
Nom de la revue. Volume X – n° X/2001, pages 1 à X

An Overview of Content Distribution and
Content Access in Peer-to-Peer Systems

Gregor von Bochmann and Guy-Vincent Jourdan

School of Information Technology and Engineering
University of Ottawa
800, King Edward Avenue
Ottawa, ON, K1N 6N5 CANADA
{bochmann,gvj}@site.uottawa.ca

RÉSUMÉ. Il existe différents schémas de distribution de contenu dans les systèmes pair à pair
actuels. Ces différents schémas reposent sur des architectures diverses et permettent
différents types d'accès. Nous faisons un survol de ces architectures et de leur impact sur
l'efficacité de la recherche de contenu, ainsi que sur la flexibilité de cette recherche. Nous
donnons des exemples de systèmes pair à pair courants pour chacune de ces architectures.
Nous proposons ensuite une étude d'un système pair à pair récent, eQuus, qui groupe les
pairs en cliques. Nous identifions quelques-unes des limites de cette approche, et proposons
des solutions.

ABSTRACT. There are several different models for content distribution in current peer-to-peer
(P2P) systems, based on different architectures and allowing different types of access. We
give an overview of these architectures and their impact on content search efficiency and
flexibility. We give examples of current P2P systems for each approach. - We then provide an
overview of a recently proposed clique-based system, eQuus. We identify some of its
limitations and propose solutions to these shortcomings.

MOTS-CLÉS : systèmes pair à pair, architecture des réseaux pair à pair, schémas de
distribution de contenu, regroupement géographique.
KEYWORDS: Peer-to-peer systems, peer-to-peer networks architecture, content distribution
models, geographical grouping.

2 Nom de la revue. Volume X – n° X/2001

1. Introduction

There are several different models for content distribution in current peer-to-peer
(P2P) systems, based on different architectures and allowing different types of
access. In this paper, we propose an overview of these architectures and their
impact on content search efficiency and flexibility. We give examples of current
P2P systems and their approaches.

We then provide an overview of a clique-based system, eQuus, a recently
introduced P2P system. We identify some limitations with this system and propose
some solutions.

2. Peer Architectures in P2P Systems

P2P systems are by essence decentralized, distributed systems used e.g. for data
storage, data distribution, fault tolerance or censorship fighting. The architectures of
the peers can be very different from one system to the next, including the level at
which they are really decentralized. We can distinguish systems that are purely
decentralized and systems that are hybrid (Pourebrahimi et al., 2005).

First generation P2P systems were of hybrid type, with a centralized server
orchestrating the indexing of peers and data, while the data exchange was occurring
between the distributed peers. We can identify two types of hybrid systems:

• Centralized indexing systems have a central directory of all peers and
the data each peer stores. Each peer informs the central server about the
data it stores, and queries that server when trying to locate data. The
central server puts the peer requesting the data and the peer holding a
copy of it in contact and does not intervene in the actual data transfer
process. The once popular Napster was built following this model.

• Hybrid systems introduce the concept of super-peers which maintain a
centralized index of a group of peers which they manage. These super-
peers have the task of routing requests towards the target, but again,
once the two end-peers are identified, the data exchange occurs
between these two peers only. The system Kazaa is an example of such
an architecture.

Systems having a centralized server can be searched easily and rapidly, and they
are easier to build and maintain. However, this solution suffers from several
limitations, in particular the fact that it is not scalable beyond what the centralized
server can handle, and the fact that the temporary unavailability of the centralized
server puts the entire system to a halt. In addition, with this architecture the
centralized server is an unwanted potential global control point, making the entire
P2P network vulnerable to “easy” censorship.

Titre courant de l’article 3

The second generation P2P systems such as Freenet (Clarke et al., 2002), Chord
(cite), CAN (site), Pastry (Rowstron et al., 2001) and Tapestry (Zhao et al., 2004)
are purely decentralized and to not require any central server. They are inherently
scalable and can offer a much better defense against censorship. Having no
centralized information creates new challenges, in particular for offering efficient
routing and for ensuring that the architecture is globally maintained as peers join
and (silently) leave the network. In the following, we survey the different types of
architectures that are commonly found in these second generation P2P systems.

2.1. Peer vs Host vs Data

Before describing the P2P architectures, we should clarify the difference
between data, peer and host.

The data (or data items) is what is ultimately stored and exchanged in the
system. A peer can be responsible for several data items (although usually not solely
responsible, P2P system having some built-in redundancy): they store the items, and
they provide copies of the data items when requested. Peers can also initiate queries
for other data items, and will participate in the routing of such queries toward the
peer that has a copy of the requested data item.

Finally, it may be possible to group several peers onto a single host (a
computer). Depending on the system, the peers may know that they are sharing a
host with other peers. This location information can be relevant for systems that
attempt to provide efficient routing in terms of distance traveled by the routing
request.

The goal of the P2P system is thus, on the one hand, to successfully and
efficiently route a request for a data item to a peer holding a copy of that data, and
on the other hand, to maintain the structure as peers join and leave the network at
rapid pace.

2.2. Hypercube

The first type of architecture that can be found in second generation P2P systems
is the hypercube. In this model, peers can be seen as nodes of some incomplete
hypercube (that is, some of the nodes of the hypercube may have no peers
associated with them). Depending on the P2P system, the dimension of the
hypercube can be fixed or may adapt to the current number of peers in the system.

Hypercube-based systems can be efficiently searched. Indeed, in a hypercube of
n nodes, the distance between two nodes is at most log2(n). So, provided that the
routing is efficiently performed, this architecture allows to route a message toward
its goal in at most log2(n) hops.

Efficient routing in an hypercube can be performed by assigning identifiers of
size log2(n) to nodes corresponding to their location in the hypercube, from 00…0
for the bottom of the hypercube to 11…1 for the top. Efficient routing is typically

4 Nom de la revue. Volume X – n° X/2001

achieved by routing a request for an ID toward a neighboring node with an ID
having more common digits with the target node than the current node. It is easy to
see that on a complete hypercube, at least one such neighbor always exists, and the
entire routing from any node to any other node is bounded by log2(n) hops.

In practice, current systems base their routing on the work of Plaxton,
Rajaraman and Richa (Plaxton et al., 1999), and the routing is prefix based, where
at each hop the node attempts to expend the common prefix between the ID of the
current node and the target ID. In addition, most system do not necessarily use a
base 2 but a base 2b for some b (typically, b=3 or b=4), with 2b nodes in each
direction of the hypercube. In this case, search can be done in no more than log2b(n)
hops.

In terms of information storage, maintaining the hypercube information requires
also log2(n) links per node (b.log2(n) links for a base 2b), which is in practice a good
trade off between efficient routing and amount of information storage.

Figure 1: Hyper cube architecture (left) and skip list architecture (right) of the

same 3 bits ID spaces of 8 elements

2.3. Skip Lists

The other type of architecture which is commonly found in P2P system is based
on a simple linked list, were each peer keeps a pointer towards the next peer on the
list. Much like with the classical data structure, having a simple linked list allows
for simple implementation but is inefficient in terms of access, since the entire list
might have to be traversed in order to locate an element. One solution to this
problem is to enhance the list with additional links that can be used to speed up the
searches. Skip lists (Pugh 1989) are one example of enhanced linked lists, in which
“every (2i)th node has a pointer 2i nodes ahead” for any i within the linked list
(Figure 1, right). Such a skip list allows searching any element in a list of length n in
O(log2(n)).

In order to adapt this scheme to P2P systems, the first modification required is to
work for a circular list, in order to avoid having a “head” and a “tail”. This can be
achieved fairly easily, and all jumps are done modulo the size of the list. There are
however two more significant problems in a skip list. First, the load is not evenly

Titre courant de l’article 5

shared among the nodes: half of the node maintain a single pointer to their direct
successor, a quarter of the nodes maintain two pointers, one toward their successor,
and one 2 nodes ahead, one eights of the nodes maintain three pointers (one 1 node
ahead, one 2 nodes ahead and one 4 nodes ahead) etc. The second problem is that
maintaining the structure of a perfect skip list is costly when nodes are added and
removed.

The solution to these problems is to adapt the concept of skip lists so that each
node maintains the same type of information, that is, a set of h pointers skipping
ahead 2i nodes, for 0 ≤ i < h (modulo the size of the network). This still allows for a
O(log2(n)) search, while the amount of routing information maintained on each node
(peer) is also O(log2(n)).

In practice, P2P system based on linked lists work with a fixed circular ID space
(e.g. 160 bits). With singly-linked lists, these P2P networks will operate in one
direction around the ID space, always forwarding the message clockwise (or always
counterclockwise) around the circular ID space.

Beside the good performance for peer look-up, insertion and deletion, this type
of architecture provides two major advantages:

• The only information that is really necessary to ensure accurate routing
is the linked list structure, that is, that each peer correctly points at its
direct successor in the list. As long as this information is maintained,
messages will be successfully (although possibly inefficiently) routed
towards their destination peers. The other information in the routing
table are “long jumps” that are necessary for efficient routing, but not
needed for correct routing. As a consequence, it is sufficient to maintain
the “next peer” information at all times and only ensure that the other
information is reasonably accurate using a background process.

• Since peers are inserted in the list according to the ID, it is possible to
efficiently search ID ranges in skip lists. It is sufficient to find the
beginning of the range, and then move to the next peers until reaching
the end of the range. However, this characteristic might be relevant
only if the peers’ IDs have some significance. If ID are randomly
assigned to peers, the search of ID ranges is not useful.

In contrast, architectures based on simple lists do lack the capacity to handle
geographic proximity. The rooting algorithm will, at each hop, forward the request
toward a peer whose ID is closer to the search key, regardless of the geographic
location of that peer.

2.4. (Multi Dimensional) Cartesian Coordinate Space

Another architecture for P2P systems uses multidimensional Cartesian
coordinates. In this scheme, each peer is located somewhere in the space, and is
responsible for the data items located within a geographical region (a zone) to which

6 Nom de la revue. Volume X – n° X/2001

the peer belongs. It is aware of the boundaries of its zone, and knows about the
peers in the neighboring zones as well.

Routing in such an architecture is done greedily, each peer forwarding the
message in the direction of the destination, to a neighbor peer whose zone is closest
to the goal, until a peer is reached that is in charge of the zone containing the
destination. When a peer joins the network, a location l is attributed to it (for
example randomly). The new peer then contacts the peer currently in charge of the
zone containing l, and the zone is split among the two peers. When a peer fails or
leaves the network, its zone can be merged with the zone of another neighbor peer.

The one particular strength about such an architecture is that the amount of
information stored by each peer does not grow with the size of the network, but is
bounded by O(d), where d is the dimension of the coordinate space. On the other
hand, the path lengths for routing requests is bounded by O(n1/d) for a n peers
network, which is larger than the logarithmic scale of the other architectures.

3. Data Management

In most P2P systems, data items are indexed in either of two ways: with a name
that can be controlled by the data publisher, or by a mechanism under which the
publisher has no control. In the first case, the name under which the data item is
accessed in the P2P network can (and usually will) have some semantic meaning.
Typically, it can be the actual file name in a file sharing service, or contain the name
of the organization publishing the data item. In the other case, the name is usually
obtained as a hash value of the “semantic” name, and thus is deterministically
generated from that name, and cannot be controlled.

 Having a hashed index is sometimes a necessary condition for the efficiency of
the P2P network. This approach is used to ensure that the name space will be
randomly and uniformly filled. On the other hand, it can be argued that such a
hashed-index approach breaks some of the natural relationship between data items
and the peers holding them, and among data items themselves. Indeed, with a
hashed index, data items end up usually being handled by some random peer that
just happens to have drawn the closest ID to the data ID so far in the system. And
the data items that are “close” (e.g. direct neighbor) have no particular relationships,
except a random one. For these reasons, semantics-preserving indexing is
sometimes favored. However, the names are no longer uniformly distributed in the
name space in this case, thus the underlying architecture must be performing well
without this characteristic. Preserving the semantics of the names can sometimes
allow for data locality, when the publishing peer decides what peers are going to be
responsible for the data. More often, it is done to allow range-queries where routing
is not based on a single ID value, but but on a range of ID values. This can be used
to either reach (or search) a set of contiguous items intentionally, or to look for a
possible match to a partially specified query. Note, however, that this can usually

Titre courant de l’article 7

only be done for ranges sharing the same prefix, and only with one possible
ordering semantic (the one selected to order the items).

In addition to what is stated above, the name used in the P2P system can be the
actual data name, in which case the data item is retrieved directly from the peer to
which the request was routed, or it can be meta-data, a pointer to the actual location
of the name. In this case, the result of the query is the location of the real data,
which can be the address of a peer or something totally outside the P2P network
(URL etc.). The indirection of meta-data allows to have several names for the same
data item, while having a single copy of that data.

4. P2P System Examples

4.1. Freenet

The Freenet system is a P2P system that primarily focuses on privacy and
survivability (Clarke et al., 2002). In this system, each peer provides storage space
that can be used by other peers for data storage. Freenet is different from the other
P2P systems surveyed here in that it does not have a well defined architecture;
instead, peers are “trained” and learn to better route queries throughout their
lifetime.

In this system, each file is associated with a global unique identifier (GUID,
calculated by the SHA-1 hash function from the file content). When a peer joins the
network, it sends an announcement message to an existing peer located through
some out-of-band method. This peer, in turn, announces the new node to another
node randomly chosen within the list of peers it knows. This announcement is
dispatched inside the network to randomly chosen peers for a certain number of
hops, as set by an application level parameter. At that point, a GUID is selected for
the new peer, and this GUID is added to the routing tables of all the nodes that have
participated in the peer addition process.

Each peer maintains a routing table of the peers it knows, along with the GUID
of the data it “thinks” they have. When a new request for data (request for a GUID)
reaches the peer, the peer forwards the request towards the peer that handles GUIDs
that are numerically closest to the one requested. If this attempt fails, the peer tries
the next best candidate peer in its list, and so on until either the data is found or the
search is abandoned. One crucial point is that in case of successful location of the
GUID, all the peers on the path between the requester and the peers holding the
GUID update their routing table with the newly acquired knowledge of the address
of the peer holding the requested GUID. This is the route training principle, which
will ensure that subsequent requests for that GUID will be more efficiently routed
and that requests for similar GUID will also be routed toward this peer.

8 Nom de la revue. Volume X – n° X/2001

When some new data is inserted in the network, the GUID insertion algorithm
follows the same steps, thus ensuring that the peer that will end up holding a copy of
the data is the peer that would have been contacted if the GUID had been looked up.
This ensure a “specialization” of the peers that tend to be responsible for a set of
closely related GUIDs, and known to be a reliable source for these GUID.

4.2. Pastry

Pastry is a hypercube-based decentralized P2P network (Rowstron et al., 2001).
In this system, the peers and the data are assigned a uniformly and randomly chosen
128 bits GUID. This GUID is represented as a sequence of digits in base 2b, where b
is a configurable parameter whose value is typically 4.

A peer routing table is made of two parts. The first part is a table of 128/2b rows
and 2b columns. The entries of the nth row contain the IP addresses of peers whose
GUID has the same initial n digits as the GUID of the current peer. They are
ordered by their n+1 GUID digit, with the entry at column m holding the IP address
of a peer whose GUID’s n+1’s digit is m. If no such peer is known, then the entry
is left empty in the routing table. Since the 2128 namespace is sparsely filled and the
distribution of peers is uniformly random, a peer’s routing table will be typically
completely filled in the first few rows, and will have fewer and fewer entries for the
rows corresponding to longer prefixes.

In addition, the routing table also contains a leaf set, which is a set of l nodes
that are numerically closest to the peer’s GUID (l/2 above and l/2 below, for some
configurable value of l). The initial definition of Pastry also included a
neighborhood set, but this has been removed in the current version of the system
(Castro et al., 2002).

In order to route a request, a peer tries to forward the request to another peer
whose GUID common prefix with the search key is one digit (b bits) longer than its
own common prefix. To achieve this, it simply checks its routing table to see if the
corresponding entry is populated, and if so simply forwards the request. If no such
entry exists in the routing table, then the message is forwarded to another peer that
has the same common prefix with the key, but that is numerically closer. Such a
peer must be found, if only in the leaf set (this shows that the routing will always
succeed unless the l/2 peers in the leaf set fail simultaneously).

When a peer joins the network, it randomly chooses a GUID, and contacts an
existing peer through some out-of-band method. From that initial entry point, it
locates a “nearby” node by using the initial node’s leaf set (whose peers should be
geographically randomly and uniformly distributed) and trying to find closer and
closer peers in these peers’ routing tables (see (Castro et al., 2002) for details). Once
a nearby node is located, the new peer sends a join message with its GUID. The join
algorithm follows the same steps as the routing algorithm, except that at each step
m, the mth row of the current peer’s routing table is copied into the mth row of the
routing table of the new peer. At the end of the process, the node will have built an

Titre courant de l’article 9

entire routing table with the required properties. Finally, the last step of the process
consists of informing the existing nodes about the new peer, so that their routing
table can be updated if required.

One important aspect of this scheme is the selection of a nearby node and the
maintenance of proximity information. Thanks to the way the routing table is
constructed, it tends to be filled up with peers that are geographically close (among
the possible peers for a particular table entry). As a consequence, the routing of a
message tends to stay close to the initial node for most of the hops, and the final
overall distance traveled will be on average dominated by the last routing step. “As
a result, the average total distance traveled by a message exceeds the distance
between source and destination node only by a small constant value” (Castro et al.,
2002) .

4.3. Tapestry

Tapestry is another P2P system with a hypercube architecture (Zhao et al.,
2004). Like Pastry, but unlike other systems such as Chord or Can, Tapestry takes
the traveled distance into account when routing a message, and does not merely
minimize the number of hops.

The routing strategy of Tapestry is similar to that of Pastry, that is, the goal is to
always increase the common prefix between the current node ID and the key. Peer
IDs and data IDs do share the same name space, a 160 bits GUID usually coded in
hexadecimal, leading to a 40 digits hexadecimal ID. The routing table is similar to
the one of Pastry, with the mth entry of the nth row having the address of the closest
peer with a GUID sharing a prefix of size n with the current node and whose n+1’s
GUID digit is m. It does not, however, have a leaf set, and uses instead a slightly
different routing strategy, called surrogate routing. When routing a message, if a
perfect match cannot be found for the next level of prefix, a Tapestry peer then
looks for a “close” digit in its routing table instead. This surrogate routing strategy
ensures that the message is routed toward a peer with a GUID which is “close
enough” to the key. This peer is called the identifier root and is unique (Hildrum et
al., 2002).

One particularity of Tapestry is the relationship between data and peers. In
Tapestry, the peers decide to “publish” data items for which they have a copy. The
GUID of the data item is generated automatically and has no direct relationship with
the GUID of the peer owning the data. In order to advertise the data, the peer sends
a publish message into the network, announcing the data GUID and its own GUID.
The publish message is routed in the network, using surrogate routing, toward its
identifier root (the GUID of the data). The peers along the path from the publishing
peer to the identifier root store the location mapping of the data GUID and its
publishing peer. Note that several peers can thus publish the same data (same
GUID), and the various publish messages will follow different path but will all
eventually converge, if only at the identifier root.

10 Nom de la revue. Volume X – n° X/2001

When a peer wants to locate data, it again uses surrogate routing for the data
GUID, which will eventually reach the identifier root of the data. Along the way, if
the data is currently being published, the locate message will go through a peer that
was involved in the publish message of the data and that has a record of the
publishing peer address in its location mapping table (again, at worst, this peer is the
identifier root). If more than one peer is publishing the data, then the locate message
will cross the path followed by the publish message of the closest peer first, thus the
requesting peer will be directed towards this closer peer.

4.4. Chord

Chord (Stoica et al., 2001) is a P2P system with an architecture based on the
skip list idea described in Section 2.3. This is a system that is simple to understand
and which provides one basic operation: “given a key, it maps the key onto a node”
(Stoica et al., 2001). It operates with a circular node ID space (typically, but not
necessarily, a 160 bits SHA-1 hash) and ensures that a peer can be located with
O(log2(n)) messages (where n is the number of nodes), while each peer maintains
information about O(log2(n)) other peers. In addition, with high probability, this
information can be maintained as peers join or leave the network with O(log2(n))
messages for each update.

Like other P2P systems based on this architecture, Chord only requires that one
piece of information per peer (namely the address of the next peer in the ID space)
is correct in order to guarantee correct routing. On the other hand, it is unaware of
network topology and the message can travel a total distance far greater than the
actual distance between the source and the destination peer. In addition, since
Chord’s peer IDs are randomly and uniformly assigned, the network does not get
any significant benefit from the architecture’s ability to do range queries on node
IDs. Chords’ advantage remains its simplicity.

In Chord, each peer maintains a routing table with at most m entries if the node
IDs have m bits. This routing table is called a finger table, and the ith entry in the
table contains the address of the first peer with an ID at least 2i-1 away from the
current peer’s ID (modulo 2m). Clearly, a peer knows more about peers that are
close to it in the ID space than about peers that are far away. It is also clear that in
general, a peer cannot directly route a query to the destination peer because it does
not have enough information in its finger table. The actual routing algorithm consist
of finding in the current peer’s finger table the address of the peer that is the closest
to the key being searched, without getting past that key value, and sending the
request to that peer. The message is sent from peer to peer until it reaches the
destination peer.

A Chord peer joins the network by first contacting a current node (through some
out-of-band method). It can then construct its finger table by using this node to find
the successor of its own node ID (similar to routing a request) and the other
(NodeID+2i modulo 2m) entries. In order to inform efficiently the other peers about

Titre courant de l’article 11

the arrival of the new node, the system will have to traverse the network backwards
to the immediate predecessor of a node. This link is also maintained by Chord.

4.5. SkipNet

Like Chord, SkipNet is a P2P system based on a skip-list architecture (Harvey et
al., 2003). However, unlike Chord, SkipNet makes use of the range query capacity
of skip lists to provide content locality and path locality: a peer is able to keep the
control of the data it publishes and if an entity such as a commercial organization
has several peers in the system, it can ensure that messages exchanged between its
peers will be routed through its own peers only

SkipNet achieves its goal by having two separate (but related) node ID spaces:
the string name ID which records the actual name and identifiers, and the numeric
ID which is the hash value of the actual name and identifiers. As expected, the
numeric IDs are randomly and uniformly distributed, and name IDs are not. Yet,
SkipNet can efficiently route searches by both name ID and numeric ID (that is, in
O(log2(n)) messages either ways, for a network of n peers).

In order to achieve this, SkipNet works with “rings” of different level. The level
0 ring includes all the peers, the two level 1 rings include each about ½ of the peers,
and the 2i level i rings include about 1/2i peers each. There are up to m levels of the
numeric ID, coded on m bits, accommodating up to 2m peers.

The level 0 ring is the usual circular linked list, where the peers are sorted
according to their name IDs. In other words, in this ring, each peer knows of the
peer with a name that comes directly after its own name.

Peers use their numeric ID to decide which higher level ring to join. The first i
bits of the numeric ID give 2i possible values, and there are 2i level i rings. Thus, it
is enough to look at the first i bits of the numeric ID and use it to assign the peer to a
ring of level i in a random and uniform way. This implies that peers belonging to the
same ring at level k have the same k bit prefix in their numeric IDs.

At the first level ring, neighbor peers have contiguous names in the name ID
space, but are far apart in the numeric ID space. This situation reverses as we climb
the levels, and at the last level ring, neighbor peers have contiguous numeric ID in
the numeric ID space, but are far apart in the name ID space. Note that with
SkipNet, those lists are doubly-linked, so it is possible to move both ways on each
ring (but peers have to store twice as much routing information).

In order to route a message by name ID, SkipNet uses the usual skip list routing
algorithm, that is, it looks for the next peer that is closest to the destination, without
ever going beyond the destination, and using as high a ring as possible in order to
jump as “far” as possible at once in the name ID space.

Routing by numeric ID is slightly different. The idea is to expand the matched
prefix at each step. So initially, on ring level one, routing is done from neighbor to

12 Nom de la revue. Volume X – n° X/2001

neighbor until a peer is found that shares the same first numeric ID bit. The message
search is then moved up from the ring at level 1 to which the peer belongs, and a
search for a peer sharing the first 2 bits is initiated, and so on, until the final level
ring is searched. This search can always be done in O(log2(n) steps.

Since the primary “sorting key” is the name ID, it is possible for the peer to use
their organization’s name as prefix of their name, and to prefix by the same name
the data they want to publish, to guaranty that:

• Peers belonging to the same organization (starting with the same name)
will be contiguous in the level 0 ring.

• Data published with an identifier matching the organization’s name will
be store on a peer of that organization (content locality).

• Requests from within the organization will never be routed outside the
organization since the requests are never sent past their destination.

These characteristics are interesting from a security viewpoint, since it allows
the organization to keep control of its own data and ensure that traffic exchanged
within the organization will be routed though the organization’s peers only. It has
also a nice consequence in terms of fault tolerance: if one assumes that failures
typically happen at the organization boundaries (faulty router/proxy,
misconfiguration of gateway etc.), the typical consequence of a failure is that the
entire organization is (temporarily) disconnected from the internet. Since all the
peers in the same organization are stored contiguously in SkipNet, it means that
such a failure disconnects a set of contiguous nodes at once, and that the
connectivity for intra-organization traffic is preserved.

4.6. GosSkip

GosSkip is another P2P system based on skip lists (Guerraoui et al., 2006). In
this system, the locality of the content semantics is preserved, in other words, peers
are totally ordered according to a relationship that is external to the system (for
example, alphabetical ordering of the names used for peers and content). This
allows for efficient range queries across peers or data.

GosSkip is a system that directly builds the first ring of the overlay in the usual
way, with peers inserting themselves at the correct location in the level 0 ring by
routing a query towards their name in the exiting network. The higher level rings,
which are only needed for efficiency, are built using a gossip protocol which
periodically transmits information between neighbors and can be piggy-backed onto
existing application messages. This approach ensures that the overlay is self-
organizing and continually rebuilt from the existing level 0 ring.

The gossip protocol works as follows: regularly, each peer sends information to
their immediate neighbor on a ring, say the level i ring. This information contains a
list of pairs (peer ID, index). This list contains the peer’s own identity with the

Titre courant de l’article 13

index value 0, and the identity of all the other peers collected since the last gossip
message at that level, with an index value increased by one compared with the value
received. When receiving such a message, the peer can learn two things:

• The peer associated with the index value 1 in that message is the
current immediate predecessor of the current peer for the ring at level i.
If needed, the peer can create or correct its current information for this
ring.

• The peer associated with the index value k in that message, where k is
the number of contiguous peers along the ring at level i that are
skipped in one long jump on the ring at level i+1 (typically, k=2) is the
current immediate predecessor of the current peer for the ring at level
i+1. If needed, the peer can create or correct its current information for
this ring. The information about the peer with index value k is then
discarded from the gossip message, which thus never carries more than
k pieces of information.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1

2

3

4

Figure 2: GosSkip gossip messages

As an example, consider Figure 2: at Step 1, a gossip message is sent from Peer
1 to Peer 2 with the information about Peer 1 at index value 1. The message is then
gossiped from Peer 2 to Peer 3 with the information about Peer 2 at index 1 and
Peer 1 at index 2. When this information is received by Peer 3 (Step 2), it learns that
its predecessor on Ring 1 is Peer 1, and creates the link. Two messages can now be
gossiped (Step 3), one along Ring 0 from Peer 3 to Peer 4 with the information
about Peer 3 at index 1, Peer 2 at index 2 (information about Peer 1 has been
discarded), and one along Ring 1 from Peer 3 to Peer 1 with the information about
Peer 3 at index 1. At Step 4, Peer 4 learns about Peer 2 as its immediate predecessor
along Ring 1, while Peer 1 learns about Peer 3 as its immediate successor along
Ring 1. The spreading of information continues, towards the right on Ring 1,
towards the left on Ring 2.

GosSkip is also equipped with a “spreading” algorithm which allows efficient
broadcasting of range queries (or single queries reaching a range of equal-valued
peers). This algorithm is invoked once the normal routing algorithm has reached one
of the target peers. In order to efficiently distribute the request throughout the range
of peers that should receive it, the spreading algorithm uses the higher level rings to

14 Nom de la revue. Volume X – n° X/2001

determine how far away the request should be dispatched. The message is then sent
at once to all neighbor peers for the concerned rings. Each of these peers receives
the message together with instructions about how far to spread the message.

4.7. CAN

The Content-Addressable Network (CAN, Ratnasamy et al., 2001) is a
distributed hash-table mechanism based on multidimensional Cartesian coordinates.
CAN works with a d-dimensional space, each peer being responsible for one zone in
this space.

Each peer is assigned a random d-dimensional location and maintains the list of
its current neighbor in the network. When routing a request, the peer greedily
forwards the message towards the neighbor that is closest to the searched key. A
new peer sends a routing message toward the location it has been randomly
assigned, and thus contacts the peer in charge of the zone containing that location.
The peer then splits its zone in half and hands over half of it to the new peer. The
local information of the peer is enough to build the neighboring information for the
new peer. A message is then sent one hop away to the neighboring peer to alert
them of the new configuration. This very localized protocol is sufficient to update
the network. When a peer leaves (or is identified as failing by its neighboring
peers), the neighboring peer in charge of the smallest zone takes over the zone of
the departed peer.

As already mentioned, this mechanism allows each peer to store a fixed amount
of information, regardless of the size of the network, but the number of hops of
routing messages grows as O(n1/d) for a network with n peers. Also, CAN does not
ensure short traveling distances and, since the data is stored according to its hash
value, significant range queries are not efficient.

5. A Discussion of eQuus

5.1. Overview of eQuus.

eQuus is a recently introduced P2P system that follows the hypercube
architecture (Locher et al., 2006). In eQuus, a new concept called clique is
introduced. Each peer within a clique is responsible for the same set of data items.
This simple idea provides robustness, since data remains available as long as at least
one peer in the corresponding clique is up and running.

In eQuus, new peers are added to cliques based on geographic proximity: when
a peer joins the network, it is automatically added to the geographically closest
clique. This locality is the reason for the second advantage of eQuus, namely, that
data sharing within a clique is fast thanks to the geographical closeness of the peers
in a given clique. The relationship between cliques mimics the peer architecture of

Titre courant de l’article 15

the already surveyed P2P system Pastry. However, in eQuus, a relationship between
two cliques is maintained by having each peer of the first clique maintain k links to
randomly selected peers in the second clique. Within a clique, peers share the same
ID (the clique ID), and are responsible for the data items having an ID between their
clique ID and the ID of the next clique (data IDs are randomly uniformly
distributed).

When a clique has reached a given size (set by a system-wide parameter), the
clique will split in two, half of the peers joining a new clique with an ID
numerically half way between the ID of the split clique and the ID of its immediate
successor. The responsibility for data items will be shared (on average equally)
between the two cliques. For example, in a new network all the peers are initially
part of the same clique (with clique ID 00…0) and the entire set of data items are
the responsibility of this clique. Once enough peers are in the system, a new clique
with ID 10…0 is created, and half of the initial clique’s peers keep the
responsibility for data items 00…0 to 01…1, while the second half has
responsibility for data items 10…0 to 11…1. During such a split, the peers'
proximity within each clique is preserved.

Finally, when a clique’s size reduces to a certain threshold (set as a system-wide
parameter), this clique will merge with the preceding clique in the clique ID space.
This way, eQuus guaranties that the level of redundancy does not go below a given
safety level.

5.2. Limitations of eQuus.

One criticism that can be made about eQuus is that clique management is
entirely done based on the clique size. It ignores other factors such as the clique’s
load. We have identified the following two scenarios that could be problematic for
this system.

First, the unbalanced clique allocation strategy may create a seriously
unbalanced workload. For example, assume that an eQuus P2P network is built out
of many European peers and a few Canadian ones. If the Canadian peers and some
European peers first join the system such that two cliques are set up, we will end up
with one clique having the Europeans peers that are responsible for half of the data,
while the Canadian peers are put into the second clique, responsible for the other
half of the data. From that point on, if more and more peers are added on the
European side of the network, the number of cliques will grow and the data items
located on the “European side” of the ID space will be shared between an ever
increasing number of cliques, while the other half of the data will always remain the
responsibility of the a single Canadian clique and its peers.

Second, if for some reason a particular data item is particularly “popular” and
often requested, the clique in charge of it will bare the cost of this load, regardless
of the level of activity of the other cliques.

16 Nom de la revue. Volume X – n° X/2001

5.3. Hints at possible solutions

We believe that eQuus can be improved to better handle the situations described
above. Details are beyond the scope of this paper, but we claim that split and merge
activities should not be based only on the size of cliques. For example, in the case of
unbalanced data ID ranges, the clique in charge of the larger range could move
forward in the ID space, so as to shift the responsibility of some of its data items to
its predecessor clique1.

When a clique of eQuus is in charge of a larger amount of data (or in charge of a
very popular data item), it could momentarily “hire” a set of peers from the
successor and predecessor cliques (by letting some their peers join the clique) in
order to help coping with the current load. In this case, additional mechanisms to
monitor the cliques’ load and to decide when a clique can spare a peer will have to
be added to eQuus.

6. Conclusion

In this paper, we have provided a survey of several different models for content
distribution in current peer-to-peer (P2P) systems. We have in particular identified
the hypercube architecture and the skip list architecture, and have identified some of
the strengths and weaknesses of each of these approaches. We have also provided a
survey of the architecture and performance of numerous P2P systems. Finally, we
have provided an overview of a recently proposed clique-based system, eQuus, for
which we have identified apparent weaknesses and proposed some possible
solutions.

Bibliography

Pourebrahimi B, Bertels K.L.M, Vassiliadis S., “A Survey of Peer-to-Peer Networks”,
Proceedings of the 16th Annual Workshop on Circuits, Systems and Signal Processing,
ProRisc 2005, November 2005.

Plaxton C. G., Rajaraman R., Richa A. W., “Accessing nearby copies of replicated objects in
a distributed environment”, Theory of Computing Systems, 32:241-280, 1999.

Clarke I., Miller S. G., Hong T. W., Sandberg O., Wiley B, “Protecting free expression online
with Freenet”, IEEE Internet Computing, 6(1):40 – 49, Jan./Feb. 2002.

Rowstron A., Druschel P., "Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems". IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany, pages 329-350, November, 2001.

1 This could be done without much impact on the current eQuus by simply doing a “fake”
split, then a merge back, effectively halving (in average) the amount of data items handled by
the clique.

Titre courant de l’article 17

Castro M., Druschel P., Hu Y. C., Rowstron A., "Topology aware routing in structured peer-
to-peer overlay networks," Tech. Rep. MSR-TR-2002-82, Microsoft Research, One
Microsoft Way, Redmond, WA 98052, 2002.

Zhao B. Y., Huang L., Stribling J., Rhea S. C., Joseph A. D., Kubiatowicz J. D., “Tapestry:
A Resilient Global-scale Overlay for Service Deployment”, IEEE Journal on Selected
Areas in Communications, Vol 22, No. 1, January 2004.

Hildrum, K., Kubiatowicz, J. D., Rao, S., Zhao, B. Y., “Distributed object location in a
dynamic network”, Fourteenth Annual ACM Symposium on Parallel Algorithms and
Architectures, Winnipeg, Manitoba, Canada, August 10 – 13, 2002.

Pugh, W, "Skip Lists: A Probabilistic Alternative to Balanced Trees", Workshop on
Algorithms and Data Structures, 1989

Stoica, I, Morris, R, Karger, D, Kaashoek, F, Balakrishnan, H, “Chord: A Scalable Peer-To-
Peer Lookup Service for Internet Applications”, ACM SIGCOMM, San Diego, California,
USA, August 27 – 31, 2001.

Harvey, N. J. A., Jones, M. B., Saroiu, S., Theimer, M., Wolman, A., “Skipnet: A scalable
overlay network with practical locality properties”, USITS, Fourth USENIX Symposium
on Internet Technologies and Systems, Seattle, WA, March 2003.

Guerraoui, R, Handurukande,S, Huguenin, K, Kermarrec, A-M, Le Fessant, F, Riviere, E,,
"GosSkip, an Efficient, Fault-Tolerant and Self Organizing Overlay Using Gossip-based
Construction and Skip-Lists Principles", Sixth IEEE International Conference on Peer-to-
Peer Computing, 2006

Ratnasamy, S, Francis, P, Handley, M, Karp, R, Shenker, S, “A scalable content-addressable
network”, , ACM SIGCOMM, San Diego, California, USA, August 27 – 31, 2001.

Locher, T, Schmid, S, Wattenhofer, R, “eQuus: A Provably Robust and Locality-Aware Peer-
to-Peer System” , Sixth IEEE International Conference on Peer-to-Peer Computing,
2006.

