29, 30, 28, 31]).  

It is to be noted that the complexity of the algorithms for deriving the submodule 
construction solution depends on the specification formalism used. As mentioned 
above, it is exponential for finite state behavior descriptions, however, it is 
polynomial if the interactions at the interface IB are not hidden; on the other hand, it 
has been shown to be undecidable for behavior specifications in CSP [5]. 
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