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RÉSUMÉ. Il existe différents schémas de distribution de contenu dans les systèmes pair à pair 
actuels. Ces différents schémas reposent sur des architectures diverses et permettent  
différents types d'accès. Nous faisons un survol de ces architectures et de leur impact sur 
l'efficacité de la recherche de contenu, ainsi que sur la flexibilité de cette recherche. Nous 
donnons des exemples de systèmes pair à pair courants pour chacune de ces architectures. 
Nous proposons ensuite une étude d'un système pair à pair récent, eQuus, qui groupe les 
pairs en cliques. Nous identifions quelques-unes des limites de cette approche, et proposons 
des solutions. 

ABSTRACT. There are several different models for content distribution in current peer-to-peer 
(P2P) systems, based on different architectures and allowing different types of access.  We 
give an overview of these architectures and their impact on content search efficiency and 
flexibility. We give examples of current P2P systems for each approach. - We then provide an 
overview of a recently proposed clique-based system, eQuus. We identify some of its 
limitations and propose solutions to these shortcomings. 
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1. Introduction 

There are several different models for content distribution in current peer-to-peer 
(P2P) systems, based on different architectures and allowing different types of 
access.  In this paper, we propose an overview of these architectures and their 
impact on content search efficiency and flexibility. We give examples of current 
P2P systems and their approaches. 

We then provide an overview of a clique-based system, eQuus, a recently 
introduced P2P system. We identify some limitations with this system and propose 
some solutions. 

2. Peer Architectures in P2P Systems 

P2P systems are by essence decentralized, distributed systems used e.g. for data 
storage, data distribution, fault tolerance or censorship fighting. The architectures of 
the peers can be very different from one system to the next, including the level at 
which they are really decentralized. We can distinguish systems that are purely 
decentralized and systems that are hybrid (Pourebrahimi et al., 2005).  

First generation P2P systems were of hybrid type, with a centralized server 
orchestrating the indexing of peers and data, while the data exchange was occurring 
between the distributed peers. We can identify two types of hybrid systems: 

• Centralized indexing systems have a central directory of all peers and 
the data each peer stores. Each peer informs the central server about the 
data it stores, and queries that server when trying to locate data. The 
central server puts the peer requesting the data and the peer holding a 
copy of it in contact and does not intervene in the actual data transfer 
process. The once popular Napster was built following this model. 

• Hybrid systems introduce the concept of super-peers which maintain a 
centralized index of a group of peers which they manage.  These super-
peers have the task of routing requests towards the target, but again, 
once the two end-peers are identified, the data exchange occurs 
between these two peers only. The system Kazaa is an example of such 
an architecture. 

Systems having a centralized server can be searched easily and rapidly, and they 
are easier to build and maintain. However, this solution suffers from several 
limitations, in particular the fact that it is not scalable beyond what the centralized 
server can handle, and the fact that the temporary unavailability of the centralized 
server puts the entire system to a halt. In addition, with this architecture the 
centralized server is an unwanted potential global control point, making the entire 
P2P network vulnerable to “easy” censorship.  
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The second generation P2P systems such as Freenet (Clarke et al., 2002), Chord 
(cite), CAN (site), Pastry (Rowstron et al., 2001) and Tapestry (Zhao et al., 2004) 
are purely decentralized and to not require any central server. They are inherently 
scalable and can offer a much better defense against censorship.  Having no 
centralized information creates new challenges, in particular for offering efficient 
routing and for ensuring that the architecture is globally maintained as peers join 
and (silently) leave the network. In the following, we survey the different types of 
architectures that are commonly found in these second generation P2P systems. 

2.1. Peer vs Host vs Data 

Before describing the P2P architectures, we should clarify the difference 
between data, peer and host.  

The data (or data items) is what is ultimately stored and exchanged in the 
system. A peer can be responsible for several data items (although usually not solely 
responsible, P2P system having some built-in redundancy): they store the items, and 
they provide copies of the data items when requested. Peers can also initiate queries 
for other data items, and will participate in the routing of such queries toward the 
peer that has a copy of the requested data item. 

Finally, it may be possible to group several peers onto a single host (a 
computer). Depending on the system, the peers may know that they are sharing a 
host with other peers. This location information can be relevant for systems that 
attempt to provide efficient routing in terms of distance traveled by the routing 
request. 

The goal of the P2P system is thus, on the one hand, to successfully and 
efficiently route a request for a data item to a peer holding a copy of that data, and 
on the other hand, to maintain the structure as peers join and leave the network at 
rapid pace. 

2.2. Hypercube 

The first type of architecture that can be found in second generation P2P systems 
is the hypercube. In this model, peers can be seen as nodes of some incomplete 
hypercube (that is, some of the nodes of the hypercube may have no peers 
associated with them). Depending on the P2P system, the dimension of the 
hypercube can be fixed or may adapt to the current number of peers in the system. 

Hypercube-based systems can be efficiently searched. Indeed, in a hypercube of 
n nodes, the distance between two nodes is at most log2(n). So, provided that the 
routing is efficiently performed, this architecture allows to route a message toward 
its goal in at most log2(n) hops. 

Efficient routing in an hypercube can be performed by assigning identifiers of 
size log2(n) to nodes corresponding to their location in the hypercube, from 00…0  
for the bottom of the hypercube to 11…1  for the top. Efficient routing is typically 
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achieved by routing a request for an ID toward a neighboring node with an ID 
having more common digits with the target node than the current node. It is easy to 
see that on a complete hypercube, at least one such neighbor always exists, and the 
entire routing from any node to any other node is bounded by log2(n) hops.  

In practice, current systems base their routing on the work of Plaxton, 
Rajaraman and Richa (Plaxton et al., 1999), and the routing is prefix based, where 
at each hop the node attempts to expend the common prefix between the ID of the 
current node and the target ID. In addition, most system do not necessarily use a 
base 2 but a base 2b for some b (typically, b=3 or b=4), with 2b nodes in each 
direction of the hypercube. In this case, search can be done in no more than log2b(n)  
hops. 

In terms of information storage, maintaining the hypercube information requires 
also log2(n) links per node (b.log2(n) links for a base 2b), which is in practice a good 
trade off between efficient routing and amount of information storage. 

 
Figure 1: Hyper cube architecture (left) and skip list architecture (right) of the 

same 3 bits ID spaces of 8 elements 

2.3. Skip Lists 

The other type of architecture which is commonly found in P2P system is based 
on a simple linked list, were each peer keeps a pointer towards the next peer on the 
list. Much like with the classical data structure, having a simple linked list allows 
for simple implementation but is inefficient in terms of access, since the entire list 
might have to be traversed in order to locate an element. One solution to this 
problem is to enhance the list with additional links that can be used to speed up the 
searches. Skip lists (Pugh 1989) are one example of enhanced linked lists, in which 
“every (2i)th node has a pointer 2i nodes ahead” for any i within the linked list 
(Figure 1, right). Such a skip list allows searching any element in a list of length n in 
O(log2(n)). 

In order to adapt this scheme to P2P systems, the first modification required is to 
work for a circular list, in order to avoid having a “head” and a “tail”. This can be 
achieved fairly easily, and all jumps are done modulo the size of the list. There are 
however two more significant problems in a skip list. First, the load is not evenly 
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shared among the nodes: half of the node maintain a single pointer to their direct 
successor, a quarter of the nodes maintain two pointers, one toward their successor, 
and one 2 nodes ahead, one eights of the nodes maintain three pointers (one 1 node 
ahead, one 2 nodes ahead and one 4 nodes ahead) etc. The second problem is that 
maintaining the structure of a perfect skip list is costly when nodes are added and 
removed.  

The solution to these problems is to adapt the concept of skip lists so that each 
node maintains the same type of information, that is, a set of h pointers skipping 
ahead 2i nodes, for 0 ≤ i < h (modulo the size of the network). This still allows for a 
O(log2(n)) search, while the amount of routing information maintained on each node 
(peer) is also O(log2(n)).  

In practice, P2P system based on linked lists work with a fixed circular ID space 
(e.g. 160 bits). With singly-linked lists, these P2P networks will operate in one 
direction around the ID space, always forwarding the message clockwise (or always 
counterclockwise) around the circular ID space.  

Beside the good performance for peer look-up, insertion and deletion, this type 
of architecture provides two major advantages: 

• The only information that is really necessary to ensure accurate routing 
is the linked list structure, that is, that each peer correctly points at its 
direct successor in the list. As long as this information is maintained, 
messages will be successfully (although possibly inefficiently) routed 
towards their destination peers. The other information in the routing 
table are “long jumps” that are necessary for efficient routing, but not 
needed for correct routing. As a consequence, it is sufficient to maintain 
the “next peer” information at all times and only ensure that the other 
information is reasonably accurate using a background process. 

• Since peers are inserted in the list according to the ID, it is possible to 
efficiently search ID ranges in skip lists. It is sufficient to find the 
beginning of the range, and then move to the next peers until reaching 
the end of the range. However, this characteristic might be relevant 
only if the peers’ IDs have some significance. If ID are randomly 
assigned to peers, the search of ID ranges is not useful. 

In contrast, architectures based on simple lists do lack the capacity to handle 
geographic proximity. The rooting algorithm will, at each hop, forward the request 
toward a peer whose ID is closer to the search key, regardless of the geographic 
location of that peer. 

2.4. (Multi Dimensional) Cartesian Coordinate Space 

Another architecture for P2P systems uses multidimensional Cartesian 
coordinates. In this scheme, each peer is located somewhere in the space, and is 
responsible for the data items located within a geographical region (a zone) to which 



6     Nom de la revue. Volume X – n° X/2001 

the peer belongs. It is aware of the boundaries of its zone, and knows about the 
peers in the neighboring zones as well. 

Routing in such an architecture is done greedily, each peer forwarding the 
message in the direction of the destination, to a neighbor peer whose zone is closest 
to the goal, until a peer is reached that is in charge of the zone containing the 
destination. When a peer joins the network, a location l is attributed to it (for 
example randomly). The new peer then contacts the peer currently in charge of the 
zone containing l, and the zone is split among the two peers. When a peer fails or 
leaves the network, its zone can be merged with the zone of another neighbor peer. 

The one particular strength about such an architecture is that the amount of 
information stored by each peer does not grow with the size of the network, but is 
bounded by O(d), where d is the dimension of the coordinate space. On the other 
hand, the path lengths for routing requests is bounded by O(n1/d) for a n peers 
network, which is larger than the logarithmic scale of the other architectures. 

3. Data Management 

In most P2P systems, data items are indexed in either of two ways: with a name 
that can be controlled by the data publisher, or by a mechanism under which the 
publisher has no control. In the first case, the name under which the data item is 
accessed in the P2P network can (and usually will) have some semantic meaning. 
Typically, it can be the actual file name in a file sharing service, or contain the name 
of the organization publishing the data item. In the other case, the name is usually 
obtained as a hash value of the “semantic” name, and thus is deterministically 
generated from that name, and cannot be controlled. 

 Having a hashed index is sometimes a necessary condition for the efficiency of 
the P2P network. This approach is used to ensure that the name space will be 
randomly and uniformly filled. On the other hand, it can be argued that such a 
hashed-index approach breaks some of the natural relationship between data items 
and the peers holding them, and among data items themselves. Indeed, with a 
hashed index, data items end up usually being handled by some random peer that 
just happens to have drawn the closest ID to the data ID so far in the system. And 
the data items that are “close” (e.g. direct neighbor) have no particular relationships, 
except a random one. For these reasons, semantics-preserving indexing is 
sometimes favored. However, the names are no longer uniformly distributed in the 
name space in this case, thus the underlying architecture must be performing well 
without this characteristic. Preserving the semantics of the names can sometimes 
allow for data locality, when the publishing peer decides what peers are going to be 
responsible for the data. More often, it is done to allow range-queries where routing 
is not based on a single ID value, but but on a range of ID values. This can be used 
to either reach (or search) a set of contiguous items intentionally, or to look for a 
possible match to a partially specified query. Note, however, that this can usually 
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only be done for ranges sharing the same prefix, and only with one possible 
ordering semantic (the one selected to order the items). 

In addition to what is stated above, the name used in the P2P system can be the 
actual data name, in which case the data item is retrieved directly from the peer to 
which the request was routed, or it can be meta-data, a pointer to the actual location 
of the name. In this case, the result of the query is the location of the real data, 
which can be the address of a peer or something totally outside the P2P network 
(URL etc.). The indirection of meta-data allows to have several names for the same 
data item, while having a single copy of that data. 

4.  P2P System Examples 

4.1.  Freenet 

The Freenet system is a P2P system that primarily focuses on privacy and 
survivability (Clarke et al., 2002). In this system, each peer provides storage space 
that can be used by other peers for data storage. Freenet is different from the other 
P2P systems surveyed here in that it does not have a well defined architecture; 
instead, peers are “trained” and learn to better route queries throughout their 
lifetime. 

In this system, each file is associated with a global unique identifier (GUID, 
calculated by the SHA-1 hash function from the file content). When a peer joins the 
network, it sends an announcement message to an existing peer located through 
some out-of-band method. This peer, in turn, announces the new node to another 
node randomly chosen within the list of peers it knows. This announcement is 
dispatched inside the network to randomly chosen peers for a certain number of 
hops, as set by an application level parameter. At that point, a GUID is selected for 
the new peer, and this GUID is added to the routing tables of all the nodes that have 
participated in the peer addition process. 

Each peer maintains a routing table of the peers it knows, along with the GUID 
of the data it “thinks” they have. When a new request for data (request for a GUID) 
reaches the peer, the peer forwards the request towards the peer that handles GUIDs 
that are numerically closest to the one requested. If this attempt fails, the peer tries 
the next best candidate peer in its list, and so on until either the data is found or the 
search is abandoned. One crucial point is that in case of successful location of the 
GUID, all the peers on the path between the requester and the peers holding the 
GUID update their routing table with the newly acquired knowledge of the address 
of the peer holding the requested GUID. This is the route training principle, which 
will ensure that subsequent requests for that GUID will be more efficiently routed 
and that requests for similar GUID will also be routed toward this peer. 
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When some new data is inserted in the network, the GUID insertion algorithm 
follows the same steps, thus ensuring that the peer that will end up holding a copy of 
the data is the peer that would have been contacted if the GUID had been looked up. 
This ensure a “specialization” of the peers that tend to be responsible for a set of 
closely related GUIDs, and known to be a reliable source for these GUID.  

4.2.  Pastry 

Pastry is a hypercube-based decentralized P2P network (Rowstron et al., 2001). 
In this system, the peers and the data are assigned a uniformly and randomly chosen 
128 bits GUID. This GUID is represented as a sequence of digits in base 2b, where b 
is a configurable parameter whose value is typically 4.  

A peer routing table is made of two parts. The first part is a table of 128/2b rows 
and 2b columns. The entries of the nth row contain the IP addresses of peers whose 
GUID has the same initial n digits as the GUID of the current peer. They are 
ordered by their n+1 GUID digit, with the entry at column m holding the IP address 
of a peer whose GUID’s n+1’s digit is m.  If no such peer is known, then the entry 
is left empty in the routing table. Since the 2128 namespace is sparsely filled and the 
distribution of peers is uniformly random,  a peer’s routing table will be typically 
completely filled in the first few rows, and will have fewer and fewer entries for the 
rows corresponding to longer prefixes.  

In addition, the routing table also contains a leaf set, which is a set of l nodes 
that are numerically closest to the peer’s GUID (l/2 above and l/2 below, for some 
configurable value of l). The initial definition of Pastry also included a 
neighborhood set, but this has been removed in the current version of the system 
(Castro et al., 2002). 

In order to route a request, a peer tries to forward the request to another peer 
whose GUID common prefix with the search key is one digit (b bits) longer than its 
own common prefix. To achieve this, it simply checks its routing table to see if the 
corresponding entry is populated, and if so simply forwards the request. If no such 
entry exists in the routing table, then the message is forwarded to another peer that 
has the same common prefix with the key, but that is numerically closer. Such a 
peer must be found, if only in the leaf set (this shows that the routing will always 
succeed unless the l/2 peers in the leaf set fail simultaneously).  

When a peer joins the network, it randomly chooses a GUID, and contacts an 
existing peer through some out-of-band method. From that initial entry point, it 
locates a “nearby” node by using the initial node’s leaf set (whose peers should be 
geographically randomly and uniformly distributed) and trying to find closer and 
closer peers in these peers’ routing tables (see (Castro et al., 2002) for details). Once 
a nearby node is located, the new peer sends a join message with its GUID. The join 
algorithm follows the same steps as the routing algorithm, except that at each step 
m, the mth row of the current peer’s routing table is copied into the mth row of the 
routing table of the new peer. At the end of the process, the node will have built an 
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entire routing table with the required properties. Finally, the last step of the process 
consists of informing the existing nodes about the new peer, so that their routing 
table can be updated if required. 

One important aspect of this scheme is the selection of a nearby node and the 
maintenance of proximity information. Thanks to the way the routing table is 
constructed, it tends to be filled up with peers that are geographically close (among 
the possible peers for a particular table entry). As a consequence, the routing of a 
message tends to stay close to the initial node for most of the hops, and the final 
overall distance traveled will be on average dominated by the last routing step. “As 
a result, the average total distance traveled by a message exceeds the distance 
between source and destination node only by a small constant value” (Castro et al., 
2002) . 

4.3.  Tapestry 

Tapestry is another P2P system with a hypercube architecture (Zhao et al., 
2004). Like Pastry, but unlike other systems such as Chord or Can, Tapestry takes 
the traveled distance into account when routing a message, and does not merely 
minimize the number of hops. 

The routing strategy of Tapestry is similar to that of Pastry, that is, the goal is to 
always increase the common prefix between the current node ID and the key. Peer 
IDs and data IDs do share the same name space, a 160 bits GUID usually coded in 
hexadecimal, leading to a 40 digits hexadecimal ID. The routing table is similar to 
the one of Pastry, with the mth entry of the nth row having the address of the closest 
peer with a GUID sharing a prefix of size n with the current node and whose n+1’s 
GUID digit is m. It does not, however, have a leaf set, and uses instead a slightly 
different routing strategy, called surrogate routing. When routing a message, if a 
perfect match cannot be found for the next level of prefix, a Tapestry peer then 
looks for a “close” digit in its routing table instead. This surrogate routing strategy 
ensures that the message is routed toward a peer with a GUID which is “close 
enough” to the key. This peer is called the identifier root and is unique (Hildrum et 
al., 2002). 

One particularity of Tapestry is the relationship between data and peers. In 
Tapestry, the peers decide to “publish” data items for which they have a copy. The 
GUID of the data item is generated automatically and has no direct relationship with 
the GUID of the peer owning the data. In order to advertise the data, the peer sends 
a publish message into the network, announcing the data GUID and its own GUID. 
The publish message is routed in the network, using surrogate routing, toward its 
identifier root (the GUID of the data). The peers along the path from the publishing 
peer to the identifier root store the location mapping of the data GUID and its 
publishing peer. Note that several peers can thus publish the same data (same 
GUID), and the various publish messages will follow different path but will all 
eventually converge, if only at the identifier root.  
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When a peer wants to locate data, it again uses surrogate routing for the data 
GUID, which will eventually reach the identifier root of the data. Along the way, if 
the data is currently being published, the locate message will go through a peer that 
was involved in the publish message of the data and that has a record of the 
publishing peer address in its location mapping table (again, at worst, this peer is the 
identifier root). If more than one peer is publishing the data, then the locate message 
will cross the path followed by the publish message of the closest peer first, thus the 
requesting peer will be directed towards this closer peer. 

4.4.  Chord 

Chord (Stoica et al., 2001) is a P2P system with an architecture based on the 
skip list idea described in Section 2.3. This is a system that is simple to understand 
and which provides one basic operation: “given a key, it maps the key onto a node” 
(Stoica et al., 2001). It operates with a circular node ID space (typically, but not 
necessarily, a 160 bits SHA-1 hash) and ensures that a peer can be located with 
O(log2(n)) messages (where n is the number of nodes), while each peer maintains 
information about O(log2(n)) other peers. In addition, with high probability, this 
information can be maintained as peers join or leave the network with O(log2(n)) 
messages for each update. 

Like other P2P systems based on this architecture, Chord only requires that one 
piece of information per peer (namely the address of the next peer in the ID space) 
is correct in order to guarantee correct routing. On the other hand, it is unaware of 
network topology and the message can travel a total distance far greater than the 
actual distance between the source and the destination peer. In addition, since 
Chord’s peer IDs are randomly and uniformly assigned, the network does not get 
any significant benefit from the architecture’s ability to do range queries on node 
IDs. Chords’ advantage remains its simplicity. 

In Chord, each peer maintains a routing table with at most m entries if the node 
IDs have m bits. This routing table is called a finger table, and the ith entry in the 
table contains the address of the first peer with an ID at least 2i-1 away from the 
current peer’s ID (modulo 2m). Clearly, a peer knows more about peers that are 
close to it in the ID space than about peers that are far away.  It is also clear that in 
general, a peer cannot directly route a query to the destination peer because it does 
not have enough information in its finger table. The actual routing algorithm consist 
of finding in the current peer’s finger table the address of the peer that is the closest 
to the key being searched, without getting past that key value, and sending the 
request to that peer. The message is sent from peer to peer until it reaches the 
destination peer. 

A Chord peer joins the network by first contacting a current node (through some 
out-of-band method). It can then construct its finger table by using this node to find 
the successor of its own node ID (similar to routing a request) and the other 
(NodeID+2i modulo 2m) entries. In order to inform efficiently the other peers about 



Titre courant de l’article     11 

the arrival of the new node, the system will have to traverse the network backwards 
to the immediate predecessor of a node. This link is also maintained by Chord. 

4.5.  SkipNet 

Like Chord, SkipNet is a P2P system based on a skip-list architecture (Harvey et 
al., 2003). However, unlike Chord, SkipNet makes use of the range query capacity 
of skip lists to provide content locality and path locality: a peer is able to keep the 
control of the data it publishes and if an entity such as a commercial organization 
has several peers in the system, it can ensure that messages exchanged between its 
peers will be routed through its own peers only 

SkipNet achieves its goal by having two separate (but related) node ID spaces: 
the string name ID which records the actual name and identifiers, and the numeric 
ID which is the hash value of the actual name and identifiers. As expected, the 
numeric IDs are randomly and uniformly distributed, and name IDs are not. Yet, 
SkipNet can efficiently route searches by both name ID and numeric ID (that is, in 
O(log2(n)) messages either ways, for a network of n peers). 

In order to achieve this, SkipNet works with “rings” of different level. The level 
0 ring includes all the peers, the two level 1 rings include each about ½ of the peers, 
and the 2i level i rings include about 1/2i  peers each. There are up to m  levels of the 
numeric ID, coded on m bits, accommodating up to 2m peers. 

The level 0 ring is the usual circular linked list, where the peers are sorted 
according to their name IDs. In other words, in this ring, each peer knows of the 
peer with a name that comes directly after its own name.  

Peers use their numeric ID to decide which higher level ring to join. The first i 
bits of the numeric ID give 2i possible values, and there are 2i level i rings. Thus, it 
is enough to look at the first i bits of the numeric ID and use it to assign the peer to a 
ring of level i in a random and uniform way. This implies that peers belonging to the 
same ring at level k have the same k bit prefix in their numeric IDs. 

At the first level ring, neighbor peers have contiguous names in the name ID 
space, but are far apart in the numeric ID space. This situation reverses as we climb 
the levels, and at the last level ring, neighbor peers have contiguous numeric ID in 
the numeric ID space, but are far apart in the name ID space. Note that with 
SkipNet, those lists are doubly-linked, so it is possible to move both ways on each 
ring (but peers have to store twice as much routing information). 

In order to route a message by name ID, SkipNet uses the usual skip list routing 
algorithm, that is, it looks for the next peer that is closest to the destination, without 
ever going beyond the destination, and using as high a ring as possible in order to 
jump as “far” as possible at once in the name ID space. 

Routing by numeric ID is slightly different. The idea is to expand the matched 
prefix at each step. So initially, on ring level one, routing is done from neighbor to 
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neighbor until a peer is found that shares the same first numeric ID bit. The message 
search is then moved up from the ring at level 1 to which the peer belongs, and a 
search for a peer sharing the first 2 bits is initiated, and so on, until the final level 
ring is searched. This search can always be done in O(log2(n) steps. 

Since the primary “sorting key” is the name ID, it is possible for the peer to use 
their organization’s name as prefix of their name, and to prefix by the same name 
the data they want to publish, to guaranty that: 

• Peers belonging to the same organization (starting with the same name) 
will be contiguous in the level 0 ring. 

• Data published with an identifier matching the organization’s name will 
be store on a peer of that organization (content locality). 

• Requests from within the organization will never be routed outside the 
organization since the requests are never sent past their destination. 

These characteristics are interesting from a security viewpoint, since it allows 
the organization to keep control of its own data and ensure that traffic exchanged 
within the organization will be routed though the organization’s peers only. It has 
also a nice consequence in terms of fault tolerance: if one assumes that failures 
typically happen at the organization boundaries (faulty router/proxy, 
misconfiguration of gateway etc.), the typical consequence of a failure is that the 
entire organization is (temporarily) disconnected from the internet. Since all the 
peers in the same organization are stored contiguously in SkipNet, it means that 
such a failure disconnects a set of contiguous nodes at once, and that the 
connectivity for intra-organization traffic is preserved.  

4.6.  GosSkip 

GosSkip is another P2P system based on skip lists (Guerraoui et al., 2006).  In 
this system, the locality of the content semantics is preserved, in other words, peers 
are totally ordered according to a relationship that is external to the system (for 
example, alphabetical ordering of the names used for peers and content). This 
allows for efficient range queries across peers or data.  

GosSkip is a system that directly builds the first ring of the overlay in the usual 
way, with peers inserting themselves at the correct location in the level 0 ring by 
routing a query towards their name in the exiting network. The higher level rings, 
which are only needed for efficiency, are built using a gossip protocol which 
periodically transmits information between neighbors and can be piggy-backed onto 
existing application messages. This approach ensures that the overlay is self-
organizing and continually rebuilt from the existing level 0 ring. 

The gossip protocol works as follows: regularly, each peer sends information to 
their immediate neighbor on a ring, say the level i ring. This information contains a 
list of pairs (peer ID, index). This list contains the peer’s own identity with the 
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index value 0, and the identity of all the other peers collected since the last gossip 
message at that level, with an index value increased by one compared with the value 
received. When receiving such a message, the peer can learn two things: 

• The peer associated with the index value 1 in that message is the 
current immediate predecessor of the current peer for the ring at level i. 
If needed, the peer can create or correct its current information for  this 
ring. 

• The peer associated with the index value k in that message, where k  is 
the number of contiguous peers along the ring at level i  that are 
skipped in one long jump on the ring at level i+1 (typically, k=2) is the 
current immediate predecessor of the current peer for the ring at level 
i+1. If needed, the peer can create or correct its current information for 
this ring. The information about the peer with index value k is then 
discarded from the gossip message, which thus never carries more than 
k pieces of information. 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1

2

3
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Figure 2: GosSkip gossip messages 

As an example, consider Figure 2: at Step 1, a gossip message is sent from Peer 
1 to Peer 2 with the information about Peer 1 at index value 1. The message is then 
gossiped from Peer 2 to Peer 3 with the information about Peer 2 at index 1 and 
Peer 1 at index 2. When this information is received by Peer 3 (Step 2), it learns that 
its predecessor on Ring 1 is Peer 1, and creates the link. Two messages can now be 
gossiped (Step 3), one along Ring 0 from Peer 3 to Peer 4 with the information 
about Peer 3 at index 1, Peer 2 at index 2 (information about Peer 1 has been 
discarded), and one along Ring 1 from Peer 3 to Peer 1 with the information about 
Peer 3 at index 1. At Step 4, Peer 4 learns about Peer 2 as its immediate predecessor 
along Ring 1, while Peer 1 learns about Peer 3 as its immediate successor along 
Ring 1. The spreading of information continues, towards the right on Ring 1, 
towards the left on Ring 2. 

GosSkip is also equipped with a “spreading” algorithm which allows efficient 
broadcasting of range queries (or single queries reaching a range of equal-valued 
peers). This algorithm is invoked once the normal routing algorithm has reached one 
of the target peers. In order to efficiently distribute the request throughout the range 
of peers that should receive it, the spreading algorithm uses the higher level rings to 
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determine how far away the request should be dispatched. The message is then sent 
at once to all neighbor peers for the concerned rings. Each of these peers receives 
the message together with instructions about how far to spread the message. 

4.7.  CAN 

The Content-Addressable Network (CAN, Ratnasamy et al., 2001) is a 
distributed hash-table mechanism based on multidimensional Cartesian coordinates. 
CAN works with a d-dimensional space, each peer being responsible for one zone in 
this space. 

Each peer is assigned a random d-dimensional location and maintains the list of 
its current neighbor in the network. When routing a request, the peer greedily 
forwards the message towards the neighbor that is closest to the searched key. A 
new peer sends a routing message toward the location it has been randomly 
assigned, and thus contacts the peer in charge of the zone containing that location. 
The peer then splits its zone in half and hands over half of it to the new peer. The 
local information of the peer is enough to build the neighboring information for the 
new peer. A message is then sent one hop away to the neighboring peer to alert 
them of the new configuration. This very localized protocol is sufficient to update 
the network. When a peer leaves (or is identified as failing by its neighboring 
peers), the neighboring peer in charge of the smallest zone takes over the zone of 
the departed peer. 

As already mentioned, this mechanism allows each peer to store a fixed amount 
of information, regardless of the size of the network, but the number of hops of 
routing messages grows as O(n1/d) for a network with n peers. Also, CAN does not 
ensure short traveling distances and, since the data is stored according to its hash 
value, significant range queries are not efficient. 

5.   A Discussion of  eQuus 

5.1. Overview of eQuus. 

eQuus is a recently introduced P2P system that follows the hypercube 
architecture (Locher et al., 2006). In eQuus, a new concept called clique is 
introduced. Each peer within a clique is responsible for the same set of data items. 
This simple idea provides robustness, since data remains available as long as at least 
one peer in the corresponding clique is up and running. 

In eQuus, new peers are added to cliques based on geographic proximity: when 
a peer joins the network, it is automatically added to the geographically closest 
clique. This locality is the reason for the second advantage of eQuus, namely, that 
data sharing within a clique is fast thanks to the geographical closeness of the peers 
in a given clique. The relationship between cliques mimics the peer architecture of 
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the already surveyed P2P system Pastry. However, in eQuus, a relationship between 
two cliques is maintained by having each peer of the first clique maintain k links to 
randomly selected peers in the second clique. Within a clique, peers share the same 
ID (the clique ID), and are responsible for the data items having an ID between their 
clique ID and the ID of the next clique (data IDs are randomly uniformly 
distributed). 

When a clique has reached a given size (set by a system-wide parameter), the 
clique will split in two, half of the peers joining a new clique with an ID 
numerically half way between the ID of the split clique and the ID of its immediate 
successor. The responsibility for data items will be shared (on average equally) 
between the two cliques. For example, in a new network all the peers are initially 
part of the same clique (with clique ID 00…0) and the entire set of data items are 
the responsibility of this clique. Once enough peers are in the system, a new clique 
with ID 10…0 is created,  and half of the initial clique’s peers keep the 
responsibility for data items 00…0 to 01…1, while the second half has 
responsibility for data items 10…0 to 11…1. During such a split, the peers' 
proximity within each clique is preserved.  

Finally, when a clique’s size reduces to a certain threshold (set as a system-wide 
parameter), this clique will merge with the preceding clique in the clique ID space. 
This way, eQuus guaranties that the level of redundancy does not go below a given 
safety level. 

5.2. Limitations of eQuus. 

One criticism that can be made about eQuus is that clique management is 
entirely done based on the clique size. It ignores other factors such as the clique’s 
load. We have identified the following two scenarios that could be problematic for 
this system. 

First, the unbalanced clique allocation strategy may create a seriously 
unbalanced workload. For example, assume that an eQuus P2P network is built out 
of many European peers and a few Canadian ones. If the Canadian peers and some 
European peers first join the system such that two cliques are set up, we will end up 
with one clique having the Europeans peers that are responsible for half of the data, 
while the Canadian peers are put into the second clique, responsible for the other 
half of the data. From that point on, if more and more peers are added on the 
European side of the network, the number of cliques will grow and the data items 
located on the “European side” of the ID space  will be shared between an ever 
increasing number of cliques, while the other half of the data will always remain the 
responsibility of the a single Canadian clique and its peers. 

Second, if for some reason a particular data item is particularly “popular” and 
often requested, the clique in charge of it will bare the cost of this load, regardless 
of the level of activity of the other cliques. 
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5.3. Hints at possible solutions 

We believe that eQuus can be improved to better handle the situations described 
above. Details are beyond the scope of this paper, but we claim that split and merge 
activities should not be based only on the size of cliques. For example, in the case of 
unbalanced data ID ranges, the clique in charge of the larger range could move 
forward in the ID space, so as to shift the responsibility of some of its data items to 
its predecessor clique1.  

When a clique of eQuus is in charge of a larger amount of data (or in charge of a 
very popular data item), it could momentarily “hire” a set of peers from the 
successor and predecessor cliques (by letting some their peers join the clique) in 
order to help coping with the current load.  In this case, additional mechanisms to 
monitor the cliques’ load and to decide when a clique can spare a peer will have to 
be added to eQuus. 

6. Conclusion 

In this paper, we have provided a survey of several different models for content 
distribution in current peer-to-peer (P2P) systems. We have in particular identified 
the hypercube architecture and the skip list architecture, and have identified some of 
the strengths and weaknesses of each of these approaches.  We have also provided a 
survey of the architecture and performance of numerous P2P systems. Finally, we 
have provided an overview of a recently proposed clique-based system, eQuus, for 
which we have identified apparent weaknesses and proposed some possible 
solutions. 
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