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Resource Criticality Analysis of Static
Resource Allocations and
Its Applications in WDM

Network Planning
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Abstract—Various static resource allocation algo-
rithms have been used in WDM networks to allocate
resources such as wavelength channels, transmitters,
receivers, and wavelength converters to a given set of
static lightpath demands. However, although opti-
mized resource allocations can be obtained, it re-
mains an open issue how to determine which re-
sources are the bottlenecks in achieving better
performance. Existing static resource allocation algo-
rithms do not explicitly measure the impact of
changes of network resources or lightpath demands
on the design objective. We propose such a measure-
ment based on the Lagrangian relaxation framework.
We use the optimized values of Lagrange multipliers
as a direct measurement of the criticality of re-
sources. Such a quantitative measurement can be
naturally acquired along with the optimization pro-
cess to obtain the optimal solution (or a near-optimal
solution) to the static routing and wavelength assign-
ment problem. We investigate three practical applica-
tions of the resource criticality (RC) analysis in WDM
network planning. In the first application, we use our
proposed measurement to identify critical resources
and thus to decide the best way to add or reallocate
resources. In the second application, we estimate the
impact of the addition or removal of lightpath de-
mands on the design objective. This kind of estima-
tion helps to set a proper price for lightpath de-
mands. In the third application, the results of the RC
analysis are used to speed up the convergence of the
optimization process for different network scenarios.
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I. INTRODUCTION

OUTING and wavelength assignment (RWA) al-
gorithms, which are used to solve resource allo-

ation problems in WDM networks, have two flavors:
tatic (also called offline) and dynamic (also called on-
ine) [1,2]. Static RWA algorithms use a given set of
ightpath demands and aim at providing a long-term
lan for future traffic [3–11]. In dynamic RWA algo-
ithms, requests to establish or terminate lightpaths
rrive dynamically [12,13]. Previous studies have
hown the value of using optimized paths that are
omputed offline to guide online path setups [14].
ore specifically, the static RWA solutions form the

asis for suboptimal solutions to the dynamic RWA
roblems [15]. The benefit of dynamic operation of
DM networks in terms of wavelength utilization is

ignificant only at low to moderate traffic loads in
parsely connected networks [16], while static RWA al-
orithms are important for current and near-future
DM networks, especially when there is no wave-

ength conversion, the network is highly connected, or
he traffic load is moderate to high [16].

Existing RWA algorithms loosely or implicitly use
he concept of resource criticality (RC) without clearly
efining or quantitatively measuring it. The most im-
ortant strategy of almost all RWA heuristics is to
void using critical resources and to reserve them for
uture or other lightpath demands [17–21]. However,
here is no clear definition of what RC is and how to
alculate it. The difficulty comes from the complicated
ature of interactions among competing demands and
elations between different resources. Kodialam and
akshman proposed a minimum interference routing
lgorithm for MPLS traffic engineering [22]. They
onsider that when some traffic demands are routed
ver a given link, the available flow values for one or
2009 Optical Society of America
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more source–destination node pairs decrease. When
these values reach a bottom limit, the link is consid-
ered a critical link. However, to simplify the computa-
tion, the authors consider only one node pair at a
time. They applied the same concept to optical net-
works in [23]. Ho and Mouftah proposed asynchro-
nous criticality avoidance routing to reduce the mu-
tual interference between lightpaths launched by
different node pairs [24]. Under the fixed alternative
routing architecture, they measure the criticality of a
link by the number of free wavelength channels on
that link. When this value drops below a predefined
threshold, the corresponding link is treated as a criti-
cal resource, and other lightpath demands should
then avoid it. However, such a determination of RC is
very rough and does not explicitly reflect the impact of
a given resource on the design objective. The setting of
the threshold to determine a critical resource is arbi-
trary. Palmieri et al. applied the minimum cut algo-
rithm to a graph to identify critical links [25]. Their
method measures the criticality of links by the weight
for a feasible cut in the graph. However, their method
cannot measure the criticality of other resources such
as wavelength converters, transmitters, or receivers.
Kim et al. used a variation of the least congested path
in a fixed alternative routing [26]. They used the num-
ber of available channels to measure the resource
criticality. Mosharaf et al. measured the resource criti-
cality as the available wavelength channels on a given
link for different service classes and dynamically ad-
justed their partition [27].

In this paper, we propose a framework with the di-
rect RC definition in static resource allocations in
WDM networks, which, at the same time, provides a
unified RC measurement for all network resources.
Our method has more persuasive mathematical expla-
nations than the previously proposed heuristics, be-
cause within the Lagrangian relaxation framework,
the optimized values of Lagrange multipliers reflect
the RC ([3,28–30] and Section 4.4 on sensitivity in
[31]). A method to compute these values for a given re-
source is also presented. To the best of our knowledge
for what is the first time, we provide a quantitative
measure of RC and accurately predict the changes to
the objective function for what-if situations for RWA
problems. We demonstrate three practical applica-
tions of the proposed method. In the first application,
the optimized Lagrange multipliers are used to iden-
tify the critical resources in static RWA schemes and
thus to plan the network upgrading or the resources
reallocation to better achieve the design objective.
Subsequently, results of the RC analysis are used to
estimate the impact on the design objective when
lightpath demands are added or removed. Thus, a
proper price of a lightpath demand can be estimated
in WDM network planning. In the last application, re-
ults of the RC analysis are used to speed up the con-
ergence of the optimization process for the similar
etwork scenarios that are in the neighborhood of the
riginal static RWA problem.

This paper is organized as follows: In Section II, we
utline an integer linear programming formulation of
he static RWA problem; then in Section III, we ex-
lain how Lagrange multipliers can be used as an RC
easurement, followed by a computation method for

he optimized Lagrange multipliers presented in Sec-
ion IV; in Section V, we show how the optimized
agrange multipliers are used to identify critical re-
ources; in Section VI, we use results of the RC analy-
is to estimate the price of a lightpath demand; in Sec-
ion VII, we use the results of RC analysis to speed up
he convergence of the optimization process for similar
etwork scenarios; and we conclude this paper in Sec-
ion VIII.

II. INTEGER LINEAR PROGRAMMING FORMULATION OF
THE STATIC RWA PROBLEM

We use a mesh network topology with a varying
umber of wavelength converters (possibly zero) at
ifferent nodes. Wavelength converters are installed
t a node in a share-per-node manner, which means
hat any input or output port may use a wavelength
onverter if one is available. Our network model con-
ists of N nodes interconnected by E fibers. Each fiber
as W noninterfering wavelength channels. The fiber
etween nodes i and j is denoted eij. The cth wave-
ength channel on eij is denoted wijc �0�c�W�. The
et E represents all links in the network. Each link
as a pair of fibers, one for each direction. The set V
epresents all the nodes in the network. All nodes are
ble to perform nonblocking lightpath switching. That
eans if two wavelength channels using the same
avelength are available in incoming and outgoing fi-
ers at a node, then the node can connect the two
avelength channels regardless of the usage of other
avelength channels at the node. A lightpath can be
stablished between a source and destination node;
uch a lightpath is defined as a sequence of concat-
nated wavelength channels. In this paper, we con-
ider only lightpath connections. Traffic grooming be-
ow lightpath granularity is not considered. The
avelength channels used by a lightpath on different

inks are allowed to use different wavelengths, if a
avelength converter is available at the intermediate
ode. Our model allows more than one lightpath to be
et up between a given node pair. The symbol ssdn de-
otes the nth lightpath demand between node pair
s ,d�. The set L represents all lightpath demands in
he network.

We adopt a penalty-based objective function as in
32], wherein the rejection of demands and the use of
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network resources are penalized. Since a certain
amount of potential revenue is lost when a request is
rejected, the rejection penalty equals the amount of its
potential revenue. On the other hand, when a request
is accepted, its resource consumption is added as a
penalty in the objective function. The resource con-
sumption penalty is the cost of resources used by the
lightpath provisioned for the demand.

Our design objective is to minimize the function J,
i.e., minA,�,��J�, where

J = �
ssdn�L

��1 − �sdn�Psdn + �sdnCsdn�. �1�

For each demand ssdn, either the penalty of rejecting
it �Psdn� or the penalty of using resources �Csdn� to set
up a lightpath is added to the objective function �J�,
depending on ssdn’s admission status �sdn. The value of
�sdn is zero if ssdn is rejected, and �sdn is one if ssdn is
admitted.

In addition to the design variables �sdn �∀ssdn�L�,
we introduce the design variables �ijc

sdn (∀ssdn�L, ∀eij
�E, 0�c�W), representing the use of wijc by ssdn, and
the design variables �i

sdn (∀ssdn�L, ∀i�V), represent-
ing the use of a wavelength converter at node i by ssdn.
If wijc is used by ssdn, �ijc

sdn equals one; otherwise, �ijc
sdn

equals zero. If a wavelength converter is used by ssdn,
�i

sdn equals one; otherwise, �i
sdn equals zero. We use

vector A to denote the acceptance status of all de-
mands, vector � to denote their wavelength assign-
ment, and F to denote their use of wavelength con-
verters. We use V to denote the design variables
�A ,� ,F�. For an individual lightpath demand ssdn, we
use �sdn to denote its wavelength assignment and Fsdn
to denote its use of wavelength converters. Now we
may define the cost of resources Csdn as the cost of us-
ing wavelength channels and converters:

Csdn = �
eij�E

�
0�c�W

dij�ijc
sdn + �

i�V
oi�i

sdn ∀ ssdn � L,

�2�

where dij is the cost of using wijc and oi is the cost of
using a wavelength converter at node i.

The above static RWA problem must conform to the
following constraints:

a) Lightpath continuity constraints: If a demand is
admitted, the lightpath assigned to it has to be con-
tinuous along a path between the source–destination
pair. Since the assigned lightpath terminates at the
two end nodes, we have
�
j�V

�
0�c�W

�ijc
sdn − �

j�V
�

0�c�W
�jic

sdn

= �
�sdn if i = s

− �sdn if i = d

0 otherwise
� ∀ ssdn � L. �3�

b) Wavelength channel exclusive usage constraints:

�
ssdn�L

�ijc
sdn � 1 ∀ eij � E, 0 � c � W. �4�

hese constraints mean that each wavelength chan-
el can only be used by one lightpath.

c) Transmitter, receiver, and wavelength converter
apacity constraints:

�
d�V

�
0�n�Nsd

�sdn � Ts ∀ s � V, �5�

�
s�V

�
0�n�Nsd

�sdn � Rd ∀ d � V, �6�

�
ssdn�L

�i
sdn � Fi ∀ i � V. �7�

The number of lightpaths originating from or termi-
ating at a node must be no more than the number of
ransmitters or receivers at the node. We assume that
ll transmitters and receivers operate at any wave-
ength. The number of transmitters at source node s is
enoted Ts. The number of receivers at destination
ode d is denoted Rd. The symbol Nsd is the number of

ightpath demands between �s ,d�. The number of used
onverters at a node must be no more than the num-
er of installed converters at the node. The number of
avelength converters at node i is denoted Fi.

d) Wavelength conversion constraints:

�j
sdn = �1 if ∃ m,k � V and b � a,�mja

sdn = �jkb
sdn = 1

0 otherwise 	
∀j � V. �8�

wavelength converter at an intermediate node j is
sed only when different wavelengths are assigned to
sdn for the incoming and outgoing signals at this
ode.

III. LAGRANGE MULTIPLIERS AS A DIRECT RC
MEASUREMENT

We use the Lagrange relaxation framework to de-
ive a dual problem (DP) from the primal problem
inV�J�, by relaxing the constraints that represent re-

ource limitations. Lagrange multipliers �ijc, 	s, 
d,
nd � are introduced in association with the wave-
i
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length channel exclusive usage constraints (4) and
transmitter, receiver, and wavelength converter ca-
pacity constraints in (5)–(7). The vectors of Lagrange
multipliers ��ijc�, �	s�, �
d�, and ��i� are denoted �, 	, 
,
and �, respectively. We use M to denote all the
Lagrange multipliers �� ,	 ,
 ,��. The Lagrangian func-
tion L is defined as [33]

L�V,M� = J�V� + �
eij�E

�
0�c�W

�ijc
 �
ssdn�L

�ijc
sdn − 1�

+ �
s�V

	s
 �
d�V

�
0�n�Nsd

�sdn − Ts�
+ �

d�V

d
�

s�V
�

0�n�Nsd

�sdn − Rd�
+ �

i�V
�i
 �

ssdn�L
�i

sdn − Fi� . �9�

To analyze the criticality of a given resource, the re-
source must be modeled in the formulation as a con-
straint, and then the constraint must be relaxed and
be associated with a Lagrange multiplier in the above
Lagrangian function. The formulation of the resource
constraint should be in the form of the total usage of a
resource not exceeding the total number of deployed
resources. For example, the total usage of transmit-
ters, receivers, or wavelength converters must not ex-
ceed the total number of such deployed resources as in
constraints (5)–(7). This is due to the assumption of
the shared-per-node structure of the deployment of
such resources. The total usage of a given wavelength
channel must not exceed the value 1 as in constraints
(4).

Define the dual function q�M� as the infimum of
L�V ,M�:

q�M� = min
V

�L�V,M��. �10�

The Lagrangian DP is maxM�0�q�M��, subject to
constraints (3) and (8). We use q* to denote the La-
grangian DP’s optimal value. The corresponding opti-
mal Lagrange multiplier values are denoted M*

= ��* ,	* ,
* ,�*�. The optimal value of the Lagrangian
DP is a lower bound of the primal problem [33]:

q*�M*� = min
V

�L�V,M*�� � min
V

�J�V��. �11�

Since the optimized values of the Lagrange multi-
pliers represent the sensitivity of the design objective
J with respect to the level of a given resource, we can
thus use these values as a direct measurement of the
criticality of resources. For simplicity, we use the ter-
minology “optimized Lagrange multipliers” to refer to
the near-optimal values of Lagrange multipliers. For
an optimized Lagrange multiplier MR

* corresponding
to a given resource R with a continuous resource level,
we have [29]
MR
* = −

dJ*

dR
, �12�

here J* denotes the optimal value of the design ob-
ective in the primal problem.

For a resource with discrete levels, the correspond-
ng optimized Lagrange multiplier is only an estimate
f the sensitivity of the design objective J with respect
o the level of the resource:

MR
* � −

�J*

�R
. �13�

The optimized Lagrangian multipliers should be
onsidered soft prices that represent the RC and that
eflect the interactions between lightpath demands
nd their competition for given resources. The soft
rices are different from resource costs, such as the
ost of using wavelength channel wijc (denoted dij) and
wavelength converter at node i (denoted oi) in Eq.

2), and these resource costs do not represent the RC.
n the other hand, the soft prices evaluate the RC by
sing the same measure as resource costs, so the RC
nd the resource costs are thus unified under the La-
rangian framework.

When the optimized Lagrange multiplier MR
* for a

iven resource R is known, the impact from any
hange of the resource on the design objective can be
stimated. For example, when a small amount ��R� of
critical resource R is added to the network, the im-

rovement of the design objective can be estimated as

R
* �R. It should be noted that such an estimation is

ery rough and applies only to minor resource
hanges. In general, because interaction among com-
eting demands and relations between different re-
ources are very complicated, the improvement of the
esign objective needs to be recomputed by solving a
ew optimization problem.

IV. COMPUTATION OF OPTIMIZED LAGRANGE
MULTIPLIERS

To obtain optimized Lagrange multipliers, we need
o solve the Lagrangian DP. The key to solving the La-
rangian DP is to derive independent subproblems,
here the optimal solutions to the subproblems can be

omputed. By using the fact that �ijc
sdn=�sdn�ijc

sdn, �i
sdn

�sdn�i
sdn, and removing the terms that are indepen-

ent of the decision variables, the Lagrangian DP be-
omes (the readers can refer to [32,34] for the math-
matical details)
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q�M� = min
V
� �

ssdn�L
�1 − �sdn�Psdn

+ �sdn
 �
eij�E

�
0�c�W

�ijc
sdn��ijc + dij�

+ �
i�V

�i
sdn��i + oi� + 	s + 
d��	 . �14�

The resource allocation to each lightpath becomes
independent because resource usage constraints
(4)–(7) are relaxed. The complex competition among
lightpaths for shared resources does not need to be
considered when we allocate resources to each light-
path. Then each subproblem corresponds to the deci-
sion of acceptance or rejection of a single lightpath de-
mand, and the associated RWA problem for each
accepted lightpath demand. The number of indepen-
dent subproblems equals the total number of light-
path demands. The optimal value of the relaxed prob-
lem is the summation of the optimal values of all
lightpath-level subproblems (denoted SPsdn for the
subproblem that corresponds to ssdn):

q�M� = �
ssdn�L

min
�sdn

�1 − �sdn�Psdn

+ �sdn min
�sdn,�sdn


 �
eij�E

�
0�c�W

�ijc
sdn��ijc + dij�

+ �
i�V

�i
sdn��i + oi� + 	s + 
d�� . �15�

We then use the subgradient method to iteratively
maximize the DP and thus to obtain optimized
Lagrange multipliers. At the same time, a feasible so-
lution to the original problem (i.e., the primal prob-
lem) is derived from the solutions to individual sub-
problems by using a heuristic algorithm. The overall
algorithm is illustrated in Fig. 1. When the computa-
tion converges, the optimized Lagrange multipliers
are obtained. In addition to the built-in nature of at-
tempting to respect the relaxed constraints in solving
the Lagrangian DP, the heuristic algorithm forces the
relaxed constraints to be respected. The users can re-
fer to [32–34] for the details.

Initialization

Solving the Lagrangian DP

Subgradient method to
update Lagrange

multipliers; Update
other variables

Obtain a feasible RWA scheme by heuristic

Stopping criterion reached?

Yes

Stop

No

Solve each subproblem independently

Compute Duality Gap

Fig. 1. Schematic depiction of the overall algorithm.
Each subproblem SPsdn in Eq. (15) can be solved in
wo steps: lightpath routing and the acceptance ver-
us rejection decision. The first step is to solve the
ightpath routing problem:

Dsdn = min
�sdn,�sdn

� �
eij�E

�
0�c�W

�ijc
sdn��ijc + dij�

+ �
i�V

�i
sdn��i + oi�	 , �16�

ubject to constraints (3) and (8) for ssdn. We assign an
uxiliary cost ��ijc+dij� to wijc. The optimal solution is
omputed by using the modified minimum cost semi-
ightpath algorithm in [34].

The second step is to solve the decision problem:

min
�sdn

��1 − �sdn�Psdn + �sdn�Dsdn + 	s + 
d��. �17�

f Psdn is greater than �Dsdn+	s+
d�, then rejecting
sdn improves the design objective. In contrast, if Psdn
s smaller, then we accept ssdn (i.e., �sdn=1). A tie is
roken arbitrarily.

We use the subgradient method to search optimized
agrange multipliers. The Lagrange multiplier vector
= ��ijc ,	s ,
d ,�i� is updated toward the direction of

ts subgradient:

M�h+1� = M�h� + ��h�g�M�h��, �18�

here M�h� denotes the value of vector M obtained at
he hth iteration, and ��h� denotes the step size in the
th iteration. The vector g�M� is the subgradient of
he dual function q with respect to M, i.e., g�M�
�gijc��� ,gs�	� ,gd�
� ,gi����:

gijc��� = �
ssdn�L

�ijc
sdn − 1, �19�

gs�	� = �
d�V

�
0�n�Nsd

�sdn − Ts, �20�

gd�
� = �
s�V

�
0�n�Nsd

�sdn − Rd, �21�

gi��� = �
ssdn�L

�i
sdn − Fi. �22�

V. CRITICAL RESOURCE IDENTIFICATION

The optimized Lagrange multipliers for different re-
ources can be used as a quantitative measurement
or the relative significance of the resources. When we
dd resources with high optimized Lagrange multipli-
rs to the network, the improvement of the design ob-
ective is greater than adding resources with low opti-

ized Lagrange multipliers. In this way, the
ptimized Lagrange multipliers help to identify the
ottleneck resources for performance improvements.
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Thus, new resources can be more efficiently added to
the network, or the existing resources can be reallo-
cated to a more efficient configuration.

To demonstrate this idea, we use optimized
Lagrange multipliers to quantify the criticality of the
wavelength channels, then add or reallocate wave-
length channels to the critical links, and evaluate the
improvement on the design objective. The purpose is
to demonstrate that, for a given set of static lightpath
demands over a given mesh WDM network topology,
the optimized Lagrange multipliers can effectively
identify the bottleneck resources. Then we verify that
the identified resources are actually bottlenecks for
performance improvement by performing two simula-
tions: (a) adding resources just to the identified bottle-
necks, and (b) reallocating resources from nonbottle-
necks to the identified bottlenecks. Both experiments
show performance improvements. We use NSFNET,
shown in Fig. 2, as an example. The static lightpath
demands are shown in Table I, where the horizontal
index of the matrix is the source node of a lightpath
demand, while the vertical index is the destination
node. In the current implementation, the algorithm is
terminated when the duality gap does not decrease
further after 500 iterations.

We compute optimized Lagrange multipliers for all
wavelength channels and then use the average value
for the wavelength channels on the same link as a
measurement for the link. Conceptually, the wave-
length channels (of different wavelength colors) on the
same link are all equivalent and thus will have equal
impact on the performance (i.e., only the number of
wavelength channels on a link matters). We assume
that the revenue for each lightpath is 1000 �Psdn
=1000�, the cost of each wavelength channel is 250
�dij=250�, the cost of each wavelength converter is
zero, and more than adequate wavelength converters
are available at each node. The number of transmit-
ters and receivers at each node is set to 28 �Ti=Ri
=28�. Initially, we set the number of wavelengths on
each link to 16 �W=16�. The average optimized
Lagrange multipliers for all links are listed in Table
II. The design objective function value that corre-
sponds to this resource allocation scheme is 160,924
with a lower bound being 158,849 as shown by case 1
in Fig. 3.
The design objective values under different resource
onfigurations and/or amounts are compared (see Fig.
). Note that the top of a bar represents the achieved
alue of the design objective corresponding to a fea-
ible static RWA scheme obtained by our Lagrangian
elaxation and subgradient method; the bottom of a
ar represents an optimized lower bound to the design
bjective. The real global optimal solution of the de-
ign objective must be a value lying within the range
f the bar. Since the design objective is to minimize
he penalty, cases 2 and 4 outperform cases 1 and 3. In

TABLE I
LIGHTPATH DEMAND MATRIX

0 1 3 1 3 1 3 0 2 0 3 2 0 3
0 0 0 2 0 2 1 0 1 0 1 0 0 3
3 2 0 3 0 1 2 3 2 3 1 2 2 0
3 1 0 0 1 1 2 3 2 2 1 2 0 3
1 3 0 2 0 1 0 2 0 3 0 1 1 3
1 2 1 3 2 0 1 3 3 1 0 1 0 2
2 2 3 1 3 3 0 0 3 1 2 0 3 3
0 1 2 0 1 0 1 0 0 1 0 0 2 0
3 0 1 3 3 3 1 0 0 2 1 1 1 2
0 0 0 1 2 0 2 0 1 0 1 0 0 3
1 0 0 2 0 3 0 1 0 3 0 3 0 3
2 3 1 1 3 2 3 2 2 2 2 0 1 3
2 0 1 0 0 1 2 0 3 0 2 0 0 3
1 1 0 2 1 0 1 3 0 1 2 1 3 0

TABLE II
AVERAGE OPTIMIZED LAGRANGE MULTIPLIERS FOR ALL LINKS

Link
No.

Average
Optimized
Lagrange

Multipliers
(Direction 1)

Average
Optimized
Lagrange

Multipliers
(Direction 2)

0 114.0 120.8
1 0.1 0.2
2 0.4 52.1
3 0.1 0.4
4 0.4 0.4
5 0 0.2
6 179.7 97.1
7 0.4 10.4
8 26.4 0.5
9 0.2 0.2
10 52.2 26.2
11 163.2 143.1
12 14.9 0.5
13 0.6 0.2
14 0.3 0.6
15 0.3 0.4
16 0.3 0.2
17 0.4 0.4
18 0.3 0.2
19 68.6 108.7
20 0.6 0.1
Fig. 2. NSFNET (14 nodes, 21 links).
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case 2, we add two wavelength channels to the four
most critical links identified in Table II, i.e., links 0, 6,
11, and 19. Based on the optimized Lagrange multipli-
ers for these four selected links (shown in Table II),
the improvement on the design objective is estimated
to be 1990.4 after two channels are added for both di-
rections. The actual improvements after the computa-
tion on the bound and the design objective are 2308.0
and 2993.0, respectively. As a comparison, in case 3,
we add two wavelength channels to four randomly se-
lected noncritical links, i.e., 1, 5, 9, and 18. It is shown
that the design objective is not improved when wave-
length channels are added in these noncritical links.
In case 4, instead of adding resources, we reallocate
two wavelength channels from noncritical links to the
four most critical links, i.e., from links 1, 5, 9, and 18
to links 0, 6, 11, and 19. Similar to case 2, the im-
provement on the design objective is estimated to be
1990.4 based on the optimized Lagrange multipliers.
The actual improvements are 2631.0 and 2984.0, re-
spectively. These comparisons show that the opti-
mized Lagrange multipliers not only successfully
identify the critical links for the number of wave-
length channels, but also provide a good quantitative
estimation for the improvement of the design objec-
tive.

The reason for adding two wavelength channels (in-
stead of one single wavelength channel) on each of the
four selected critical links is that a conclusive im-
provement of the optimal design objective can be
shown only after two wavelength channels are added.
The properties of the design problem and our algo-
rithm result in a small duality gap, for example, 1.3%
in case 1. The real optimal value of the design objec-
tive lies somewhere within the range between the ob-
tained objective value and its lower bound. If the
ranges for two cases overlap, although the obtained
objective value indicates an improvement, there is a
chance that the optimal solution is not improved. In
this example, if we add one wavelength channel on
each of the four selected critical links, the estimated
improvement of the design objective should be 995.2
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Fig. 3. Achieved design objective values and the lower bounds
when additional wavelength channels are added or existing wave-
length channels are relocated.
ased on the optimized Lagrange multipliers. This im-
rovement is less than the duality gap of case 1, and a
ange overlap mentioned above will occur.

In a second example, we use optimized Lagrange
ultipliers to identify the bottleneck locations of

ransmitters and receivers. The network topology and
ightpath demands are the same as above (see Fig. 2
nd Table I). We compute optimized Lagrange multi-
liers for transmitters and receivers at all nodes, and
he results are shown in Table III. Unlike the first ex-
mple, where the transmitters and receivers are
bundant, in the second example, we set the number
f transmitters and receivers at all nodes to 20. In this
ay, transmitters and receivers are critical resources

n some nodes. Other parameters remain the same as
n the first example. The design objective function
alue is 166,375 with a lower bound being 166,167 as
hown by case 1 in Fig. 4. The optimized Lagrange
ultipliers help to identify the four bottleneck loca-

ions of receivers (nodes 5, 6, 10, and 13) and the four
ottleneck locations of transmitters (nodes 4, 6, 8, and
1). We add one more transmitter or receiver at each
f their bottleneck locations. The achieved value of the
esign objective function is improved, shown as case 2
n Fig. 4. Based on the optimized Lagrange multipli-
rs for these four selected transmitters and receivers
shown in Table III), the improvement for the design
bjective is estimated to be 1718.7. The actual im-
rovements on the bound and the design objective are
047.0 and 1738.0, respectively. As a comparison, we
andomly add the same number of transmitters (for
xample, at nodes 1, 7, 9, and 10) and receivers (at
odes 0, 2, 11, and 12), and the achieved value of the

TABLE III
PTIMIZED LAGRANGE MULTIPLIERS FOR TRANSMITTERS AND

RECEIVERS AT ALL NODES

Node
No.

Optimized
Lagrange

Multipliers
for

Transmitters

Optimized
Lagrange

Multipliers
for

Receivers

0 0 0
1 0 0
2 89.1 0
3 57.7 4.0
4 246.1 0
5 41.9 85.0
6 248.7 158.1
7 0 0
8 245.1 0
9 0 0
10 0 249.2
11 247.3 0
12 0 0
13 245.1 239.2
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design objective function is not improved at all, as
shown by case 3 in Fig. 4. In the last simulation, we
reallocate transmitters from four nonbottleneck loca-
tions (nodes 1, 7, 9, and 10) to bottleneck locations
(nodes 4, 6, 8, and 11). At the same time, we reallocate
receivers from four nonbottleneck locations (nodes 0,
2, 11, and 12) to bottleneck locations (nodes 5, 6, 10,
and 13). The improvement on the design objective is
the same as adding new transmitters and receivers,
as shown by case 4 in Fig. 4. Case 4 indicates that
with the help of the optimized Lagrange multipliers,
even without adding new resources, the design objec-
tive can be improved by reallocating existing re-
sources. Similarly to case 2, the improvement on the
design objective is estimated to be 1718.7 based on the
optimized Lagrange multipliers. The actual improve-
ments on the bound and the design objective are
2057.0 and 1735.0, respectively. Once again, these
comparisons show that the optimized Lagrange mul-
tipliers not only successfully identify the critical nodes
for the number of transmitters or receivers, but also
provide a good quantitative estimation for the im-
provement of the design objective.

The reason for choosing four critical nodes to add
transmitters or receivers to can be explained by the
property of point-to-point lightpath demands. Adding
a transmitter at one source node and a receiver at one
destination node only potentially affects the lightpath
demands originated at the source node and termi-
nated at the destination node. No other lightpath de-
mand is affected. For example, if we add one transmit-
ter at node 6 and one receiver at node 10, only two
lightpath demands are potentially affected under the
traffic pattern in Table I. It is very unlikely to result
in improvement. In contrast, when we add transmit-
ters and receivers at a group of nodes, the chance of
improvement is much greater. Because the lightpath
demands are point to point, the number of added
transmitters should be the same as the number of
added receivers.

We also investigated an incremental deployment of
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Fig. 4. Achieved design objective values and the lower bounds
when additional transmitters and receivers are added or existing
transmitters and receivers are relocated.
dditional resources. We add one transmitter and one
eceiver at each of the identified bottleneck locations
s in case 2 in Fig. 5 (the same as in Fig. 4). Then we
dd one more transmitter and one more receiver at
ach of the bottleneck locations (shown in case 3 in
ig. 5). Last, we add a third transmitter and a third
eceiver at each of the bottleneck locations (shown in
ase 4 in Fig. 5). The original case is shown as case 1
n Fig. 5. In each incremental deployment, the im-
rovement on the design objective is estimated to be
718.7 based on the optimized Lagrange multipliers.
he computed improvement on the design objective is,

or the achieved values, 1737.0, 1490.0, and 993.0, re-
pectively; for the lower bound, 1700.0, 1478.0, and
366.0, respectively. The optimized Lagrange multi-
liers provide a good quantitative estimation for the
mprovement on the design objective, although the
eal improvement becomes smaller and smaller when
he number of transmitters and receivers approaches
aturation.

In the third example, we use optimized Lagrange
ultipliers to quantify the criticality of wavelength

onverters. The same network topology and lightpath
emands are used as in the previous two examples.
e compute optimized Lagrange multipliers for wave-

ength converters at all nodes (results are shown in
able IV). Unlike the previous two examples, where
he wavelength converters are abundant, in the third
xample, we set its number at all nodes to 1. The re-
ults show that wavelength converters in a static
WA are not critical, and their contribution to the de-
ign objective is very minimal, which is consistent
ith other studies [34,35].

VI. ESTIMATION OF THE PRICE OF A LIGHTPATH DEMAND

From a network operator’s point of view, a proper
rice of a lightpath demand should consider the accu-
ulative resource costs and most importantly the RC

f the resources it uses. The results of the RC analysis
epresent the interactions between lightpath de-
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ig. 5. Achieved design objective values and the lower bounds
hen additional transmitters and receivers are incrementally
eployed.



=
l
s
b
l
p
p
I
5
a
l
v
m
p
t
l
p
t
l
l
a
d
p
d
d

m
R
fi
o
l
s
b
t
t
m

L

F
w

302 J. OPT. COMMUN. NETW./VOL. 1, NO. 4 /SEPTEMBER 2009 Zhang et al.
mands and their competitions for given resources. A
network operator wants to charge higher prices for
high-demand resources than for low-demand re-
sources. To distinguish the RC cost from the real cost
of resources and avoid confusion, we use the term
“composite price” to refer to the summation of the cost
of a lightpath demand that reflects the RC and the
real-world cost. We use results of the RC analysis to
estimate the composite price of a lightpath demand.
Note that the real-world resource cost of a lightpath is
computed as Csdn in Eq. (2) plus the fixed cost of using
a transmitter and a receiver. The resource cost does
not contain the RC information, and they are only pa-
rameters to compute the composite price. In [36], our
resource cost is called “the network link cost”; our
composite price is called “the routing link cost” and is
measured by the sharing of protection capacity.

The decomposed Lagrangian DP in Eq. (15) pro-
vides a method to estimate the composite price of a
lightpath demand. We use two slightly different meth-
ods to estimate the composite price of a lightpath de-
mand: one for a lightpath demand using a known
RWA scheme, and the other for using an unknown
RWA scheme.

For a lightpath demand ssdn using the RWA scheme
��sdn ,Fsdn�, its composite price is given as
�eij�E�0�c�W�ijc

sdn��ijc+dijc�+�i�V�i
sdn��i+oi�+	s+
d.

For a lightpath demand ssdn whose RWA scheme
is unknown, a solution ��sdn ,Fsdn� to the optimiza-
tion problem min�sdn,Fsdn

��eij�E�0�c�W�ijc
sdn��ijc+dijc�

+�i�V�i
sdn��i+oi�� needs to be obtained first. The opti-

mization problem is subject to constraints (3) and (8).
Then, we estimate its composite price in the same way
as for a lightpath demand with a known RWA scheme.

After the composite price of a lightpath demand is
computed, we can determine the effect of adding or re-
moving lightpath demands on the design objective. We
use NSFNET shown in Fig. 2 as an example. The
static lightpath demands are shown in Table I. We use
the following parameters: P =1000, F =1, W=16, T

TABLE IV
OPTIMIZED LAGRANGE MULTIPLIERS FOR WAVELENGTH

CONVERTERS AT ALL NODES

Node
No.

Optimized
Lagrangian
Multipliers

Node
No.

Optimized
Lagrangian
Multipliers

0 0.36 7 0.36
1 0.09 8 0.35
2 0 9 0
3 0 10 0
4 0 11 0
5 0 12 0
6 0 13 0
ij0 i i
Ri=20, dij=250, and an unlimited number of wave-
ength converters at all nodes. To make a fair compari-
on, we compare only lightpath demands with one fi-
er hop. The lowest composite price of the one-hop
ightpath demands is 250. It is achieved between node
airs (0, 1), (9, 8), (1, 3), and (10, 11). The highest com-
osite price of the one-hop lightpath demands is 747.
t is achieved between node pairs (11, 10), (11, 13), (4,
), and (13, 5). Figure 6 shows the achieved value and
lower bound of the design objective when additional

ightpath demands are added. Case 1 is the achieved
alue and a lower bound for the original lightpath de-
ands matrix shown in Table I. In case 2, one light-

ath demand is added for each of the four node pairs
hat have the lowest composite price. In case 3, one
ightpath demand is added for each of the four node
airs that have the highest composite price. Because
he composite prices are lower than the revenue of a
ightpath demand, which is set to 1000, the additional
ightpath demands are all accepted. Then the
chieved value of the design objective reflects the ad-
itional resource cost. As we expected, adding light-
ath demands with higher composite prices intro-
uces more negative impact than adding lightpath
emands with lower composite prices.

VII. CONVERGENCE SPEEDUP OF THE OPTIMIZATION
PROCESS FOR SIMILAR SCENARIOS

An important feature of our proposed method for
easuring RC is that for two similar scenarios their
C analysis results are similar, too. A scenario is de-
ned as a set of lightpath demands for a configuration
f network resources. When there is a change in the
ightpath demands or the network resources, a new
cenario is formed. Our method preserves the neigh-
orhood property of RC analysis results, which means
hat when a new scenario is in the neighborhood of
he previous one, our RC analysis produces good esti-
ates for the new scenario.

The neighborhood property of our RC analysis lets
agrange multipliers be reused to save computation
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ig. 6. Achieved value and a lower bound of the design objective
hen additional lightpath demands are added.
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time in scenario studies. To study a new scenario, in-
stead of solving a new optimization process, the
Lagrange multipliers obtained from the previous sce-
nario can be reused to speed up the optimization pro-
cess. Note that most other optimization methods such
as the linear programming relaxation method need to
re-solve the whole optimization problem again for any
changes [37,38]. This feature makes our method of
higher practical value in what-if scenario studies.

In the following example, we demonstrate the im-
provement of the convergence speed by reusing
Lagrange multipliers to save the computation time in
similar scenarios. We use the Pan-European network
with 28 nodes and 61 links (shown in Fig. 7). The pa-
rameters used in the example are Pij0=1000.0 for all
lightpath demands, dij=10.0 for all links, Fi=1, Ti
=Ri=18, oi=0, ti=ri=0, for all nodes, and W=16. We
run the heuristic algorithm once every ten iterations
to obtain a feasible solution. The lightpath demands
for the first and second scenarios are shown in Tables
V and VI. The second scenario is a minor variation of
the first one. The variations of the lightpath demands
from the first scenario to the second one are high-
lighted by bold and italic numbers in Table VI.

We compare the number of iterations required for
the convergence of the optimization process. When
studying the second scenario, we use two different
strategies in initializing the Lagrange multipliers:

Fig. 7. Pan-European netw
ork with 28 nodes and 61 links.
TABLE V
IGHTPATH DEMAND MATRIX IN THE PREVIOUS SESSION FOR

THE MULTIPLIER INITIALIZATION

0 0 2 0 0 0 2 0 2 0 0 2 0 2 2 0 2 0 0 0 2 0 0 1 0 2 2 2
0 0 0 2 2 2 0 0 0 2 0 0 0 2 0 2 0 0 2 2 0 2 2 0 2 2 0 2
2 2 0 2 0 0 2 2 0 2 0 2 2 0 0 2 2 2 0 2 2 2 0 0 2 0 1 1
2 0 0 0 0 0 2 2 2 2 0 2 0 2 2 0 2 2 0 2 2 0 1 0 1 0 0 0
0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 1 0 0 0 2
0 2 0 2 2 0 0 2 2 0 0 0 0 2 2 2 0 0 2 0 0 2 1 0 0 0 2 2
1 1 2 0 2 2 0 0 2 0 1 0 2 2 2 0 0 1 2 0 0 0 2 0 0 1 0 1
2 0 1 2 0 0 0 0 0 2 1 0 2 0 0 2 0 2 0 2 0 2 2 1 2 1 1 1
2 0 0 2 2 2 0 0 0 1 0 0 0 0 0 2 0 2 2 1 0 2 0 1 0 0 2 2
0 0 0 0 1 0 1 0 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 1 0 0 2 2
0 0 0 1 0 2 0 0 0 2 0 2 0 2 0 1 0 0 0 2 2 1 0 1 0 2 0 0
1 2 0 0 2 1 2 1 1 1 1 0 0 2 1 0 2 1 2 1 0 0 0 2 0 1 0 2
1 0 0 1 0 0 1 0 2 0 1 0 0 2 2 1 1 1 0 0 0 1 2 2 0 0 2 0
0 0 0 1 0 0 0 2 0 0 1 0 2 0 0 1 0 0 0 0 0 1 2 2 2 0 0 0
2 0 0 0 0 0 1 2 1 1 0 1 0 2 0 0 1 2 0 1 1 0 2 0 2 0 1 0
0 1 0 2 1 0 0 2 2 0 0 0 0 1 2 0 0 0 1 0 0 2 1 1 1 1 0 0
0 2 0 1 0 0 0 1 0 2 0 0 0 2 0 1 0 0 0 2 0 1 0 0 1 0 0 0
1 1 2 0 2 2 0 0 2 0 1 0 2 2 2 0 0 0 2 0 0 0 0 0 0 2 0 2
2 0 1 2 0 0 0 0 0 2 1 0 2 0 0 2 0 2 0 2 0 2 0 0 0 2 1 0
0 0 0 1 0 2 0 0 0 2 0 2 0 2 0 1 0 0 0 0 2 1 0 0 2 0 2 0
0 0 0 0 1 0 1 0 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 2 0 0 2 1
1 0 0 1 0 0 1 0 2 0 1 0 0 2 2 1 1 1 0 0 0 0 2 0 2 0 0 2
1 0 2 0 0 2 0 2 2 0 2 0 1 0 1 0 2 0 0 1 0 0 0 2 0 2 0 1
0 0 1 0 0 1 0 2 0 1 0 0 2 2 0 2 2 0 0 0 2 0 0 0 2 0 1 0
0 1 0 2 0 0 1 2 0 0 0 1 0 0 1 0 2 0 0 0 1 0 0 0 0 0 1 2
2 0 0 0 1 0 0 0 2 1 1 1 1 0 2 2 1 0 1 0 2 0 0 1 2 0 0 0
0 1 2 0 0 0 2 0 0 2 0 1 0 2 0 0 1 0 0 0 1 0 1 0 1 2 0 2
2 2 0 0 0 2 1 2 0 0 0 1 0 2 0 1 0 2 0 2 0 0 1 2 0 2 0 0
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Case A: initializing all the Lagrange multipliers to
zeros.
Case B: initializing the Lagrange multipliers to the
obtained optimized Lagrange multipliers from the
first scenario.

A dramatic difference in the convergence speed is
observed between the two initialization schemes
(shown in Fig. 8). In case B, the computation almost
reached the optimal values after 40 iterations. In con-
trast, in case A, the optimization process does not con-
verge to a similar duality gap until after 400 itera-
tions.

Please note that we have observed similar behav-
iors in many other computation examples, and the
readers are referred to [32,34] for more network sce-
narios.

VIII. CONCLUSIONS

We proposed the use of optimized Lagrange multi-
pliers as a direct measure of resource criticality (RC)
in the context of the routing and wavelength assign-
ment (RWA) problem for WDM networks. Since the
optimized Lagrange multipliers reflect the impact of
resources on the design objective, we showed how the

TABLE VI
CURRENT LIGHTPATH DEMAND MATRIX

0 1 2 0 0 0 2 0 2 0 0 2 0 2 0 0 2 0 0 0 2 0 0 1 0 2 2 2
0 0 0 0 2 2 0 0 0 2 0 0 0 2 0 2 0 0 2 2 0 2 2 0 2 0 0 2
2 2 0 2 0 0 2 2 0 2 0 2 2 0 0 2 2 2 0 2 2 2 0 0 2 0 1 1
2 0 0 0 0 0 2 2 1 2 0 2 0 2 2 0 2 2 0 2 2 0 1 0 1 0 0 0
0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 1 0 0 0 2
0 2 0 0 2 0 0 2 2 1 0 0 0 2 2 2 0 0 2 0 0 2 1 0 1 0 2 2
1 1 2 0 2 2 0 0 2 0 1 0 2 2 2 0 0 1 2 0 0 0 2 0 0 1 0 1
2 0 1 2 0 0 0 0 0 2 1 0 1 0 0 2 0 2 0 2 0 2 2 1 2 1 1 1
2 0 0 2 2 2 0 0 0 1 0 0 0 0 0 2 0 2 2 1 0 2 0 1 0 0 2 2
0 0 0 0 1 0 1 0 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 1 0 0 2 2
0 0 0 1 0 1 0 0 0 2 0 2 0 2 0 1 0 0 0 0 2 1 0 0 0 2 0 0
1 2 0 0 2 1 2 1 1 1 1 0 0 2 1 0 2 1 2 1 0 0 0 2 0 1 0 2
1 0 0 1 0 0 1 0 2 0 1 0 0 1 2 1 1 1 0 0 0 1 2 2 0 0 2 0
0 0 0 1 0 0 0 2 0 0 1 0 2 0 0 1 0 0 0 0 0 1 2 2 2 1 0 0
2 0 0 0 0 0 1 2 1 1 0 1 0 2 0 0 1 2 0 1 1 0 2 0 2 0 1 0
0 1 0 1 1 0 0 2 2 0 0 0 0 2 2 0 0 0 1 0 0 2 1 1 1 1 0 0
0 2 0 1 0 0 0 1 0 2 0 0 0 2 0 1 0 0 0 2 0 1 0 0 1 0 0 0
1 1 2 0 2 2 0 0 2 0 1 0 2 2 2 0 0 0 2 0 0 0 0 0 0 2 0 2
2 0 1 2 0 0 0 0 0 1 1 0 2 0 0 2 0 2 0 2 0 2 0 0 0 2 1 0
0 0 0 1 0 2 0 0 0 2 0 2 0 2 0 1 0 0 0 0 2 1 0 0 2 0 2 0
0 0 0 0 1 0 1 0 0 0 0 0 0 2 0 2 1 0 1 0 0 0 0 2 0 0 2 0
1 0 0 1 0 0 1 0 2 0 1 0 0 2 2 1 1 1 1 0 0 0 2 0 2 0 0 2
1 0 2 0 0 2 0 2 2 0 2 0 1 0 1 0 2 0 0 1 0 0 0 2 0 2 0 1
0 0 2 0 0 1 0 2 0 1 0 0 2 2 0 2 2 0 0 0 2 0 0 0 2 0 1 0
0 1 0 2 0 0 1 2 0 0 0 1 0 2 1 0 1 0 0 0 1 0 0 0 0 0 1 2
2 0 0 0 1 0 0 0 2 1 1 1 1 0 2 2 1 0 1 0 2 0 0 1 2 0 0 0
0 1 2 0 0 0 2 0 0 0 0 0 0 2 0 0 1 0 0 0 1 0 1 0 1 2 0 2
2 2 0 0 0 2 1 2 0 0 0 1 0 2 0 1 0 2 0 2 0 0 1 2 0 1 0 0
ptimized Lagrange multipliers obtained in the La-
rangian relaxation and subgradient method can be
sed to quantify the RC in the static RWA problem.
he proposed RC measurement and its computation
ethod can be applied to a wide range of static RWA

roblems that are formulated as integer linear pro-
ramming problems. Simulation results indicate that
he optimized Lagrange multipliers successfully iden-
ify critical resources and thus help to plan network
econfigurations by adding new resources or reallocat-
ng existing resources and help to estimate the impact
rom the change of network traffics. We also demon-
trated applications of using the results of the RC
nalysis to set the proper price of a lightpath demand
nd to speed up convergence in scenario studies.
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