Peer-to-peer platformsfor high-quality web services:
the case for load-balanced clustered peer-to-peer systems

Ying Qiao, Shah Asaduzzaman, Gregor v. Bochmann

School of Information Technology and Engineerintif 69
University of Ottawa, Ottawa, Canada

Abstract

This chapter presents a clustered peer-to-peeresysds a resource organization structure for web-
service hosting platforms where service qualityhsas response time and service availability are
provided with assurance. The peer-to-peer orgaivonadllows integration of autonomous resources into
a single platform in a scalable manner. In clusteqgeer-to-peer systems, nodes are organized into
clusters based on some proximity metric, and aridiged hash table overlay is created among the
clusters. This organization enables lightweighthtéques for load balancing among different clusters
which is found to be essential for providing resgmtime guarantees. Service availability is prosithy
replicating a service instance in multiple nodesairtluster. A decentralized load balancing techeiqu
called diffusive load balancing is presented in ¢tbatext of clustered peer-to-peer systems andiaied

for effectiveness and performance.
C.1Introduction

Web services are autonomous software systems @halbe advertised, discovered and accessed through
exchanging messages over the Internet using & s&dralard protocols (e.g. SOAP, WSDL, UDDI). The
standard protocols bring the interoperability amdhgse autonomous software systems and allow
creation of more complex and powerful applicatitugh web service composition. This naturally
allows distributed computation through executionddferent components of an application hosted at
autonomous Internet hosts. Computing resources, asiclata, storage and CPU processing power of the

hosts are thus shared by different users acrodstiérmet.

When web services technology makes it easy to lstibuted computing among computers and
applications with different platforms, architectsirand programming languages, the role of disteithut
computing has expanded from assisting daily rostimeside an enterprise to participating in the
interactions among enterprises. However, the ahgdi¢o realize web service applications in a lagme

still remains.

As web services are provided by software executeccamputers on the Internet, situations like

overloaded or failed servers or congested netweakslargely affect the quality of web services, mhe

clients could experience unexpected delay and jitbeaccessing web services. Consequently, thétyual
of a web service application can hardly be guasahteith the unequal performance of its servicess Th

directly challenges the further development of \wetvice applications.

This situation becomes more and more severe witHaitye deployment of web service applications; it
requires a scalable and efficient execution platfdo provide high quality services. This chapter
discusses the usability of a clustered peer-to-pgetem with explicit load-balancing schemes as a
platform for hosting web services. Web servicesdw®n server-pool based hosting platforms or data
centers often suffer from overloaded servers antgested networks due to the static scale of the
platform, which seriously degrades the perceivedopmance of the services. Highly scalable and
adaptable peer-to-peer computing platforms mayedsirable in these scenarios. The capability of -peer
to-peer systems to efficiently organize large numbg Internet-connected computers without any
centralized controller makes it a good candidata plsatform for web services. Although there hagerb
several works proposing the use of peer-to-pedmigoes for web services discovery (Verma, 2005;
Schmidt, 2004), attempts to exploit the scalabiityeer-to-peer computing platforms for qualitgaed

hosting web services are limited.

Peer-to-peer computing platforms are charactetiged huge collection of autonomous and inconsistent
resources. A characteristic behavior of the ressune a peer-to-peer system is their intermitterval
and departure, which is callechurn Explicit techniques are necessary to provideabd and
homogeneous services abstracting this behaviordi€tushow that organizing these autonomous
resources in clusters improves the reliability #melrobustness of the platform (Locher, 2006). @hesl
peer-to-peer systems such as eQuus improves thstnass of the system against churn by organizing
the resources in clusters and replicating the resestates within a cluster; applications built otheese
systems could have a more deterministic performaaag, CligueStream (Asaduzzaman, 2008) for

delivering life video streams over eQuus.

For the heterogeneity of the autonomous resounteéshe uneven distribution of service requests,esom
explicit load balancing mechanism is required t@msth out the performance inequalities towards some
assured level of quality. A load balancing systeam @rrange resources according to the state of
computing nodes and requests, so that the ovesddipnance of the system can be improved. Aftangusi
load balancing techniques, different web services expected to have consistent performance

characteristics across the platform.

Here we propose a hosting platform for web servits#isg a load-balanced clustered peer-to-peermyste

The platform performs load balancing at two levétdgra-cluster, i.e., loads among nodes in a given

cluster are balanced, and inter-cluster, i.e.,daatdong different clusters are balanced. Intratefusad
balancing is achieved through commonly used teclasicguch as request routing, and the inter-cluster
load balancing is achieved through movement ofuess between different clusters. Organizatiorhef t
physical resources in a clustered peer-to-peerlayvearetwork facilitates such resource movement. A
decentralized protocol, namelgjffusive load balancings proposed for low overhead and effective

balancing of load through resource movements betwkesters (Qiao, 2009)

The chapter discusses the peer-to-peer hostinfpiptatfor web services from two perspectives: the
feasibility and advantage of adopting a cluster2® Bystem as a platform for web service application
and the effectiveness of the load balancing schesed for inter-cluster load balancing. The feaisibis
discussed in view of supporting quality of serviggh a clustered P2P system, focusing on service
availability and response time as the two primamaliy metrics. The effectiveness of the proposed
diffusive load balancing scheme in achieving pen@nce objectives is discussed based on simulation

results.

C.2Web Services and QoS

The deployment of Web Services and their use ireevi€-Oriented Architecture (SOA) has many
challenges. One of these challenges is the pravisicertain levels of quality of service (QoS).fi@e
going into discussion of how a clustered peer-tergatform achieves QoS for web services, it efuls
to characterize QoS in the context of web servitiess also useful to discuss the commonly used

techniques for QoS provisioning in existing serpeol based hosting platforms.
C.2.1 QoS Parametersand SLA

Different kinds of qualities can be consideredhis tcontext. The most important qualities are pbbpa
(a) response time (or latency), (b) availabilitydgn) cost. For each of these qualities diffetends of
guarantees may be given. For the response tim@dtance, one may refer to an average responsge tim
possibly with additional information about percésgi For the availability, one would typically icdte
how small the probability is that, at any givendinthe service would not be available. And for ¢bst,
one has to distinguish different schemes, suchiesdyf available (with or without subscription), phy

use, or pay by subscription.

The QoS of a given Web service is often documeintedso-called service-level agreement (SLA). The
service provider organization may for instance hbthis information as a statement about the servi

level that is intended to be provided to the pubhcother situations, a SLA may be part of a cactwal

agreement between the service provider and a uiganiaation, where the SLA describes the level of
response time and availability that the providempises, probably in return for some specified coste
SLA information is also useful for Web Service diaies which provide information about available
Web Services through interactive search or aut@ntpteries. When a Web Service registers in such a
directory, it may provide its SLA information; théme results of a search for a particular servicetion
would provide a list of service instances with th@bS parameters. It would then be easy to find the
service instance with the fastest response tim¢hetowest cost. We note, however, that otherofact
may also be important for the selection of a seryiovider, such as quality of the information pded

by the service, the reputation of the service glenjior the established business relationshipaieady

exists.

As engineering tools for dealing with QoS, one sem@ans for determining the actual QoS provided and
for managing the service system to assure thahterded QoS parameters are attained. Monitorialg to
can be used to measure the actual QoS provideth. t8ots could be used by the user and the service
provider to check whether the SLA is satisfied.t8ys management tools must be used by the service
provider to manage the server hardware and softimaoeder to optimize its performance and to assure
the intended QoS parameters. This is particulahgllenging in the case of services for which the
demand is difficult to forecast. For certain apglions, the load of service requests for varioesumay
fluctuate over the period of a day or over weeksl e other situations suddenly change due to some
external situations. In these circumstances, thevicge provider should be able to adjust the
hardware/software configuration providing the sesvin order to adapt quickly to the changing

requirements.
C.2.2 QoS Provisioning Techniques

Basic approaches for obtaining high-performanaogh-aivailability server configurations are well know
The configuration of a “server pool” consists ofnpadentical or heterogeneous servers that protvide
same service together with an entry point thatibistes the incoming service requests to the differ
servers. Assuming that the hardware has been medhareviously or is available fast enough, it is
relatively easy to introduce additional server® itite pool when the load gradually increases viitie t

By changing the number of servers in the pool,aferage response time can be adjusted. The service
availability largely increases because the faibfra single server has no impact on the availghaftthe

service, as long as the other servers can taketiowdoad.

In this server pool configuration, the entry pdiat the task of distributing the incoming servieguests

such that the load is balanced among all serveithenpool. We call this approach “load balancing

through request routing”. In the case of identisatvers, a simple round-robin algorithm may be
adequate; however, for heterogeneous servers raphesticated approaches may be preferable. For the
traditional Web servers providing HTML pages, theohpem of load balancing is described in
(Bochmann, 2003).

In the server pool configuration considered abdhere is essentially a single service that must be
provided to a very large user community. The situnais different when a large number of different
services are to be provided to a large user contgjumé call this situation “multi-service provisiomg”.

In this case it is not feasible that each servédshthe software and data for all these servicestead, it

is usually assumed that the different serviceslmteibuted over the set of available servers thsaiway
that the load of the different servers would berapimately balanced. This situation is consideffed,
instance, in (Reich, 2008; Mondejar, 2006). In thisiation, one also needs some directory function
which locates the server that provides the semggeested by a user, which in the simplest casebmay
the Directory Name Service (DNS). For load balagcbetween the different servers, it is usually
proposed that in the case of an overloaded seower of the services provided by this server shbeld
moved to another server that is less loaded. Wetlua approach “load balancing through service
movement”. In large server systems, the questiow ho find a server with little load is not

straightforward, as discussed in Section C.5.

For providing high availability in the case of “mitdervice provisioning”, one may also duplicatetea
service over two or more servers. In the casedbiate of the services have a very large load ofagigu
it is also conceivable to use service duplicationldalancing the load, like in the case of senaolf
This may lead to a configuration of a set of “olustl servers”, where the services are distributed the
clusters and each cluster of servers is responBibla certain set of services. The minimum sizea of
cluster is then determined by the availability iegments of the supported services and the acizemlo$

the cluster may be much bigger if the load of thygp®rted services requires a large number of server

For managing the response time in the case of 4seitiice provisioning with clustered servers, one
needs load balancing at two levels. Within eaclstely the “load balancing through request routing”
approach may be used, as in server pools. Foratamding of the load among the different clustes,
approaches are feasible. One possibility is thadlbalancing through service movement”, as destribe
above. Another possibility, called “load balancitigough resource movement” consists of moving a
server from an under-utilized cluster to an oveded cluster. This approach is further discussed in
Section C.5.4.

C.3 Peer-to-peer systems and their variants

C.3.1 Peer-to-peer systems

A Peer-to-Peer (P2P) system is a form of distrithat@mputing system with autonomous computer nodes
located at distributed locations and connectedheoliternet. The computers, callgeersin P2P jargon,
are usually end-user personal computers, but soraetcomputing servers from service providers. The
characteristic feature of a P2P system is its dealeged nature of management responsibilities.
Computers or peers in a P2P system provide sertaceach other. There is no distinguished diffeeenc
concerning the responsibilities of these peerseér gan take the role of both the client and tineesef

a distributed system in the sense of a client-seavehitecture. Originally, creation of peer-to-pee
systems was motivated by the application of deaénéd file sharing. Gradually, as the versatibfythe
peer-to-peer organization of computers was mor@lggeerceived, applications of peer-to-peer system
have included group communication, multimedia strieg, large scale data storage, and sharing of

computational resources.

A P2P system can be decomposed into a layeredextire with a P2P application layer on the toprof
overlay network layer. These two layers work onabphe IP network layer of Internet that providhe
end-to-end physical connectivity. In this sensés th a three layer system, where the overlay nguti
functionality at the middle is often term asddleware At the P2P application layer, each peer will
perform functions specified by the application, desplaying file directory for a file storage ajaltion,

or playing movie for a multimedia application. Ttxerlay network layer provides a network connecting
all peers and a searching mechanism for the apiplickyer to locate objects among peers. It maista
virtual network topology using physical connecyviof the Internet. Being able to routing lookup
messages in this overlay network, P2P systems dgalynsearch and locate objects without centralize
directory services. The ability of peer-to-peerteyss to self-organize a large number of computedsta
locate objects among these computers across teenétt without any central authority are useful
properties for service hosting platform. The poptyaof peer-to-peer applications such as Skype,
PPLive, and eDunkey, indicates that its scalahitgonomy of cost corresponding to its large scaie,

its capability of providing services on a highlyndynic network are favored by end-users. Howeveg, on
big challenge that a peer-to-peer system faces éfectively guarantee the reliability and perfame

of the services it provides.
C.3.2 Structured and unstructured P2P systems

Peer-to-peer systems are broadly classified imasired and unstructured peer-to-peer systemtheln
structured systems, the peers choose the intercbomeneighborhood following a certain pattern whic

can later be used to facilitate efficient routirfgriessages such as those for object storage akdpom

unstructured peer-to-peer systems, peer interctionedoes not follow any pattern and thus lacks the
efficiency of search in a predefined pattern. Wredtired systems, however, avoid the overhead of
maintaining a predefined structure in the interaantion. A structured P2P system in effect, impletsian
distributed hash table (DHT) in its substrate, imch each peer has a unique identifier. Data objar
placed deterministically at the peers with ideat#i corresponding to the data object’s unique Kéng
interconnection topology of a particular patternrmaintained, such that a request for a particubgead

can be routed to its location solely based on lknailvledge at each peer. There are well studieidniar

of such structured peer-to-peer systems, suchstsyRRowstron, 2001), Chord (Stoica, 2001), Kademl
(Maymounkov, 2002), CAN (Ratnasamy, 2001) and \GggiMalkhi, 2002), which mainly vary in their
interconnection patterns. A popular and well stddexample of unstructured peer-to-peer system is

Gnutella (Oram, 2000). A survey of different peipeer systems can be found in (Bochmann, 2007).
C.3.3 Clustered peer-to-peer systems

In some recently proposed structured peer-to-pgstesis, while creating the interconnection topology
with a particular pattern, peers organize themseiméo groups or clusters. Such clustering actually
provides an in-built membership management senmvicdition to the routing service provided by the
overlay structure. This in-built membership managetitan be exploited for on-demand provisioning of

resources in a service hosting platform.

Overlay layer

Internet

Figure1: A clustered peer-to-peer system organizesthe nodesin a number of clusters. Nodesin a single

cluster may be chosen based on any proximity criterion and may come from different geographic origins.

In the clustered peer-to-peer system eQuus (Lo@2@06), peers that are close-by, based on some
proximity metric, are grouped in a single clusidne proximity metric needs to be such that peensbea
placed in a low-dimensional Cartesian space basetheir distances. For example network latency,
geographic distance, capacity in terms of diffemesiources like CPU and memory, or the type of the
service the peer provides, can be used as thenpitgxinetric. Peers in a single cluster are assigmed
single identifier and the clusters are organized uistributed hash table like interconnection. §hall
peers in a single cluster share the same clusterHdeighborhood table. Also all the peers in thms
cluster know each other. This allows any peer atuater to fail or depart without much consequetace
the rest of the system. Such built-in membershipagament by organizing the peers in clusters allows
easy service replication and request routing iremvise hosting platform where a single cluster is
designated for a single type of service. Later,shew in Section C.5 that balancing of load can be
performed in a decentralized manner by moving nessuamong the clusters to adapt to the varying loa
on different types of services. This is the prifteipalled “load balancing through resource moveinent
Section C.2.2.

C.4 Clustered peer-to-peer system for high quality service hosting

Clusters of computers or server pools are beind tmehosting web services for several years. fydar
number of commodity computers with storage and ggsitig power are aggregated in a data center and
interconnected with a high-speed local area netwéykvide variety of web services provided by many
different providers may be hosted in a single dagater platform. Usually, allocation of these serve
resources to different services are controlleddntralized task schedulers or master controlleese kve
discuss how the resources of a hosting platformbeamanaged in a decentralized way using the fesitur

of a peer-to-peer system organization.

Clustering or aggregating resources in a singleameidone in various forms. In tightly coupledstired
systems, such as super-computers, multiple CPUsonies, and storages are combined in one unit with
high-speed interconnections in a fault-toleranhiecture to provide high reliability and perforneanfor
mission-critical applications such as scientifionguting, air traffic control or financial forecasy.
However, the high cost of building and managings¢hepecial purpose systems limit their usage in a
small scope. For this reason, loosely coupled etadt systems, like pools of commodity computers
interconnected in local-area networks, have gaipepularity as platforms for general-purpose web

service hosting.

For the correctness and liveness of the computatiorthe loosely-coupled clustered systems, studies

have shown several uses of membership managemetacpls. A membership management protocol

organizes all the nodes in the system in a numbgraups, and for each group provides a corretofis
group members to each member of the group. Firsallpf having a membership service allows
disseminating the failure status of individual nr@@asily among the members of the group. This talps
the nodes to easily find a live node to instantatervice. Secondly, when replication of data abjés
necessary for reliability purpose, it is usefulraplicate the objects among the members of a group.
Having a managed group helps to easily updateepkcas with consistency. Third, having a managed
group membership helps allocation of necessaryureee among different services. It is usually redtur
to assign different services to resource-clustéasing the aggregate status of the clusters helpptave
re-allocation of the resources as necessary. Téisheelps prioritizing resources among differemisskes

of services simply by allocating necessary resautoecorresponding clusters. Fourthly, the built-in

membership management helps to construct an efficiger-group load balancing mechanism.

Peer-to-peer systems, as discussed in Section, @@%ide a key-based message routing service in a
large collection of widely distributed computeré key advantage of peer-to-peer systems is that thi
routing function and the maintenance of the routiagles in peers are performed in a completely
decentralized manner. Such decentralized key-baggihg service is used in many computing platforms
for discovery of resources. Clustered peer-to-pgetems provide an additional service of membership
management besides the usual key-based routingesefhat is why we argue that clustered peer-tr-pe
systems are more suitable for a multi-service hggplatform, being better equipped for fault-detact
status dissemination, replica consistency managemesource prioritization and load balancing. In
comparison, the other non-clustered peer-to-pestesys leave these additional mechanisms to be dealt
with by individual applications. For example, insB& or Chord, when used as a platform for a
distributed file system, consistency among replicdsan object is maintained by the file system

application itself, by maintaining and probing tbeations of the replicas.

Having a modular membership management also makdsstered peer-to-peer system more scalable
because it can avoid redundant implementation ohlpeeship management techniques needed for the
different purposes. Also, by allowing better andiela implementation of prioritization in resource
allocation among different types or groups of sasgj and system-wide balancing of load by re-asxgn
resources among different clusters, a hosting giatfbased on clustered peer-to-peer systems yields

better availability and response time characteddr the supported services.
C.5 Load balancing techniques

Load balancing techniques can be applied to aniesysvith multiple computing nodes, for instance,

multi-processor, parallel, or distributed computisgstems. These multiple computing nodes are

organized as clusters. On one side, a load balgretheme determines when and where to move the
load; on the other side, the architecture of a ravdanization in a load balancing scheme deterntiogs
nodes communicate for the purpose of load balandm@ection C.2.3, we introduced three different
approaches of load balancing — request routingjcmovement and resource movement in the context
of improving service availability and response timanulti-service hosting platforms. Here we disgu
the design and evaluation of a diffusive load bealam protocol for the clustered peer-to-peer system
using resource movement, after a brief review afllbalancing techniques commonly applied in other

distributed computing platforms.
C.5.1 Load balancing in distributed systems

A distributed system moves workload from heavilgded nodes to lightly loaded nodes according to a
predefined load balancing scheme to improve itsalvperformance (Casavant, 1988). A load balancing
scheme is a combination of policies that define whad where to initiate a load movement, how to
monitor and collect the system-wide load informatand how to select which workload to move and
where (Leinberger, 2000; Cardellini, 2003). Theesuhs can be broadly classified into two categories,
static and adaptive. Static schemes works withedgdmed set of policy parameters decided baseten
average load of the system (Wang, 1984), while tadapchemes need to monitor the system status and
defines the policy parameters based on the obsestads (Kunz, 1991). Architecturally, these load
balancing schemes may be implemented in a cerddabr in a decentralized manner. In a decentralized
scheme, all nodes can locally decide to start tearisg a load either into it or out from it. Diffent
decentralized schemes vary primarily in terms ofwhstatus of the system is aggregated and
disseminated. Each node may periodically broadtastate, or the advertisement can be limitechéo t
times when the node moves from one discrete stadather (e.g. becoming available from busy) (Livny
1982) . Instead of broadcasting the state, the toakeis willing to trigger some load balancingiawt
may probe a selected subset of other nodes far stedius. This probing can be sender initiated (Zho

1988) as well as receiver initiated (Livny, 1982).
C.5.2 Load balancing in peer-to-peer systems

Load balancing techniques in peer-to-peer systemgeneral, face challenges due to the charagtsrist
of these systems. First of all, the sheer size pker-to-peer system indicates that a load balgncin
technique applied to it must be scalable. Secolhdodes of a peer-to-peer system are not repladas
each other and requests cannot be routed to amdtedein any of the nodes. Alternatively, P2P syste

place or re-place shared objects optimally amondespand overlay routing tables would redirect

requests for these shared objects to the right ;yaae a result, the load of the P2P system can be

balanced.

In all the peer-to-peer systems, an implicit lo&tribution is achieved through random placemerthef
nodes in the overlay structure through random assgt of node identifiers. However, they lack the
capability to adjust the placement of the objeotsyeroute the requests, based on changing load in
different parts of the system. Some explicit andpite load balancing techniques are applied inyman
systems. Combined with techniques of dynamic lealeincing, object placement and node placement are

two types of load balancing techniques used in $§2fkms.

In object placement techniques, objects are platdightly loaded nodes either when they are ieskrt
into the system (Byers, 2003) or through dynaméxdlbalancing. In the latter case, objects candredt

in virtual servers and moved from nodes to nodeao(2003; Godfrey, 200§urana, 2006adopted a
distributed directory approach similar to a loadabaing scheme with partitioned group architecture.
Each node reports its node status to a directarg, laad is balanced in each directory. In order to
globally balance the system, a node registers ¢ocobthe directories of the system; after it stdse for
some duration, it will leave the directory and ster in another one in turn. (Zhu, 2005) propasdd

ary tree architecture for load balancing, where theeinnodes and the root of the tree aggregate load
statuses of their sub-trees, and the root dispéingeaverage load status of the system to all nddes
the tree. Accordingly, each node can dynamicallntdy its relative load situation. In this kind of
hierarchical architecture, load can be balancemh ftioe leaves to the root according to the aggregate

load information at inner nodes.

Using the principle of load balancing through reseumovement, nodes can be placed or replaced to
locations with heavy load. For example, the Merclogd balancing mechanism moves nodes from
lightly loaded data ranges to heavily loaded ran@mwrambe, 2004). Nodes are connected into a ring,
and each node periodically samples the ring witarmlom walk, which selects nodes from the routing
tables as next hops. Using an estimation basedraplsg, a node is able to detect a lightly loadetye,

and request a node from there to move to its neigidod if it is overloaded.

(Ganesan, 2004) proposed a load balancing mechahetnmtombines both object placement and node
placement in a P2P system. Nodes are connecteagthi linear chain, and each node balances its load
with its two consecutive neighbours. If a node alasady balanced its load with its neighbours arigl i
still overloaded, it will select a lightly loadeade in the system to hand over some of its loaforBe
this movement, the lightly loaded node will shedddilits current load to its own neighbors. Thedoa

balancing operations occur when a data objectsisriad or deleted, and nodes are connected thaough

extra skip list according to their load information top of the linear chain; this requires frequgrdates

of the skip list when the load situation changes.

One common aspect in the dynamic load balancingniques for P2P systems is that they can achieve
global load balancing through local balancing pdates. Local balancing means that balancing occurs
among nodes in a certain scope, e.g., the two inateedeighborhoods of a node in a linked list,a@ns
subset of nodes in the system, e.g., some noddsmdy selected. Each decision component that runs a
load balancing procedure has a scope within whiskarches targets: overloaded nodes or underdoade
nodes (senders and receivers) for possible loafaes. The scopes of different decision components
may overlap; if this overlapping leads to globahwectivity among all local scopes, the system has t

property that it will be balanced when all locabges are balanced.

Some load balancing techniques for P2P systemd bxita connections between the nodes on top of the

overlay network structure. For instancek-ary tree requiregn-1) connections for aggregating and
disseminating load statuses, and a skip list usesah of (3n—2-1log,n) connections for ordering

nodes according to their load statuses. These ctians are maintained during the life time of tbad
balancing procedure. When the overlay network egpees churn, these connections are highly dynamic

as well.

We propose a diffusive load balancing scheme forcired clustered P2P system using a DHT, where
each cluster works as a decision component ruramipgpcedure to locally balance the loads among its
neighboring clusters. The load balancing amongntiges of a given cluster is assumed to be performed
by some other intra-cluster balancing mechanisnth\Wbth inter-cluster and intra-cluster load balagc

the system achieves a global balance. All the ngessancluding load reports from neighbors and the
dissemination of load transfer decisions, are traited through existing inter-node connections. d.-oa
transfers between clusters are realized throughingaw node from an under-loaded cluster to an over-

loaded cluster.

C.5.3 Diffusive load balancing

In a diffusive load balancing, a heavily loaded poment sheds portion of its load to any of lessiéol
components in its “local domain”. A diffusive lodmhlancing policy is a policy having three aspects
(Corradi, 1999): each component individually perierload balancing; load balancing is achieved Igpcal
in the domain of a component; each local domaitiglyr overlaps with other local domains, and, all
components of the system must be covered by domérosn these aspects, we can see that diffusive

load balancing policies are simple, where mességesollecting statuses and load migration are only

transferred in a local domain; also, they are effiton achieving global balancing with a small amto

of message overheads.

Diffusive load balancing policies can be classifatording to two aspects: decision making and load
migration. While making a decision, the componeval@ates its local state through collecting load
statuses from other components in its domain; witbender-initiated policy, after evaluating itsadf
overloaded, it initiates a load migration to a reeein its local domain; with a receiver-initiatgalicy,

the component will initiate a load migration ifig under-loaded. Also, a component could decide on
senders and receivers in its domain and initiagel Imigrations among them (termed as a directory-
initiated policy). Each component is only allowedgarticipate in one load migration action at aetim
either sending or receiving, which prevents it fr@oeiving or shedding loads multiple times atsame

time.
C.5.4 Diffusive load balancing for clustered peer-to-peer system

The load balancing in a clustered P2P system hadewels: intra-cluster, i.e., loads among nodea in
given cluster are balanced, and inter-cluster, loads among different clusters are balanced.e8sarch
has already intensively studied intra-cluster lbathncing, we propose to apply diffusive load beilam

in the system at the inter-cluster level based hen @ssumption that intra-cluster load balancing has

already been implemented inside each cluster.

We adopt resource movements instead of service meavefor load balancing. Resource movement is
performed by re-allocating resources from one sentd the other, which means re-assignment of
computing nodes in a loosely coupled networked agmg platform. For peer-to peer systems, node
movement involves reconfiguring the neighborhodaeaf the concerned nodes, which is very simple
compared to moving the service across long-distaeteork. This also helps avoiding the overhead of

maintaining data consistency among a large numbeodes.

C.5.4.1 Choice of theload index: available capacity

A dynamic load balancing scheme identifies theesyisttatus according to a load index for each nade.
load index should correctly reflect the amountoafd at a node, and from this index, the performafiece
node could be evaluated. CPU queue length is géneraferred as a load index (Ferrari, 1986; Zhou
1988; Kunz, 199lbecause it has a strong correlation with the meapanse time of tasks at the node.

Other load indexes include utilization, requespasse time and available capacity.

We adopt the average of the available capacitiéheohodes in a cluster as the load index for th&ter,
as proposed in (Zhu, 1998) and (Raman, 2003). UsingM/1 queuing model, it can be shown that the

average response time at a node is the inverde @ailable capacity of the node; this means tila¢n

two nodes have the same available capacity, evitieyf have different maximum capacities, their mean
response times, for a given request, will be thmeséQiao, 2009). Under the assumption that the load
among the nodes in each cluster have been baldmgedsing some intra-cluster load balancing
procedure, and the load among different clustessbieeen balanced by the here described procedure, al
nodes in the system will have an available capatdge to the overall mean. Hence, the mean respons

times of all nodes are close to an average value.
C.5.4.2 Inter-cluster diffusiveload balancing algorithm

Using the average available capacity as load ingl@sh cluster iteratively runs a diffusive loadanaing
procedure which identifies the state of its ownwasdl of its overlay neighbors, and makes decisions
concerning possible load movements with these beigh We use the traditional meaning of sender and
receiver here: a sender is a cluster that transfer®ad out, and a receiver cluster transfersl loa
Because node movement is used here instead ofmoadment, nodes are in fact transferred from the

load-receiver cluster to the load-sender cluster.
We describe in the following the diffusive load &xating (LB) procedure in terms of four phases:

» LB triggering the execution of LB is triggered by a timeout mvafter a predefined amount of
time from the last LB execution, or a state chaegent when the cluster becomes either receiver

or sender.

+ Load determinationFirst, the cluster determines its own load stasisvell as the load status of
its neighborhood through sending probing messagéts tneighbors, and waits for responses

from them; a probed cluster responds with its lioaex.

» Decision: Dynamic thresholds are used to determine whettwduster is considered overloaded
or under-loaded. First, the load average is caledléor all the clusters in the neighborhood. Then
the upper and lower load thresholds are calculatad the formula: threshold =
average_neighborhood_index * (1 +/- bound). Thenblois given in percentage of the average
load. A cluster is a candidate receiver (sendetad if its load index is smaller (larger) thae th
lower (upper) threshold. The purpose of the decigoocedure is to identify one or several
receiver-sender pairs and send a load transfeeséda the receiver of each pair, including as
parameters the ID of the selected sender (whidhestarget for the node movement) and the
amount of load it requires to reach the load awe(aglled required capacity). The details of the

decision procedures depends onltbeationpolicy:

» Directory-initiated: the cluster identifies one or several receivedsenpairs, as

appropriate.

* Sender-initiated if the cluster is a sender, then it tries to idfgna corresponding

receiver in its neighborhood.

» Receiver-initiatedif the cluster is a receiver, then it tries to itiigna corresponding

sender in its neighborhood.

» Load transfer Note that nodes are moved from a load-receivestet to a load-sender cluster to
bring the balance. After a receiver cluster recemae instruction of node movement, it will select
nodes from its own, delete them from its membersikipand let them join the sender cluster. It
is important that the node movement should note#us state of these clusters to be changed to
the opposite, e.g., an under-loaded cluster becowetoaded, or, an overloaded cluster becomes
under-loaded. A receiver can only transfer outpgbegion which is over the load average, and we
call it transferable capacity; in order to avoitstsituation, the transferred portion should beselo
to the smaller one of the required capacity andrdnesferable capacity.

The required capacity for an overloaded clusterrdach the average load status of the
neighborhood is the difference between the cuiead index of the cluster to the average load
index of the neighborhood multiplied by the numbémodes in the cluster. As our algorithm

only moves a single node at a time, the requirpacity of that node could be calculated as:

required_capacity = average_neighbourhood_indexifrént_size + 1)

— current_indexcutrent_size
C.5.4.3 Theinter-cluster diffusiveload balancing procedure

A procedure is designed to realize the above dlguariThe state diagram of the procedure is shown in

Figure 2, where each state corresponds to a plidise algorithm.

Each cluster selects a leader among its nodes;ntides acts as coordinator for the load balancing
procedure. As in diffusive load balancing, a clust®uld participate in the neighborhoods of several
other clusters. When the coordinator of a clustels fbefore finishing a round, the round will be
discarded. Another node will be selected as a @oatar and will start a new round. Those coordirgto
also take responsibility for monitoring the loadtss of their own cluster and respond to the ppbin

messages and load transferring instructions frdraratlusters.

response

Load
Determination

GetResponses
Timeout
sleeping

Send load transfer Decision
instructions

Figure 2. The state diagram of the load balancing procedure

Send Probe
Messages

Triggering
Timeout

As the load balancing procedures coordinated bferdifit clusters are not synchronized, the load
balancing protocol uses asynchronous messagingn\V@hsoordinator is in the “Load Determination”
state, it waits for responses from the probed etsstSince the existing inter-cluster connectiohthe
clustered P2P system are used to transfer the gess$ar load balancing, the health of the connastio
can be monitored by the functions in the P2P oyeiad the time for transferring messages can be

estimated.

However, a cluster can participate only in one nomd&ement at a time. If the cluster is participgtim a

node movement, the coordinator will refuse any taltkl request for node movements.

C.5.5 Evaluation of diffusiveload balancing

In order to evaluate the effectiveness and perfoomaf the diffusive load balancing in the contekt
clustered peer-to-peer systems, we performed desieralation studies. We compared the effectiveness
and performance of three different location policiedirectory initiated (DI), receiver initiated IjRand
sender initiated (Sl), as introduced before. We a@lsmpared them with an idealized scheme, called
central directory (CD), where a single directorylexis status information of all clusters in thestgyn
and makes inter-cluster load balancing decisiotisguthe same kind of decision criteria as the other

schemes.
C.5.5.1 Simulation setup

We have implemented the load balancing proceduté thie three different location policies in a

simulation of a clustered DHT overlay network (adified version of eQuus). eQuus [1] is a structured
P2P overlay which was proposed to improve thelvitilia and robustness of a DHT overlay networks. In
eQuus, the nodes are organized into clusters aogotd a proximity metrics, and the clusters are
connected using a DHT mechanism: each clusteeigtifted by a unique ID, and the DHT routing tables
are constructed based on these IDs. The systemteagluster connections similar to Pastry usingfig

matching in its routing algorithm; therefore thenrber of steps in a lookup procedure is bound by

O(logN), where N is the number of clusters. There are no super)oglech entry in a routing table
contains up t& nodes belonging to the same cluster; a node daot senode from thedeneighbors to

forward a lookup message.

In addition to the operations in regular DHT systean eQuus system manages the size of its clmsters
keeping their sizes in a fixed range by performgitting and merging operations of clusters;
correspondingly, the system is able to adjust ¢idimg tables. Within an eQuus, the size of a elustay
change through churn (nodes leaving or joiningsystem). Only when the size of a cluster violabes t
given size limits, are the cluster splitting or gieg operations invoked. Therefore, the number of

messages for updating the routing tables is redasedompared to P2P systems without clustering.

For our simulation, we constructed a clustered pe@eer system consisting of 10,000 nodes of equal
capacity. In our simulation, the proximity critemidor cluster formation of eQuus is relaxed: a nousy

join any cluster, so that, the system could allber hode movements between any pair of clusters. The
average size of a cluster was 8 (varying betweamd!16). We evaluated inter-cluster load balancing
only and it is assumed that the load among nodeddra cluster are balanced by some other mechanism
The simulation starts from an initial state wheaghecluster is assigned a workload that widelyesri
among clusters. Thieoundparameter that defines whether a cluster is oaddd or under-loaded is set
to +/-20%. The simulated load balancing algorithees moving nodes between different clusters in

rounds and the simulation stops when there is e noovement in the last round.

When a cluster is probed during a node movemem, dbordinator returns a load index which
corresponds to the expected load situation afeemthde movement; the coordinator is able to estimat
this value based on the last recorded load indexlas capacity lost or gained from the node movémen
However, the coordinator would discard another lvadsfer request before it finishes the currerd. on

For this reason, the delay of node movements isadidered in our simulation.

C.5.5.2 Effectiveness of the different load balancing schemes

To evaluate the effectiveness of different schemesneasured the variation of loads among different
clusters at the end of the simulation (standardatien anddelta= maximum - average). The capacity of
the nodes is assumed to be homogeneous acrosgstamswith each node being capable of executing a
maximum of 10 units of load. At the initial statgch cluster is assigned a random workload uniforml
distributed between 0 and the maximum capacityhefdluster. The histogram of the initial workload

across different clusters is shown in Figure-3a.

140 T T 140 — T

—T 140 T T T T

T T T T T T T T T
l‘Jefor‘eBaiancw‘ng central directory directory-initiated
120 - — 120 q 120 —

100 | q 100 |- B 100 | B

80 q 80 B 80 B

number of cliques
number of cliques
number of cliques

60 q 60 B 60 B

40 | B 40 4 40 | 4
20 q 20 1 20 —
0 7 I ML L 0 T S R R - I oy e
0 1 2 3 4 5 6 7 8 9 10 11 12 0O 1 2 3 4 5 6 7 8 9 10 11 12 0O 1 2 3 4 5 6 7 8 9 10 11 12
mean availale capacity mean availale capacity mean availale capacity
140 — T T T — T T T T 140 — T T T T T T T T T
sender-initiated receiver-initiated
120 - q 120 - q
@ «
o o
S S
g 100 q g 100 q
S S
S S
5 80 q 5 80 4
£ £
2 60 1 2 60 1
40 g 40 | g
20 - 1 20 - 1
0 1 1 1 1 1 1 1 1 1 0 1 L ERRE 1 I 1
0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12

mean availale capacity mean availale capacity

Figure 3: Distribution of load in different clusters. (a) before balancing, (b) through (e) after balancing

Except for the receiver-initiated scheme, the thodeer schemes balance the load tightly around the
average load of the clusters. The directory-irgtlascheme reaches a load distribution, where the lo
index has a high maximum near the mean; with thdeseinitiated and the receiver-initiated schenhes t
load index of the clusters is more spread betweenawer and upper thresholds. In the receiveraitait!
scheme, there are still some overloaded clustenainéng when the simulation stops. This is because
cluster makes a decision on node movement only itHdentifies itself as a receiver; in the casatth
cluster is not a receiver, node movements will aotur in its local domain, even when there are
overloaded clusters in the domain. The load distitins after load balancing for all the schemes are

shown in Figure 3(b-e).
C.5.5.3 Performance of the load balancing algorithm

To evaluate the performance, we measured how n@myds each variant of the load balancing scheme
would take to converge. We also measured the numbeode movements that occurred in each case
(Table 1). The simulation setup is the same astteeused for evaluating a homogenous system. We
observe that the central directory scheme readiedalanced state with the smallest number of node
movements. Compared with other schemes, the disecttiated scheme spends less rounds but has
more node movements for balancing, which indictibes its fast convergence is based on more load
balancing decisions and node movements. The reeem@ated scheme has slowest convergence with

the most number of rounds.

To visualize how the system gradually progressesmnds a balanced load through execution of the

algorithm with different policies, we display indtire 4 how different measures change with the

progression of balancing rounds. During each roeadh cluster has the opportunity of executingaal lo
balancing procedure once. Figure-4(a) shows thait mbthe node movement occurs during the first
round in all schemes. The directory-initiated schemakes 99% of its node movements during the first
round; while the sender-initiated and the receinéiated schemes only move about 90%. This faster
node movement corresponds to the faster convergehtiee directory—initiated scheme as shown in
Figure 4(b).

Table 1. Comparison of load balancing results

CD DI Sl RI

Std. dev. 1.033 0.709 0.915 1.098

Delta. (%) | 19.63] 19.28 25.14 62.3

rounds 4.3 1.1 3.1 4.9

Node mv. 1680 1942 169% 2013

splits 180 219 200 210

merges 81 126 123 81

T T T T T
central directory —+—
directory-initated ---x---
5r sender-initated ---*---
receiver-initiated &

T T T
central directory —+—
directory-initated ---x---
sender-initated ------
receiver-initiated &

2000 - %
1500

1000

Number of Node Movements
Standard deviation of load index

500 |4

Iteration round Iteration round

Figure 4. Progress of load balancing
C.5.5.4 Load balancing with heter ogeneous node capacities

To exploit the fact that node capacities are hgmmeous in a peer-to-peer system, we modified the
Selectiorpolicies of the load balancing schemes as follalsen a scheme selects a node for movement,
it considers the capacity required for the loaddsercluster to reach the mean load index, and fioks

the load-receiver cluster a node with an availatdpacity closest to the requirement. We call this

capacity-based node selection

In our simulation, we assigned node capacities fiteerrange [100, 5000] with a Pareto distributiathw
shape parameter set to 2, and scale parameter 380t The other parameter remains the same. Rable
summarizes the measured performance results fdiothiedifferent location policies, with the capaeit

based node selection policy and random node sefeptilicy. We observe that the relative differences

among the location policies observed in the homegesa system remain present in the heterogeneous
system. The number of node movements is reduced wéugacity consideration is applied, compared to
random node selection. For instance, in the dirgdtotiated scheme, the movements are reduced by
almost 20%. This indicates that selecting a nodih g6 maximum capacity matching the required

capacity is better than random selection.

Table 2. Comparison of load balancing results with random and capacity-based policy

random Capacity
CD DI CD DI

Std. dev. 5.98 4.5 5.5 4.37
Delta. (%) 19.45 20.56 19.92 19.5

rounds 4.8 1.6 4.4 1.6
Node mv. 1722 2011 1204 1645

split 182 213 128 181

merge 90 119 28.4 83

CD: central directory, DI: directory-initiated

C.6 Conclusion

Server clusters have been already adopted as ablesland high-performance hosting platform for
websites and web-service based applications. Theitralized resource-management structure, however,
does not allow resource sharing among autonomosguree providers. In this chapter, we give
arguments for a web service hosting platform witlstered peer-to-peer organization of resource siode
This platform is able to host multiple web serviéesn several providers targeted for a large useeb
through sharing of autonomous resources. It previgieality assurance for services in terms of servic
availability and response time. In other wordsnherits the characters of reliability and perfonoa

from server cluster systems and the scalabilitynfpeer-to-peer systems.

For providing assurance of service quality in terofisresponse time and service availability, it is
necessary to distribute and balance the workloaa different resources. In the clustered peer-&r-pe
organization, different services may be assignea rdsources of different clusters. The clustered
organization allows load balancing to be performedtively easily by exchanging the node-positions
the cluster structure. Thus, necessary resouragebeallocated to an overloaded cluster to baldinee

load.

Assuming that load among different nodes insidiuster are balanced using some known technique, we
proposed a diffusive load balancing algorithm tamdurct the inter-cluster load balancing by moving
resources between clusters. As the available digmoif clusters are equalized in this way, th@oase
times provided by the different clusters for th&etent services approach an overall mean value. Th
load balancing algorithm works in decentralized nearbased on the local knowledge of the load of the

clusters in the neighbourhood within the peer-tergeverlay.

Through simulation study, we measured the effenge and performance of the load balancing
algorithm for three different decision schemes, elgndirectory-initiated, sender-initiated and rigee-
initiated. The directory-initiated scheme convertgester and results in a smaller variance of laadray
the clusters, compared to the other two schemesvekder, it results in a larger number of node-
movements. In general, the fast convergence dbtms of clusters around the mean value, demoastrat
the effectiveness of the diffusive load balancifgpathm for the clustered peer-to-peer servicetihgs

platform.

However, several problems regarding this platfoemain to be solved. In our discussion we explained
the technique to balance the load equally amorgtanis. This would result in a single level of gtyafor
all services. However, different services may regdifferent response times, and different useng aisk
for the same service with different response timié® question of how different classes of servigits

different levels of quality could be provided irethroposed platform, needs further investigation.

The QoS of web services is often described by rdiftiensional attributes. In addition to availagilénd
performance, which we discussed here, reputatiice,docality, and other aspects need to be censi
as well. It is possible to create different quaptgfiles for different classes of services basedlifferent
value-ranges of these attributes. Cluster of ressumay be created to support each of these classes

However, how to maintain the quality profile of baaf these clusters, remains a problem to be solved

There are also some implementation hurdles thal teede resolved. For example, when resources are
moved between clusters, services may need to betetgbetween nodes inside a cluster. Techniqees ar

needed for encapsulating a stateful service inceoontainers to facilitate live migrations.

In summary, with a proper implementation, the dtesd P2P organization is an efficient way to manage
resources in a large-scale web service hostindophat with assurance for various attributes of gmrv

quality.

References

Asaduzzaman, S., Qiao, Y. & Bochmann, G. (2008u@iStream: An Efficient and Fault-resilient Live
Streaming Network on a Clustered Peer-to-peer @yeth Proceeding of 8 International Conference
on Peer-to-Peer Computingachen, Germany, 2008.

Bharambe, A. R., Agrawal, M. & Seshan, S. (2004&rddiry: supporting scalable multi-attribute range
gueries. InProceedings of the 2004 Conference on Applicatidreshnologies, Architectures, and
Protocols For Computer CommunicatiddlGCOMM '04. ACM, New York, NY.

Bochmann, G., Wong, J. W., Lau, T. C., Bourne, Bxans, D., Kerhervé, B., Salem M. V. & Ye, H.
(2003). Scalability of Web-based electronic comraesgstems, IEEE Communications Magazine, July
2003, Vol. 41, No. 7, pp. 110-115.

Bochmann, G. & Jourdan, G. V. (2007). An overvieihcontent distribution and content access in peer-
to-peer systems (invited paper) Rroceeding of NOTERE Conferenddarakech (Maroco), June 2007.

Byers, J., Considine, J. & Mitzenmacher. M. (20@jnple Load Balancing for Distributed Hash Tables.
In Proceedings of the 2nd International Workshop oerRe-Peer Systems (IPTPS '0Bgbruary 2003.

Cardellini, V., Colajanni, M. & Yu, P. S. (2003).eRuest redirection algorithms for distributed web
systemslEEE Transaction on Parallel Distributed Systeral. 14, no. 4, pp. 355-368, 2003.

Casavant, T. L. & Kuhl, J. G. (1988). A taxonomy stheduling in general-purpose distributed
computing systemdEEE Transactions on Software Engineetringl. 14, no. 2, pp. 141-154, Feb.,
1988

Corradi, A., Leonardi, L., Zambonelli, F. (1999)iffDsive Load-Balancing Policies for Dynamic
Applications.IEEE Concurrency, vol. 7, no. fip. 22-31, Jan.-Mar. 1999,

Ferrari, D. & Zhou, S. (1986). A load index for @nic load balancing. iRProceedings of 1986 ACM
Fall Joint Computer ConferendBEE Computer Society Press, Los Alamitos, CA,§§:1-690, 1986

Ganesan, P., Mayank, B. & Garcia-Molina, H. (20@)line Balancing of Range-Partitioned Data with
Applications to Peer-to-Peer SystemsVirDB, 2004

Godfrey, B., Lakshminarayanan, K., Surana, S., KBtp& Stoica, I. (2004). Load balancing in dynamic
structured P2P systemi&NFOCOM 2004. Twenty-third Annual Joint Conferemméehe IEEE Computer
and Communications Societiggol.4, no., pp. 2253-2262, vol.4, 7-11 March 200

Kunz, T. (1991). The Influence of Different WorkbbaDescriptions on a Heuristic Load Balancing
SchemelEEE Transactions on Software Engineeringl. 17, no. 7, pp. 725-730, Jul., 1991

Leinberger, W., Karypis, G., Kumar, V. & Biswas, 2000). Load balancing across near-homogeneous
multi-resource serversieterogeneous Computing Workshop, 2000. (HCW 2B@i)eedings. 9th vol.,
no., pp.60-71, 2000

Livny, M., & Melman, M. (1982). Load balancing lomogeneous broadcast distributed systems. in
Proceedings of the Computer Network Performancep8gmam ACM, New York, NY, 47-55, 1982

Locher T., Schmid, S. & Wattenhofer, R. (2006). aQUA Provably Robust and Locality-Aware Peer-to-
Peer Systentixth IEEE International Conference on Peer-to-P@emputing (P2P'06) 2006

Malkhi, D., Naor, M. & Ratajczak, D. (2002). Vicserca scalable and dynamic emulation of the buiterfl
In Proceedings of the Twenty-First Annual Symposium Poimciples of Distributed Computing
(Monterey, California, July 21 - 24, 2002). PODE.'&CM, New York, NY, 183-192.

Maymounkov, P. & Maziéres, D. (2002). Kademlia: Aelrto-Peer Information System Based on the
XOR Metric. InRevised Papers From the First international Worksba Peer-To-Peer Systeifdarch

07 - 08, 2002). P. Druschel, M. F. Kaashoek, and. ARowstron, Eds. Lecture Notes In Computer
Science, vol. 2429. Springer-Verlag, London, 53-65.

Mondejar, R., Garcia, P., Pairot, C. & Gomez Skaané. F. (2006). Enabling Wide-Area Service
Oriented Architecture through the p2pWeb Model. Aroceedings of the 15th IEEE international
Workshops on Enabling Technologies: infrastructeoe Collaborative Enterprise§une 26 - 28, 2006).

WETICE. IEEE Computer Society, Washington, DC.

Oram, A. (2000). Gnutella and Freenet Represerg Tachnological Innovation. Whitpaper, 2000.

Qiao, Y. & v. Bochmann, G. (2009). Applying a difue load balancing in a clustered P2P system™In 9
international conference on New Technologies oftribisted Systems (NOTERE), Montreal, Canada,
2009, (submitted for review).

Raman, B. & Katz, R.H. (2003). Load balancing andbiiity issues in algorithms for service
composition.INFOCOM 2003. Twenty-Second Annual Joint Conferesicéhe IEEE Computer and
Communications Societies. IEEKOI.2, no., pp. 1477-1487 vol.2, 30 March-3 AgA03

Rao, A., Lakshminarayanan, K., Surana, S., Karp& Stoica, I. (2003). Load Balancing in Structured
P2P Systems. IRroceeding of 2nd International Workshop on PeeRéer Systems (IPTPS '02D03

Ratnasamy, S., Francis, P., Handley, M., Karp, RSh&nker, S. (2001). A scalable content-addressable
network. In Proceedings of the 2001 Conference on Applicatidreghnologies, Architectures, and
Protocols For Computer Communicatiol@@GCOMM '01. ACM, New York, pp. 161-172.

Reich, C., Bubendorfer, K., and Buyya, R. (2008). Autonomic Peer-to-Peer Architecture for Hosting
Stateful Web Services. IRroceedings of the 2008 Eighth IEEE internationgmosium on Cluster
Computing and the GriMay 19 - 22, 2008). CCGRID. IEEE Computer Soci8thashington, DC, 250-
257.

Rowstron, A. & Druschel, P. (2001). Pastry: Scaallistributed object location and routing for krg
scale peer-to-peer systemsMiddleware 2001, LNCS 2218, pp.329-350, 2001.

Schmidt, C. & Parashar, M. (2004). A Peer-to-Peppréach to Web Service Discovemiorld Wide
Web7, 2 (Jun. 2004), 211-229.

Stoica, |., Morris, R., Karger, D., Kaashoek, M &Balakrishnan, H. (2001). Chord: A scalable pter-
peer lookup service for internet applications.Pioceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols For Cotap CommunicationdSan Diego, California,
United States). SIGCOMM '01. ACM, New York, NY, +480.

Surana, S., Godfrey, B., Lakshminarayanan, K., KRip& Stoica, I. (2006). Load balancing in
dynamic structured peer-to-peer systemsrformance EvaluationVolume 63, Issue 3, , P2P
Computing SystemBlarch 2006, Pages 217-240.

Verma, K., Sivashanmugam, K., Sheth, A., Patil, @undhakar, S. & Miller, J. (2005). METEOR-S
WSDI: A Scalable P2P Infrastructure of Registries $emantic Publication and Discovery of Web
ServicesInf. Technol. and Managemeit 1 (Jan. 2005), 17-39

Wang, Y. T. & Morris, R. J. T. (1985). Load ShariimgDistributed Systems.|EEE Transactions on
Computersyol.C-34, no.3, pp.204-217, March 1985

Zhou, S. (1988) A Trace-Driven Simulation Studydfnamic Load BalancindEEE Transactions on
Software Engineeringol. 14, no. 9, pp. 1327-1341, Sept., 1988

Zeng, L., Benatallah, B., H.H. Ngu, A., Dumas, Malagnanam, J., & Chang, H. (2004). QoS-Aware
Middleware for Web Services CompositidBEE Trans. Softw. En@0, 5 (May. 2004), 311-327.

Zhu, H., Yang, T., Zheng, Q., Watson, D., IbarraHO & Smith, T. (1998). Adaptive Load Sharing for
Clustered Digital Library Servers. IRroceedings of the 7th IEEE international SymposwmHigh
Performance Distributed Computiriduly 28 - 31, 1998).

Zhu, Y. & Hu, Y. (2005). Efficient, proximity-awar®ad balancing for DHT-based P2P systelBEE
Transactions on Parallel and Distributed Systeuwd, 16, no.4, pp. 349-361, April 2005

