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ABSTRACT
Although a large number of users are using P2P systems, the

ability of these systems to provide services with quality is

questioned. A load balanced P2P system can provide services

with smaller failure rate and better performance; hence, service

quality of the system can be improved. Cluster systems have been

adopted for services which are tolerant to faults. Although a

cluster structure improves the reliability and robustness of a P2P

system, the load unbalancing problem still remains because of the

heterogeneities of nodes and requests. Existing dynamic load

balancing mechanisms in P2P systems require extra connections

and overhead on aggregating the load status from the nodes. We

propose diffusive load balancing in a clustered P2P systems,

where a global balance is achieved through balancing the

neighbourhoods of all clusters within the existing overlay

network. We simulated three load balancing schemes: directory-

initiated, sender-initiated, and receiver-initiated; from an initially

unbalanced situation, the results show that diffusive load

balancing can achieve a global balance comparable to a

centralized directory scheme, and the distributed directory-

initiated scheme provides better results than the sender- or

receiver-initiated schemes. 

Categories and Subject Descriptors
C.4 [Performance of Systems]: design studies; C.2.4

[Distributed Systems]: Distributed application.

General Terms
Design, Management, Performance

Keywords
Load balancing, diffusive load balancing, peer-to-peer systems,

distributed algorithms, dynamic resource allocation, performance

management, server clusters, clustered peer-to-peer systems

1. INTRODUCTION
A Peer-to-Peer (P2P) system is a form of distributed computing

system with computer nodes located in the Internet. Normally, a

P2P system can be decomposed into two layers: the overlay

network layer and the application layer. The former connects all

nodes and provides lookup function to locate nodes; the latter

performs the actions of an application, for example, file

downloading in a file system, or stream delivery in a video

system. Figure1 shows a P2P file downloading path between two

peers in a file sharing application with its overlay layer network

and the Internet below.

Overlay network

Internet 

Overlay node

Overlay link

Application file downloading

   

Figure 1. An example of a file downloading path in a file

sharing P2P application

The overlay network of a P2P system can be constructed using a

structured or unstructured architecture. An unstructured

architecture randomly connects nodes, and the network is resilient

and robust to node failures; but, lookup messages for finding

objects are broadcast which takes a large amount of message

transmissions and time. A structured architecture associates nodes

according to the associations of objects stored in them; lookup

messages are routed among nodes according to their associations,

and objects are located with a relatively low message and time

complexity, e.g., O(logN) in Pastry and Chord, where N is the

number of nodes; )(
1

ddNO in CAN, where N is the number of

nodes, and d is dimension for the torus of a CAN; but, the

network takes some time to reach a stable state when nodes leave

and join the network.   

The characteristics of P2P systems are studied mainly for better

understanding them and further improving their performance.

Measurements from systems in the real world, e.g. KaZza,

Gnutella, and PPLive, show that, millions of nodes could

participate in an overlay network at a time, and they randomly

join and leave the network. These nodes have heterogeneous
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capacities of resources: processing power, storage space, and

bandwidth; also, the shared objects in the system, i.e., files and

videos, have different popularities, and the popularity of a shared

object changes with time. These heterogeneities cause load

unbalancing among nodes in a P2P application, which results in

some requests experiencing long latency while some nodes are

idle. 

One major issue in a P2P system is the dynamics caused by nodes

leaving and joining the system without any notice. Because of this

dynamics, called churn, the quality of service provided by overlay

networks and applications is not guaranteed; they could

experience long delays, or even failures. 

Cluster systems have been adopted for services which are tolerant

to faults. When a node fails, the service is still available at other

nodes in the cluster. A cluster structure improves the reliability

and robustness of a P2P system, e.g., eQuus system [1]. Also, in a

cluster system, a consistency protocol can be integrated with a

group membership protocol, such that it maintains consistency of

replicas while the cluster is prone to node failures and recoveries

[2], [3]. From the point of view of replica management, in a

clustered P2P system, all objects stored in the nodes of a cluster

can share one group membership mechanism for managing their

replicas; this limits the overhead required for maintaining

consistency of replicas.  

We study load balancing in such a clustered P2P system.

Although, nodes have been clustered in this system, the

heterogeneities of nodes and requests still exist. We proposed

that, loads are balanced among clusters through moving nodes

from lightly loaded clusters to heavily loaded clusters. Installing a

load balancing mechanism, the system will have better overall

performance. Furthermore, with a load balancing mechanism,

clusters can be dynamically resized according to their load

statuses.

We propose to apply diffusive load balancing in a clustered P2P

systems. Similar to an energy diffusion procedure, with diffusive

load balancing, a node balances its load only with nodes directly

connected to it. These directly connected nodes compose a local

domain for the node. A global balance can be achieved through

the balance at all of the local domains. As a diffusive load

balancing policy has a small amount of overhead, and it is

scalable when the size of a system increases, it is suitable to be

applied in a P2P system. To apply diffusive load balancing, a

network must cover all nodes, and local domains must overlap. A

cluster P2P system satisfies these conditions. Our diffusive load

balancing moves nodes from heavily loaded clusters to lightly

loaded clusters in the clustered P2P system; loads at these clusters

related to the total capacity of their resources are changed. In this

way, heavily loaded clusters would have more capacity to satisfy

their requests, and service quality are improved.   

We present general background regarding load balancing schemes

in Session 2. In Session 3, we introduce a clustered P2P system:

eQuus, on which we base our simulation. In Session 4, we

describe our diffusive load balancing procedure according to their

policies and four phases; also, we propose a design of components

running this procedure. In Session 5, simulation results are

discussed from the comparison of loads distribution before and

after the running of a load balancing procedure; the differences of

these schemes under different policies and system parameters are

discussed as well. In Session 6, we conclude the paper.  

2. Background
Load balancing is “the problem of allocation: of mapping and

remapping” workload to “the physical system” [4]. On one side,

a load balancing scheme determines when and where to move the

load; on the other side, the architecture of a node organization in a

load balancing scheme determines how nodes communicate and

migrate loads for the purpose of load balancing. 

2.1 Load balancing schemes
According to its load balancing scheme, a distributed system

moves workload from heavily loaded nodes to lightly loaded

nodes to improve its overall performance [5]. The heavily loaded

node is a sender of load, and the lightly loaded node is a receiver.

A load balancing scheme is a combination of policies. The

policies specify when and where to migrate load for the purpose

of load balancing or sharing. Policies can be classified as follows

[6]: 

• Transfer policy: decides whether a node is suitable to

initiate a load movement; either as a sender or as a

receiver. 

• Location policy: determines another participant in the

load movement after the Transfer policy has decided a

movement.

• Information policy: specifies when and how to collect

system state information.

• Selection policy: specifies which load should be

transferred in a load movement. 

Static load balancing scheme: With a static scheme, loads are

distributed from senders to receivers through deterministic splits

in a random portion or cyclic manner. A static scheme is simple to

implement with no effort in collecting system state information

and easy to achieve with little overhead. However, this scheme

works perfectly only in a homogenous system, where all nodes are

almost the same, and all loads are the same as well. A static

scheme can hardly catch up and react to the dynamics caused by

heterogeneity. 

Dynamic load balancing scheme: A dynamic scheme makes

decisions based on the system status at the current or recent

moment. According to system status information, a node can

decide to be a sender or a receiver through a Transfer policy, and

can decide the peer through a Location policy. A Selection policy

selects a load to be transferred, i.e. small tasks vs. large tasks, or

tasks in waiting state vs. those in running state. Dynamic schemes

result in better performance when its nodes of the system have

heterogeneous capacities of resources, and loads come to the

nodes in a random manner. 

2.1.1 Architecture of dynamic load balancing schemes 

Nodes can be organized in different manners for collecting load

information and making load balancing decisions. The typical

architectures can be classified into centralized, distributed, and

topological. 

In a centralized architecture, a central server receives load status

reports from the other nodes, and senders ask the server to find

receivers for them [7]. Although, systems perform best with this

scheme: tasks obtain the lowest mean response time within a

narrow range, it is not scalable because the management workload

for reporting system status information to the central point
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increases with the size of the system. Furthermore, a central

information center could be a performance bottleneck and a single

point of failure of the system. 

In a distributed scheme, each node has a global or a partial

knowledge of the system status, and it can locally decide to start

transferring a load either into it or out from it. A node could

broadcast its node status periodically through out the system [7],

[8], or, only when its state is changed [8]. In a distributed scheme

with probing policy, when its local status is changed, a node

probes part of the nodes in the system and makes decisions based

on the received responses. Sender-initiated or receiver-initiated

are the two major schemes. With a probing scheme, a sender or

receiver could find its peer through probing a limited number of

nodes [9]. 

Schemes with topological architectures are proposed for systems

with a large number of nodes. In schemes with group partitioning

[10], [11], and [12], nodes can be partitioned into groups, and

load balancing will be performed in each group first, then, a

global balancing will be performed when loads are unbalanced

among groups. In a scheme with hierarchical architecture [13],

nodes are organized into a tree hierarchy, and inner nodes will

aggregate the status information of its sub-trees; load balancing is

performed from the leaves to the root of the tree through the

indication of aggregated status information at inner nodes. 

2.2 P2P load balancing
Load balancing techniques in P2P systems are facing challenges

coming from the characteristics of these systems. First of all, the

size of a P2P system is large, which means that a load balancing

technique applied to it must be scalable. Second, unlike

traditional systems, nodes of a P2P system are not replicas and

requests can not be executed in any node. Alternatively, P2P

systems place or re-place shared objects optimally among nodes,

and overlay routing tables would redirect requests of these shared

objects to the right nodes; as a result, the load of the P2P system

can be balanced. Combined with techniques of dynamic load

balancing, object placement and node placement are two types of

load balancing techniques used in P2P systems.

In object placement techniques, objects are placed at lightly

loaded nodes either when they are inserted into the system [14] or

through dynamic load balancing. In the latter, objects can be

stored in virtual servers and moved from nodes to nodes. [15, 16

and 17] adopted a distributed directory approach similar to a load

balancing scheme with partitioned group architecture. Each node

reports its node status to a directory, and load is balanced in each

directory. In order to globally balance the system, a node registers

to one of the directories of the system; after it stays there for a

duration, it will leave the directory and register another one in

turn. [18] proposed a aryk − tree architecture for load balancing;

where the inner nodes and root of the tree aggregate load statuses

of their sub-trees, and the root disperses the average load status of

the system to all nodes down the tree. Accordingly, each node can

dynamically identify its relative load situation. In this kind of

hierarchical architecture, load can be balanced from the leaves to

the root according to the aggregated load information at inner

nodes. 

In node placement techniques, nodes can be placed or replaced to

locations with heavy load. For example, the Mercury load

balancing mechanism moves nodes from lightly loaded data

ranges to heavily loaded ranges [19]. Nodes are connected into a

ring, and each node periodically samples the ring with a random

walk, which selects nodes from the routing tables as next hops.

According to an estimation value based on samples, a node is able

to detect a lightly loaded range, and move there if it is overloaded.

[20] proposed a load balancing mechanism that combines both

object placement and node placement in a P2P system. Nodes are

connected with a linear link, and each node balances its load with

its two consecutive neighbours. If a node has balanced its load

with its neighbours already, and it is still overloaded, it will select

a lightly loaded node among all nodes in the system to hand over

some of its loads. Before moving, the lightly loaded node will

shed all its loads to its own consecutive neighbours. The load

balancing operations occur when a data object is inserted or

deleted, and nodes are connected through an extra skip list

according to their load information on top of the overlay; this

requires frequent updates of the skip list when the load situation

changes. 

2.3 Diffusive load balancing
In a diffusive load balancing, a heavily loaded component sheds

portion of its load to any of less loaded components in its local

domain; including the portion left itself, the total portions can not

exceed 1. A diffusive load balancing policy is a policy having

three aspects [21]: each component individually performs load

balancing; load balancing is achieved locally in the domain of a

component; each local domain partially overlaps with other local

domains, and, components of the whole system must be covered

by domains. From these aspects, we can see that diffusive load

balancing policies are simple, where messages for collecting

statuses and load migration are only transferred in a local

network; also, they are efficient on achieving global balancing

with a small amount of message overheads. 

Diffusive load balancing policies can be classified according to

their specifications in two aspects: decision and load migration.

While making a decision, the components evaluates its local state

through collecting load statuses from other components in its

domain; with a sender-initiated policy, after evaluating itself as

overloaded, it initiates a load migration to a receiver in its local

domain; with a receiver-initiated policy, the component will

initiate a load migration if it is under-loaded. Also, a component

could decide senders and receivers in its domain and initiate load

migrations among them [distributed]. Load can be migrated from

an overloaded component to less loaded components in its local

domain, or to components in the global domain. In the latter case,

a path is first located from a sender to a receiver, and then load is

forwarded along the path through the intermediate nodes. While

load is migrated, a component is only allowed to participate in

one action, either sending or receiving, which prevents it from

receiving or shedding loads multiple times at the same time. After

one round running of decision and load migration, the component

will reach a local balancing state.

In research of diffusive load balancing, balancing is measured

through the difference between loads of each component and the

average load of the whole system. When the difference is a small

value, e.g. 0.01, the system is said to be balanced. The research on

convergence studies whether the given load balancing policy can

finally balance a system by a limited number of rounds of local
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balancing, and how fast this convergence can be, i.e. the rate of

convergence. It has been proved that a diffusion load balancing

policy can converge in a homogeneous system [22]; this was

generalized to heterogeneous systems in [23]. After each run of

the iteration, the difference becomes smaller; a boundary of

number of iterations exists for the difference reaching the limit.

Networks with different topologies were studied, such as: torus,

grid, and hypercube. With a d-dimensional hypercube, a policy

can converge in d+1 iterations. These load balancing policies are

also studied under the environment where loads dynamically

arrive to nodes. 

These policies are mainly studied for massively parallel systems,

e.g., distributed memory multiprocessor system, or parallel

processing system, whose processors are tightly connected to

provide high speed computing power. In these systems, the

number of components could be as large as thousands; however,

the domain of neighbours for each component is small. These

systems adopt diffusive load balancing policies to fully use the

capacity of their resources and further speed up computations

without the managing of a central controller. 

3. eQuus
As our load balancing will be based on an eQuus system, we

introduce it here. eQuus is a structured P2P system based on

clusters, where its nodes are organized into clusters according to a

proximity metric, and its DHT is constructed among these

clusters. The proximity metric could be the geographic distance,

or the network distance in the Internet which is measured in

number of hops. Unlike other DHT systems, each cluster is

identified by a unique ID. Also, the routing tables are constructed

based on these IDs. There are up to k nodes belonging to the same

cluster pointed to by an entry of a routing table. A node can select

a node from these k nodes to route a lookup message. Meanwhile,

the shared objects belonging to a cluster are replicated among all

nodes in that cluster. 

eQuus has a routing algorithm similar to Pastry, which forwards a

lookup message according to prefix matching. Unlike Pastry, a

node resolves a lookup message by checking if the hash key of the

lookup is located in the range between the ID of itself and its

successor. If this is true, the node returns itself as the final results.

Otherwise, the node will forward the lookup message to the next

hop according to its routing table. The number of steps of a

lookup procedure is bound by O(logN), where N is the number of

clusters in the eQuus.

Nodes in an eQuus system have two levels of connections: intra-

cluster and inter-cluster. At the intra-cluster level, a node connects

with all other nodes in the same cluster. At the inter-cluster level,

a node has connections with k nodes in each neighbour cluster

included in the routing table, which provides k redundancy for

the lookup forwarding, as well as for the application services on

top of the DHT overlay. Each node also stores connections to up

to k nodes in its predecessor and in its successor clusters. During

a lookup procedure, the probability that all k nodes of an entry

would disappear at the same time is very low. 

In addition to the operations in regular DHT systems, an eQuus

system provides two extra operations dedicated to clusters, one is

splitting and another is merging.  

• Splitting: When a new node joins the eQuus system, it

joins a cluster which is the closest to it on the chosen

proximity metric. Its joining only changes the

membership of this cluster. When the size of the cluster

reaches an upper limit, the cluster will start a splitting

operation, where half of the nodes will be in a new

cluster, and another half will stay in the original cluster.

The new cluster takes over half of the hashed keys

which are close to the predecessor of the original cluster

on the ring. Also, it is identified by an identifier in the

middle of two original identifiers. The new cluster

updates entries of its routing table by searching for them

in the overlay. 

• Merging: When the size of an eQuus cluster reaches a

lower bound, the cluster will start to merge with its

predecessor, where all of its nodes join its predecessor,

and its own cluster ID disappears. After merging, the

resulting cluster takes over all of hash keys of both

clusters. Also, the clusters having the merged cluster as

an entry in their routing tables will be notified for its

departure. 

With this architecture, only when node joining or leaving

accumulate to a certain degree, clusters will experience merging

or split, and connections associated with these clusters will be

updated. From this point of view, an eQuus is robust and resilient

to churn. 

4. Diffusive load balancing for a clustered

P2P networks
The load balancing in a clustered P2P system has two levels:

intra-cluster, i.e., loads among nodes in a given cluster are

balanced, and inter-cluster, i.e., loads among different clusters are

balanced. As research has already intensively studied intra-cluster

load balancing, we propose to apply diffusive load balancing in

the system at the inter-cluster level based on the assumption that

intra-cluster load balancing has been implemented inside each

cluster. 

We adopt node movements instead of object movement for load

balancing. Without virtual servers, load balancing through

moving objects can only be realized between consecutive clusters

in the clustered P2P system; in this way, diffusive load balancing

would converge only slowly. With load balancing through moving

node, the overhead of maintaining data consistency among a large

number of nodes in different clusters for moving objects, and the

updating of routing tables in the network is avoided.  

4.1 Choice of the load index: available

capacity
A dynamic load balancing scheme identifies the system status

according to a load index at each node; a load index should

correctly reflect the amount of loads at a node, and from this

index, the performance of a node could be evaluated. It has been

reported that the choice of a load index has a large effect on the

performance of a system [24]. CPU queue length is generally

preferred as a load index [25, 7, and 24] because it has a strong

correlation with the mean response time of tasks at the node.

Other load indexes include utilization, request-response time,

available capacity. 
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The utilization of nodes can be used as load index in a

homogeneous system where the maximum capacities of the nodes

are the same: when two nodes have the same utilization, their

request-response times are the same. However, this is not the case

in heterogeneous systems. CPU queue length can be used in

heterogeneous systems; but it is particularly suitable for load

sharing which uses static thresholds to determine whether load

should be exchanged. Request-response time is used on

dispatching requests among nodes by load sharing scheme as well.

We adopt available capacity as the load index of our load

balancing scheme. It has been proposed in [27] for balancing

CPU and disk storage usage in a digital library. Also, [28] uses a

metric derived from available capacity to balance bandwidth

usage in a network during the routing of service requests. 

We use a M/M/1 queuing model to show that, the average

response time at a node is the reverse of the available capacity of a

node; this means that, when two nodes have the same available

capacity, even if they have different maximum capacities, the

mean response times for a given request will be the same at those

two nodes. We use the notations in [26] to derive the equation (1),

where we have the average response time ][rE , the service rate of a

node µ , the arrival rate of a node λ , and the utilization of a

node ρ . As the service rate of a node is the maximum number of

requests it can process per time unit, and the arrival rate is the

number of requests that are processed per time unit, we can say

that the maximum capacity of a node is its service rate, and the

used capacity is its arrival rate; as a result, the utilization of a

node, which is the ratio of λ and µ , becomes the ratio of its

used capacity to its maximum capacity.  We have 

  ][rE = 1 / (µ – λ) = 1 / (MaximumCapacity – UsedCapacity) 

             = 1 / AvailableCapacity         (1)

Because of this directly relationship between the response time

and the available capacity, we use the latter as load index. Since

we assume that the nodes in a cluster are load-balanced, we may

also assume that they have all the same available capacity within a

given cluster. With inter-cluster load balancing, the available

capacities of the nodes in all clusters will be close to their

average. We do not differentiate requests into multiple classes

here.  

We can calculate the available capacity of a node with equation

(2) after determining its maximum capacity by benchmark tools

and its utilization by performance measurements. Then, the

available capacity of all nodes in a cluster can be combined into

the load index of the cluster: the available capacity of the nodes

within the cluster; by this load index, load balancing procedure

will make decision on node movement, and consequently, the load

indexes among clusters will be changed in the direction to

approach the system average.

AvailableCapacity = MaximumCapacity * (1 – utlization)        (2)

4.2 Diffusive load balancing mechanisms

among clusters
Using available capacity as load index, each cluster iteratively

runs a diffusive load balancing procedure which identifies the

state of its own as well of its neighbours, and makes decisions

concerning possible load movements with these neighbours. We

consider three schemes here: directory-initiated, sender-initiated,

and receiver-initiated; they differ in their Location policy. We use

the traditional meaning of sender and receiver here: a sender is a

node will transfer its load out, and a receiver will transfer load in.

In the directory-initiated scheme, when a cluster runs the

procedure, it locates the senders and receivers among its

neighbours; with sender-initiation or receiver-initiation, it locates

a receiver only when it is sender or a sender only when it is

receiver, respectively. 

We describe in the following the diffusive load balancing

procedure in terms of four phases: 

• LB triggering: the execution of a load balancing

procedure is triggered by a timeout event or a state

change event in a cluster. There is a time duration

between two consecutively runs of the procedure, and

this duration is pre-configured. The procedure is also

activated when a cluster changes its state, either to be a

sender or to be a receiver. 

• Load determination: First, the cluster determines its

own load status as well as the load status of its

neighourhood through sending probing messages to its

neighbours, and waits for responses from them; a

probed cluster responds with its load index. 

• Decision: A parameter, called bound, is used to

determine whether a cluster is considered overloaded or

under-loaded. First the load average is calculated for all

the clusters in the neighbourhood. Then the upper and

lower load thresholds are calculated by the formula:

threshold = average-load-index * (1 +/- bound). The

bound is given in percentage of the average load. A

cluster is a candidate receiver (sender) of load if its load

index is smaller (larger) than the lower threshold. The

purpose of the decision procedure is to identify one or

several receiver-sender pairs and send a load transfer

request to the receiver of each pair, including as

parameters the ID of the selected sender (which is the

target for the node movement) and the amount of load it

requires to reach the load average (called required

capacity). The details of the decision procedures

depends on the Location policy:

Directory-initiated: the cluster identifies one or several

receiver-sender pairs, as appropriate. 

Sender-initiated: if the cluster is a sender, then it tries

to identify a corresponding receiver in its

neighbourhood.   

Receiver-initiated: If the cluster is a receiver, then it

tries to identify a corresponding sender in its

neighbourhood.

• Load transfer: After a receiver cluster receives an

instruction of node movement, it will select nodes from

its own, delete them from its membership list, and let

them join the sender cluster. It is important that the

node movement should not cause the state of these

clusters to be changed to the opposite, e.g., an under-

loaded cluster becomes overloaded, or, an overloaded

cluster becomes under-loaded. A receiver can only
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transfer out the portion which is over the mean, and we

call it transferable capacity; in order to avoid this

situation, the transferred portion should be close to the

smaller one of the required capacity and the transferable

capacity.  

5. Simulation and Discussion
We have built a simulation program for evaluating the

performance of the diffusive load balancing procedures described

above. Also, we compared them with a central directory scheme,

where a single directory collects status information of all clusters

in the system and makes inter-cluster load balancing decisions

using the same kind of decision criteria based on mean and

threshold values. As we are interested in the differences between

these different policies, such as their rates of convergence, the

effect of the threshold parameters and the impact of churn, we

have not taken into account the time and cost of message

transmission and node movement (at the current stage of our

studies); in our simulation, the LB procedures of the different

clusters work sequentially in a random order. We also assume that

the capacity lost during node movement is negligible.

In our simulation study, we assume that a cluster has its own

intra-cluster load balancing and the load indexes are the same at

all of its nodes. To show the speed of load balancing convergence,

we assume in our simulation an initially unbalanced load

situation, were the load index of the different clusters is uniformly

distributed from the lowest value: 0 to the maximum of a cluster.

We study the system with fixed (but heterogeneous) traffic loads

for the different clusters and we assume that the nodes within a

cluster have the same maximum capacity here; heterogeneous

node capacities are considered below. Figure 2(a) is an example

of the histogram of load among clusters before load balancing,

where the load indexes of the clusters are distributed between 0

and 160. 

For the purpose of measurement, we insert time points into the

simulation, and the time duration between two consecutive points

is a measurement round; in one round, each node runs the load

balancing. In a LB decision phase, a node could identify its

neighbourhood as balanced according to the criteria listed in

previous section; in this case, no node movement would occur.

When there is no node movement among all neighbourhoods in

the last round, the system is said to be globally balanced and the

simulation will be stopped. In the real system, the LB procedure

will run from time to time to handle the possible unbalancing of

the system. 

5.1 Load balancing with homogeneous

nodes
We display the histogram of the load index among clusters after

running of LB procedure in Figure 2. The system has 10,000

nodes; the average size of a cluster is configured as 8 (the number

of nodes in a cluster then ranges between 4 and 16 under the

organization of eQuus), and the load balancing bound is

plus/minus 20% of the mean. Figure 2 (b) – (e) show the results of

these four schemes. The figures show the number of clusters as a

function of the load index when the system got into the balanced

state (as defined above). Except the receiver-initiate scheme, these

schemes balance the load tightly around the mean, and especially,

there is no heavily loaded cluster in the system. The directory-

initiated scheme has a histogram similar to the central directory

scheme, where there is a spike existing near the mean; with the

sender-initiated and the receiver-initiated schemes the load index

of the clusters is more spread between the lower and upper

thresholds. In the receiver-initiated scheme, a cluster makes

decision on node movement only when it identifies itself as a

receiver. In the case that a cluster is not a receiver, node

movements will not occur in its local domain, even when there are

overloaded clusters in the domain. This is the reason why with the

receiver-initiated scheme some under-loaded clusters remain.   

                                                (a)

                                                  (b)

                                                (c)
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                                           (d)

                                              (e)

Figure 2. The histogram of loads among clusters before load

balancing (a), and after load balancing, (b) central directory,

(c) directory-initiated, (d) sender-initiated, (e) receiver-

initiated

From Figure 2, we can see that all these schemes can globally

balance the load indexes among clusters in the system through

balancing their neighbourhood. Next, we give some numerical

results about these schemes. Table 1 provides a comparison for

the standard deviation of the load index, the delta of the load

index which is defined as: maximum – minimum, the rounds of

running a scheme to achieve global balancing, and the total

number of node movements that occurred during the balancing

procedure. These values are the average taken from ten

experimental runs for different bounds and different decision

policies. 

Table 1. Comparison of load balancing results

CD: central directory, DI: directory-initiated, SI: sender-initiated,

RI: receiver-initiated

With different bounds configured in the LB decision phase, they

are all able to balance the load indexes to the mean; however, they

have different results. The central directory scheme is an ideal

scheme where the delta of available capacity at clusters is the

smallest for both bounds; meanwhile, it reaches the balanced state

with the smallest number of node movements. A larger bound

causes a larger delta of load indexes; in this case, schemes can

approach the balancing state fast, i.e., the number of rounds to be

balanced with a bound of 50% is less than that for a bound of

20%. Compared with other schemes, the directory-initiated

scheme spends less rounds but has more node movements for

balancing, which indicates that its fast convergence is based on

more load balancing decisions and node movements. The values

of the table confirm the exception of the receiver-initiated scheme,

already indicated in Figure 1, for which the minimum load index

is further away from the maximum; furthermore, the receiver-

initiated scheme uses more rounds. 

5.2 Load balancing with heterogeneous

nodes
As the nodes in a P2P system have heterogeneous capacity, the

Selection policies of the load balancing schemes should be

modified: when a scheme selects a node for a receiver, it should

considers the required capacity for the sender to reach the mean

load index, and pick a node to be transferred having a maximum

capacity close to it; we call this a policy with capacity

consideration. Through such a policy, the number of node

movements to achieve the balanced state would be reduced. 

We have configured the simulator with nodes having capacities in

the range [10, 5000] with a Pareto distribution shape as 2, and

scale as 100 [16]; the other parameters are the same as for Figure

1. Table 2 compares the load balancing results for the different the

schemes for two cases: (a) policy with capacity consideration and

(b) with random selection of  nodes. 

We see from Table 2 that the trends observed in a homogeneous

system remain present in heterogeneous systems, e.g., the

directory-initiated scheme uses a smaller number of rounds to

reach a balanced state with more node movements; the receiver-

initiated scheme is left with some overloaded clusters when the

load balancing procedure stops. Furthermore, the number of node

movements is reduced with capacity consideration, as compared

with random node selection. For instance, in the directory-

initiated scheme, the movements are reduced by almost 15%, and

in the sender-initiated scheme, 16%. This indicates that selecting a

node with its maximum capacity matching to the required capacity

is superior to randomly selection. 

Table 2. Comparison of load balancing results with random

and capacity consideration policy

CD: central directory, DI: directory-initiated, SI: sender-initiated,

RI: receiver-initiated

5.3 Impact to Churn
The load balancing procedure causes node movements and

introduces extra churn into the system. Churn impacts this peer-

7

random capacity 

CD DI SI RI CD DI SI RI

std. 30.37 31.67 37.33 49.19 23.98 30.54 35.59 54.62

delta 129.22 283.83 254.54 418.07 119.08 277.93 291.14 396.11

rounds 4.67 1.17 3.25 3.5 3.08 1.08 3.17 3.17

node movements 1702 1876 1733 1531 1454 1614 1498 1288

20% 50%

CD DI SI RI CD DI SI RI

std. 4.88 4.54 5.78 4.42 10.87 11.2 12.25 15.84

delta 20.76 29.89 36.94 57.84 50.84 80.95 72.99 95.4

rounds 3.08 1.08 3.25 4.42 2 1 2.08 2.33

node movements 1667 1901 1704 1556 1247 1254 1160 937



to-peer system at two levels: intra-cluster and inter-cluster. At the

intra-cluster level, the departure of an existing node or the arrival

of a new one only impacts the cluster membership management.

At the inter-cluster level, such changes may cause the split and

merge of some clusters; in which case the routing tables of the

clusters must be updated. The frequency of splits and merges is

related to the frequency of arrival and departure of nodes, and also

the average size of the clusters. The node movements due to load

balancing have a similar impact at the intra- and inter-cluster

level. 

In order to understand the dynamics of our load balancing

schemes, we display in Figure 3 the number of node movements

(a), the number of splits (b), the drop ratio of the standard

deviations of the load index (c), and the drop ratio of the delta

between minimum and maximum load index (d) as a function of

the number of rounds. The simulator is configured with the same

parameters used in Figure 2.

Initially, the load indexes at clusters are dispersed in the range

from (0, 160) as seen in Figure 2(a) with large standard deviations

and deltas. During each round of the load balancing procedure,

the standard deviation and delta of the load indexes become

smaller; in fact, most of the changes occur during the first round.

The directory-initiated scheme makes 99% of its node movements

during the first round; while the sender-initiated and the receiver-

initiated schemes only move about 90%. Also, the directory-

initiated scheme reduces the delta most quickly during the first

round (Figure 3(d)). Most splits of clusters occur during the first

round, corresponding to the large portion of node movements

(Figure 3(b)). After the first round, there are still some node

movements, and changes of the delta of load indexes can be

observed from Figure 3(b) and 3(d).

If we associate the load status at each round in Figure 3 with the

load state of the system, the initial status could be seen as an

extremely unbalanced state and the final status as balanced. Figure

3 is also a picture showing the migration of system from the

unbalanced to the balanced state. 

                                                (a)

                                            

                                                (b)

                                                (c)

(d)

Figure 3. The status of the system at the end of each iteration

round: (a) number of node movements (%), (b) number of

splits (%), (c) drop ratio of standard deviation of load index

(%), (d) drop ratio of delta between minimum and maximum

load index (%)
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5.4 Impact of cluster size to LB results on

churn
As the load balancing procedure causes churn (i.e. node

movements) in the system, we compare in Table 3 the

performance of the load balancing procedure in systems with

different average cluster sizes. In a system with large cluster sizes,

the probability that a given node movement leads to a split or

merge of clusters is smaller than in systems with smaller cluster

sizes. Therefore we expect that load balancing is more effective in

systems with larger average cluster sizes. 

Table 3. Comparison of network dynamics for different

average sizes of cliques 

Table 3 shows a comparison for three average cluster sizes. The

simulation is based on similar parameters as for Table 2 with

heterogeneous capacities and node selection based on capacity

consideration; in this case, the simulation is more closed to the

real world. The data are aggregated from 10 experiment runnings.

We see that for systems with larger cluster sizes the number of

node movements is reduced, and the number of splits and merges

are also reduced. The table shows that there are few merges

happened during the running of the load balancing procedure. A

cluster merges itself with its consecutive cluster when its size

reaches a lower limit. When the load balancing procedure runs, it

reduces the loss of the capacity due to departing nodes (churn)

through moving nodes from other clusters. From this point of

view, the load balancing procedure is counter-balances churn.

Since we have run our simulation without churn, we have not

explored this benefit of load balancing. This point requires further

study with a dynamic scenarios including churn. 

6. Conclusion
Load unbalance in a P2P system is caused by the heterogeneities

of node capacities and the popularity of their services. Also, churn

(dynamic node arrival and departure) could change the load

distribution among nodes and introduce randomly unbalanced

situations. In a clustered P2P system, the arrival and departure of

nodes changes the capacity of the clusters and affects the

performance of the services they provide. In order to remediate

the unbalanced load situations, due to any reason, we propose to

move nodes from clusters with low load to clusters with high load

in order to equalize the load situations of the clusters in the P2P

system. It is clear that some kind of overhead can not be avoided.

[16] proposed a distributed directory architecture for load

balancing in a P2P system; however, this induces extra network

connections from nodes to directories. [18] proposed a tree

hierarchy for aggregating resource information and managing

resources; but this introduces extra overhead for maintaining the

tree. Diffusive load balancing [21] simplifies the procedure by

achieving a global balance through local balancing procedures. It

does not require extra management connections and maintenance

infrastructure; this improves the efficiency of resource

management in P2P systems. In the diffusive load balancing

scheme described in [20], the nodes are organized as a linked list

and a node balances its load with its two consecutive neighbours.

In order to increase the speed of global convergence, a skip list is

introduced to maintain load information about nodes in other

parts of the linked list; but this introduces extra overhead for

managing the list.    

Our diffusive load balancing procedure for clustered P2P system

is similar to [20]. However, it uses all those clusters that are

included in the routing table as neighborhood of a given cluster.

Because of the hierarchical structure of the routing tables, this

includes clusters throughout the cluster naming space; therefore

we get relatively fast global convergence. The other advantage is

that we can directly use the neighbourhood structure provided by

the existing P2P overlay structure, which reduces the overhead. 

Our diffusive load balancing procedure equalizes load among

clusters based on available capacity, which is taken as our load

index. Since the available capacity is directly associated with

request response time, a system load-balanced based on available

capacity has a uniform response time. 

Our simulation compares the performance of four different load

balancing schemes: a scheme using a centralized directly and

three distributed schemes with different decision policies:

directory-initiated, sender-initiated, and receiver-initiated. Our

simulation results show that the directory-initiated policy is the

best distributed decision policy. It results in tight load

distributions, similar to those obtained by the centralized scheme.

It can also quickly respond to changes of the load index within a

small number of rounds, which makes it be a superior scheme in

dynamic P2P systems.     

Our load balancing procedure moves nodes from lightly loaded

clusters to heavily loaded clusters; this movement adds extra

churn to the system. We also show that this churn can be reduced

through adjusting system parameter; for example, configured with

a larger average cluster size, the number of node movements and

cluster splits is reduced. However, the dynamics of additional

churn introduced by load balancing, in the presence of traditional

churn through arriving and departing nodes, requires further

exploration. We will also study the effect of running the load

balancing procedure concurrently on several clusters within the

system. 
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