
Theoretical Computer Science 362 (2006) 17–32
www.elsevier.com/locate/tcs

Progressive solutions to a parallel automata equation

Khaled El-Fakiha,∗, Nina Yevtushenkob, Sergey Buffalovb, Gregor v. Bochmannc

aDepartment of Computer Science, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
bTomsk State University, 36 Lenin Str., Tomsk 634050, Russia

cSchool of Information Technology and Engineering, University of Ottawa, 800 King Edward Ave, P.O. Box 450, Stn A, Ottawa, Ont.,
Canada K1N 6N5

Received 4 February 2006; accepted 4 May 2006

Communicated by Z. Esik

Abstract

In this paper, we consider the problem of deriving a component X of a system knowing the behavior of the whole system C and
the other components A. The component X is derived by solving the parallel automata equation A♦X�C. We present an algorithm
for deriving a largest progressive solution to the equation that combined with A does not block any possible action in C and we
establish conditions that allow us to characterize all progressive solutions.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The equation solving problem is to describe a behavior of a component X of a system knowing the specifications
of the other components and the specification of the whole system. This problem may be formulated in the form of
an equation A ♦ X�C over finite automata, where A represents the specification of the known part of the system, ♦
is a parallel composition operator, � is a trace equivalence relation, and C represents the specification of the whole
system.

In 1980, a first paper [2] (see also [9]) gives a solution to the problem for the case where the system behavior is
described in terms of labeled transition systems (LTS). This work was later extended to the cases where the behavior
of the components is described in CCS or CSP [10], by FSM [11,16] or input/output automata [4,8,13].

The applications of the equation solving problem were first considered in the context of the design of communication
protocols, where the components A and C represent two protocol entities [9]. Later it was recognized that this method
could also be useful for the design of protocol converters in communication gateways [7,8,14], and for the selection of
test cases for testing a module in a context [5,12].Another application area of equation solving is the design of controllers
for discrete event systems [1,15]. Solutions to the automata equation A ♦ X�C are characterized in [4,16,17] as proper
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reductions of a largest solution, i.e., the language of each solution is a subset of that of a largest solution. However, not
each solution to the equation is of practical use. Usually we are required to get a composed system that does not block
any action that is possible according to its specification, i.e., we are interested in what is called a progressive solution
[8]. If an equation has a progressive solution then the equation is known to have a largest progressive solution [8,17] that
contains all progressive solutions. In this case, a progressive solution is a reduction of a largest progressive solution.
We note that a largest progressive solution to an equation is not unique; however, any two largest progressive solutions
are equivalent, i.e., any two largest progressive solutions accept one and the same language. A largest progressive
solution can be viewed as a reservoir of all possible solutions of our interest. However, not each reduction of a largest
progressive solution is progressive. For this reason, in order to determine an optimal solution we need to completely
characterize all the reductions of a largest progressive solution that are progressive. The problem has been studied in
[4] for input/output (I/O) automata.

In this paper, similar to [8] we solve the problem for finite automata where the context A and specification C are
deterministic. In particular, we generalize the results obtained in [8] in four important directions. First, we consider a
more general topology where a component of interest X may have external actions that are not shared with the known
part (context) A. In this case, we cannot use the approach proposed in [8], since the language of C is not the external
restriction of a subset of the language of the known part A. For this reason, we use another approach for equation
solving [17] where a largest solution to the equation is explicitly derived. Second, we present an algorithm that derives
a largest progressive reduction (if it exists) of a given automaton. This is helpful when an equation is solved over special
automata, for example, over Finite State Machines (FSMs), where the set of actions is partitioned into two disjoint sets
of inputs and outputs and where in interaction sequences each input is followed by an output. In this case, a solution has
to be an FSM, i.e., a reduction of a maximum FSM. We note that our algorithm returns a largest progressive solution if
we start with a largest solution to the equation or with a maximum automaton, which represents the set of all sequences
over a given alphabet. Third, in this paper, we consider automata with both accepting and non-accepting states. Fourth,
we establish necessary and sufficient conditions for a reduction of a largest progressive solution to be progressive. For
this purpose, for each state of a largest progressive reduction, we associate an appropriate collection of regular sets
of actions. A solution is progressive if and only if for each state pair of the intersection of the solution and a largest
progressive solution, the language generated at the state of the solution intersects each set of the collection associated
with the state of a largest progressive solution.

A preliminary version of this work appeared in [3]. Here we extend [3] by formalizing the progressiveness notion,
refining the proposed algorithm for deriving a largest progressive reduction of a given automaton by deleting the
superfluous step of deriving the largest solution to the equation, and characterizing progressive solutions without the
introduction of a simulation relation.

This paper is organized as follows. Section 2 includes preliminary definitions and results while Section 3 covers
additional concepts and the major results. Section 4 concludes the paper.

2. Preliminaries

2.1. Finite state automata

An alphabet V is a finite non-empty set of symbols. A finite sequence of symbols of the alphabet is called a trace
or a word. As usual, we let V ∗ denote the set of all finite sequences of symbols of V including the empty sequence �.
A language over the alphabet V is a subset of V ∗. Given a sequence � ∈ V ∗ and an alphabet W, a W-restriction of �,
written �↓W , is obtained by deleting from � all symbols that belong to the set V \W . If � has no letters from alphabet
W then the W-restriction �↓W is the empty word. In this paper, we consider only regular languages, i.e., languages that
are represented by finite state automata [6].

A finite state automaton, often called an automaton throughout the paper, is a quintuple A = 〈S, V, �A, s0, FA〉,
where S is a finite non-empty set of states with the initial state s0 and a subset FA of final (or accepting) states, V is
an alphabet of actions, and �A ⊆ S × V × S is a transition relation. We say that there is a transition from a state s
to a state s′ labeled with an action v, if and only if the triple (s, v, s′) is in the transition relation �A. An automaton
〈S′, V , �′

A, s0, F
′
A〉 is a submachine of the automaton A if S′ ⊆ S, �′

A ⊆ �A, and F ′
A ⊆ FA. Given state s of the

automaton A, the largest submachine of A that does not contain s is obtained by deleting from A the state s with its
incoming and outgoing transitions.
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The automaton A is called deterministic, if for each state s ∈ S and any action v ∈ V there exists at most one state
s′, such that (s, v, s′) ∈ �A. If A is not deterministic, then it is called nondeterministic.

As usual, the transition relation �A of the automaton A can be extended to sequences over the alphabet V. The extended
relation is also denoted by �A and is a subset of S × V ∗ × S. By definition, for each state s ∈ S of the automaton A
the triple (s, �, s) is in the relation �A. Given a triple (s, �, s′) ∈ �A and an action v ∈ V , the triple (s, �v, s′′) belongs
to �A, if and only if (s′, v, s′′) ∈ �A. In this paper, we consider only initially connected automata, i.e., automata where
each state is reachable from the initial state. If an automaton has states that are not reachable from the initial state then
we consider the largest connected submachine of the automaton, i.e., the largest submachine without non-reachable
states.

Given a state s of the automaton A, the set Ls(A) = {� ∈ V ∗ | (s0, �, s) ∈ �A} is called the language accepted
at the state s and the set Ls(A) = {� ∈ V ∗ | ∃s′ ∈ FA((s, �, s′) ∈ �A)} is called the language generated at
the state s. The language generated by the automaton A at the initial state is called the language generated or ac-
cepted by the automaton A and is denoted by L(A), for short. The language L(A) is the union of all languages
accepted at final states of A. By definition, the language L(A) includes the empty sequence, if and only if the ini-
tial state of A is final. It is worth noting that different automata may accept the same language. When we are in-
terested only in the language of a given automaton we can use a trim form of the automaton that does not have
superfluous states at which the empty language is generated. In this paper, we call an automaton trim if the au-
tomaton is initially connected and the language generated at each state other than the initial state is not empty.
The empty language can be generated at the initial state of a trim automaton if the automaton represents the empty
language.

The automaton 〈{s0}, V , �, s0, {s0}〉, where � = s0 × V × s0, is called maximum automaton over V and is denoted
by MAX(V ). By construction, the automaton MAX(V ) accepts the language V ∗.

A state t of the automaton B with the state set T is called a reduction of a state r of automaton P with the state set R,
written t �r , if the language of B generated at state t is a subset of that generated by P at state r. An automaton B is
called a reduction of the automaton P, written B �P , if the language of B is a subset of that of P, i.e., L(B) ⊆ L(P ).
An automaton accepting the empty language is a reduction of any automaton over the same alphabet.

Proposition 1. Given a deterministic automaton P, let B be a trim reduction of P and t be a state of automaton B. If
the sequence � ∈ Lt(B) takes the automaton B from the initial state to state t then � takes the automaton P from the
initial state to a state r such that t is a reduction of r.

Proof. Given a sequence � ∈ Lt(B), �� ∈ L(P ) because of B �P , and thus, there exists state r that is reached in
P through �. Since P = 〈S, V, �P , s0, FP 〉 is deterministic, the state r is the only state such that (s0, �, r) ∈ �P and
therefore, � ∈ Lr(P ), i.e., Lt(B) ⊆ Lr(P ). �

Automata P and B are called trace equivalent or simply equivalent, written P�B, if they accept the same language,
i.e., B is a reduction of P and vice versa.

2.2. Operators over finite state automata

Let P = 〈R, V, �P , r0, FP 〉 and C = 〈Q, W, �C, q0, FC〉 be two automata. We further describe some operations
over finite state automata that will be used throughout the paper.

Deterministic equivalent: Given an automaton P = 〈R, V, �P , r0, FP 〉, there exists an equivalent deterministic
automaton obtained from P by applying the algorithm of subset construction [6]. In order to derive such deterministic
automaton we first consider the automaton D = 〈Z, V, �D, {r0}, FD〉, where Z is the set of all non-empty subsets of P
and FD comprises each subset (or state) in Z that includes a final state of P. Given states z, z′ ⊆ R of the automaton
D and a ∈ V , the triplet (z, a, z′) ∈ �D if and only if z′ = {r ′ | ∃r ∈ z ((r, a, r ′) ∈ �P )}. We call the largest connected
submachine of the automaton D the deterministic representation DFA (P) of P.

Prefix closure: Given a trim automaton P, the automaton 〈P 〉 is obtained from P by declaring all states of P as
accepting states. The language of the automaton 〈P 〉 is the prefix closure of the language accepted by P, i.e., the
language of 〈P 〉 comprises each prefix of each sequence of the language L(P ). A trim deterministic automaton accepts
a prefix-closed language if and only if all its states are accepting.
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Intersection: If alphabets V and W intersect then the intersection P ∩C of automata P and C is the largest connected
submachine of the automaton 〈R × Q, V ∩ W, �, (s0, q0), FP × FC〉. Given an action a ∈ V ∩ W and a state (r, q),
there is a transition at the state (r, q) labeled with a and leading to state (r ′, q ′), if and only if there are transitions
at states r and q labeled with a and leading to states r ′ and q ′, respectively, i.e., � = {((r, q), a, (r ′, q ′)) | (r, a, r ′) ∈
�P ∧ (q, a, q ′) ∈ �C}. The automaton P ∩ R accepts the intersection of languages L(P ) and L(C). If V and W are
disjoint then the intersection of P and C is not defined.

Proposition 2. Given an automaton P, let B with the state set T be a trim reduction of P and t be a state of B. There
exists a state r of P such that the pair (t, r) is a state of the intersection of B ∩ P . Moreover, if P is deterministic then,
for each state (t, r) of the intersection B ∩ P , state t is a reduction of r.

Proof. Due to the definition of the intersection operator, the pair (t, r) is a state of the intersection of B ∩P if and only
if there exists a sequence that takes the automaton B to state t while taking the automaton P to state r. Therefore, the
second statement of the proposition is a corollary to Proposition 1. Consider now a sequence � that takes the automaton
B from the initial state to state t. Since B is trim, there exists a sequence � ∈ Lt(B), i.e., �� ∈ L(B), and thus,
�� ∈ L(P ) because B is a reduction of P. Therefore, there exists a state r where the sequence � takes the automaton P
from the initial state, i.e., the pair (t, r) is a state of the intersection of B ∩ P . �

Restriction: Given an alphabet U, the U-restriction ofP = 〈R, V, �P , r0, FP 〉, writtenP↓U , is the deterministic equiv-
alent DFA (B) of the automaton B = 〈R, U, �B, r0, FB〉, where FB = FP and �B = {(r, u, r ′) | ∃� ∈ V ∗(∃(r, �, r ′) ∈
�P &(�↓U = u))}. The automaton P↓U accepts the language L(P )↓U = {� ∈ U∗ | ∃� ∈ L(P )(� = �↓U)} called the
U-restriction of the language L(P ). The restriction of the language is empty if and only if the language is empty.

By definition of the restriction operator, the following proposition holds.

Proposition 3. Given the U-restriction P↓U = 〈Z, U, �, s0, F 〉 of the automaton P and state z = {r1, . . . , rk} of P↓U ,
let Lz be the language accepted at state z. The set z has a state r of P if and only if the U-restriction of the language
Lr(P ) accepted at state r contains Lz.

Proof. The proof is divided into two parts. In the first part, we link the languages of the automaton B = 〈R, U, �B, r0,

FB〉, where FB = FP and �B = {(r, u, r ′) | ∃� ∈ V ∗(∃(r, �, r ′) ∈ �P &(�↓U = u))}), and its deterministic equivalent
DFA (B) = P↓U and show that state z of the automaton P↓U that is the subset of states of the automaton B, has a state
r of B if and only if the language Lr(B) accepted at state r contains Lz(P↓U). In the second part, we show that given
a state r ∈ R of automaton P, the U-restriction of the language Lr(P ) of the automaton P and the language Lr(B) of
the automaton B that are accepted at the state r can differ only with the empty sequence and despite this difference,
the statement of the first part holds also for the case when the language Lr(B) is replaced with the U-restriction of the
language Lr(P ).

Part 1: Given the deterministic representation DFA (B) = 〈Z, V, �, {r0}, F 〉 of the automaton B we show that a state
z of the automaton DFA (B) has a state r of B if and only if the language Lr(B) accepted at state r contains Lz(DFA (B)).
Consider states r and z of the automata B and DFA (B), and a sequence � over alphabet U. By induction on the length
of sequence �, it can be shown that � ∈ Lz(DFA (B)) ⇔ ∀r ∈ z (� ∈ Lr(B))&∀r /∈ z (� /∈ Lr(B)).

If � is the empty sequence � then, by definition, � ∈ LzDFA (B)) ⇔ z = z0 and � ∈ Lr(B) ⇔ r = r0. By construction
of DFA (B), z0 = {r0} and thus, � ∈ Lz(DFA (B)) ⇔ ∀r ∈ z (� ∈ Lr(B))&∀r /∈ z (� /∈ Lr(B)). Thus, the basis step is
established.

We now assume that the statement holds for each word over alphabet U that has at most k symbols. Consider a word
� that has k symbols and u ∈ U . Due to the induction assumption, given states r and z of the automata B and DFA (B),
� ∈ Lz(DFA (B)) ⇔ ∀r ∈ z (� ∈ Lr(B))&∀r /∈ z (� /∈ Lr(B)). By definition, given state y of the automaton DFA

(B), �u ∈ Ly ⇔ (z, u, y) ∈ �. On the other hand, y = {n | ∃r ∈ z ((r, u, n) ∈ �B)} and � ∈ Lr(B) ⇔ r ∈ z. Thus,
�u ∈ Ln(B) ⇔ n ∈ y.

Consider state z of the automaton DFA (B) and the language Lz(DFA (B)) accepted at state z. We have shown
that given a sequence � ∈ U∗, it holds that � ∈ Lz(DFA (B)) ⇔ ∀r ∈ z (� ∈ Lr(B))&∀r /∈ z (� /∈ Lr(B)).
Therefore, it holds that ∀r ∈ z (Lz(DFA (B)) ⊆ Lr(B)), while ∀r /∈ z (Lz(DFA (B)) ∩ Lr(B) = ∅). In other words,
r ∈ z ⇔ Lz(DFA (B)) ⊆ Lr(B).
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Keeping in mind that DFA (B) = P↓U we obtain the following statement: state z of the automaton P↓U has a state r
of B if and only if the language Lr(B) accepted at state r contains Lz(P↓U).

Part 2: In this part, we first show that given a state r ∈ R, the U-restriction of the language Lr(P ) of the automaton
P and the language Lr(B) of the automaton B that are accepted at the state r can differ only with the empty sequence.
In other words, we prove that for each state r ∈ R it holds that Lr(B) = Lr(P )↓U , if r = r0 or r cannot be reached in
P from the initial state via a sequence over the set (V \U)∗. If r �= r0 and r is reachable in P from the initial state via a
sequence over the set (V \U)∗ then Lr(B) = Lr(P )↓U\{�}.

In order to prove that the languages Lr(B) and Lr(P )↓U can differ only with the empty sequence, by induction
on the length of a non-empty sequence � ∈ U∗ we show that for each state r of the automata B and P, it holds that
� ∈ Lr(B) ⇔ � ∈ Lr(P )↓U . The basis step is easy. By construction of the automaton B, given u ∈ U , the triplet
(r0, u, r) ∈ �B if and only if ∃� ∈ V ∗(∃(r0, u, r) ∈ �P &(�↓U = u))}. Thus, u ∈ Lr(B) if and only if u ∈ Lr(P )↓U .
We now assume that the statement holds for each word over alphabet V that has at most k symbols. Consider a word
� that has k symbols and u ∈ U . Due to the induction assumption, given state r of the automata B and P, � ∈ Lr(B)

if and only if � ∈ Lr(P )↓U . By definition of the automaton B, given state n of B, �u ∈ Ln(B) ⇔ ∃r ∈ R(� ∈
Lr(B)& ∃� ∈ V ∗((r, �, n) ∈ �P &(�↓U = u))). Thus, �u ∈ Ln(B) ⇔ ∃� ∈ V ∗((r, �, n) ∈ �P &(�↓U = �u)), i.e.,
�u ∈ Ln(B) ⇔ �u ∈ Ln(P )↓U .

Consider now the empty sequence �. If r = r0 then by definition, both languages Lr(B) and Lr(P )↓U have the
sequence � and according to the statement, Lr(B) = Lr(P )↓U . If r �= r0 then the language Lr(B) does not have the
empty sequence. In the case when r cannot be reached in P from the initial state via a sequence over the set (V \U)∗,
the language Lr(P )↓U also does not have the empty sequence, and thus, the languages Lr(B) and Lr(P )↓U coincide.
In the case when r can be reached in P from the initial state via a sequence over the set (V \U)∗, the language Lr(P )↓U

has the empty sequence that is not in the language Lr(B) and thus, Lr(B) = Lr(P )↓U\{�}.
We now show that despite that the languages Lr(B) and Lr(P )↓U may differ by the empty sequence, the statement of

the first part also holds for the case when the language Lr(B) is replaced with the U-restriction of the language Lr(P ),
i.e., state z of the automaton P↓U has a state r of P if and only if the U-restriction of the language Lr(P ) accepted at
state r contains Lz(P↓U).

By definition of P↓U , the only state that accepts the empty sequence � is the initial state. Thus, given state z of
P↓U we consider two cases: z = z0 and z �= z0. In the former case z = z0 = {r0} and r0 is the only state such
that the language Lr(B) accepted at state r = r0 contains Lz(P↓U) (Part 1), i.e., state z = z0 of the automaton
P↓U has a state r of the automaton P if and only if the language Lr(P ) = Lr(B) accepted at state r = r0 contains
Lz(P↓U).

Consider now state z of P↓U , z �= z0. The state z does not accept the empty sequence and the state z has a state r
of B if and only if the language Lr(B) accepted at state r contains Lz(P↓U) (Part 1). Since the languages Lr(B) and
Lr(P )↓U can only differ with the empty sequence that is not in the language Lz(P↓U), the state z has a state r of P if
and only if the U-restriction Lr(P )↓U of language Lr(P ) accepted at state r contains Lz(P↓U). �

Expansion: Given an alphabet U, the U-expansion of P is the automaton P↑U = 〈R, V ∪ U, �, r0, FP 〉, where
� = �P ∪ {(r, u, r) | r ∈ R & u ∈ U\V }. The automaton P↑U is obtained from P by adding at each state a loop
transition for each action of the alphabet U \ V. If U is a subset of V then the automaton P↑U coincides with the
automaton P. Automaton P↑U accepts the language L(P )↑U = {� ∈ (V ∪ U)∗ | ∃� ∈ L(P )(�↓V = �)} called the
U-expansion of the language L(P ). The U-expansion of the language is empty if and only if the language is empty.
If U ∩ V = ∅ then the U-expansion of a trim automaton that accepts only the empty sequence is a trim maximum
automaton over the alphabet U.

2.3. Composition of finite state automata

Consider a system of two interacting automata A = 〈S, W, �A, s0, FA〉 and B = 〈T , V, �B, t0, FB〉 as shown in
Fig. 1. We assume that A and B execute each action of the set V ∩ W together when both of them are ready to execute
the action. Moreover, automata A and B share (execute together) actions from the sets Ext1 = W\V and Ext2 = V \W ,
respectively, with the environment and execute these actions independently from each other, but not simultaneously.
Moreover, we suppose that the subset U ⊆ V ∩ W of actions can be observed externally. Thus, actions of the set
Ext = Ext1 ∪ Ext2 ∪ U are called external, while actions from the alphabet Int = (V ∩ W)\U are called internal.
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Fig. 1. Automata composition.
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Fig. 2. Equation solving paradigm.

For an external observer, the automata interaction is described by the sequence of external actions. However, two
consecutive external actions can be separated by a sequence of internal actions.

Given the set Ext of external actions, the composition of automata A and B is the automaton A ♦ ExtB�(B↑W ∩
A↑V )↓Ext [16]. The composition accepts the language (L(A)↑W ∩ L(B)↑V )↓Ext . By definition, if a component au-
tomaton accepts the empty language, then the composition accepts the empty language as well.

3. Solving automata equations

3.1. Automata equations

Let A = 〈S, W, �A, s0, FA〉 and C = 〈Q, Ext, �C, q0, FC〉 be two trim deterministic automata. An expression
“A ♦ ExtX�C” is called an equation w.r.t. a free variable X that represents an automaton over a given alphabet
V ⊆ W ∪ Ext. The unknown X should capture a behavior that, when composed with A, supports the desired external
behavior C, as shown in Fig. 2. The automaton A is usually called the context, and the automaton C is usually called
the specification. Each accepting state of the specification can be viewed as finishing a corresponding task [15].

An automaton B over the alphabet V is called a solution to the equation A ♦ ExtX�C, if A ♦ ExtB�C. As usual,
an equation can have no solution. However, if an equation is solvable then the equation has a largest solution [16].
A solution to the equation A ♦ ExtX�C is called a largest solution if it includes all solutions as reductions, i.e.,
each solution to the equation is a reduction of a largest solution. A largest solution to the equation is not unique;
however, any two largest solutions are equivalent, i.e., any two largest solutions accept one and the same language. For

example, a largest solution to the equation A ♦ ExtX�C can be obtained as the automaton M = A ♦ ExtC
1 [16] if

the composition A ♦ ExtM is equivalent to C. If the composition A ♦ ExtM is not equivalent to C, then the equation

1 Here C denotes a complement of C, that is, an automaton that accepts the complement of the language accepted by the automaton C.
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Specification C 

Automaton B1 Context A(1)

(2)

(3)

Fig. 3. Equation solving example.

has no solution. Given an automaton P over alphabet V, the intersection P ∩ M is a largest reduction of P that can be
a solution to the equation.

Not each solution to the equation is of practical use. A practical solution is required to be progressive. A solution is
called progressive if when combined with the context it does not block (see Section 3.2 below) the occurrence of an
external event if the latter is possible in the specification. If an equation has a progressive solution we will be interested
in characterizing all such solutions in order to be able to select an optimal one according to some criteria. In general,
the equation may have an infinite number of progressive solutions. Thus, the problem of characterizing all of them
appears to be not trivial. In this paper, we further show that if the equation has a progressive solution then it has a
largest progressive solution; each progressive solution is a reduction of a largest progressive solution. We note that a
largest progressive solution to an equation is not unique; however, any two largest progressive solutions are equivalent,
i.e., any two largest progressive solutions accept one and the same language. The set of traces of a progressive solution
is a subset of that of a largest progressive solution. Thus, a largest progressive solution can be viewed as a general
progressive solution to the equation. Any progressive solution is a reduction of a largest. However, not each reduction of
a largest solution is a progressive solution. Therefore, to completely characterize progressive solutions we first want to
find a largest progressive solution to the equation A ♦ ExtX�C and then describe all its reductions that are progressive
solutions.

As an example of equation solving (see Fig. 3), we consider the context A defined over the alphabet W =
{i1, i2, u1, u2, v1, v2, v3, o1, o2}, and the specification C defined over the alphabet Ext = {i1, i2, o1, o2, x, y} of
external actions. We assume that V = {u1, u2, v1, v2, v3, x, y} is the alphabet of a solution X to the equation
A ♦ {i1,i2,o1,o2,x,y}X�C. The automaton B1, defined over the alphabet V = {u1, u2, v1, v2, v3, x, y} and shown
in Fig. 3(3), is a solution to the equation A ♦ ExtX�C since the behavior of the whole system A ♦ {i1,i2,o1,o2,x,y}B1
is equivalent to the given specification C.

3.2. A progressive solution

In this section, we formally define the notion of a progressive solution to the equation A ♦ ExtX�C. Let A =
〈S, W, �A, s0, FA〉 be a trim deterministic context, and C = 〈Q, Ext, �C, q0, FC〉 be a trim deterministic specification
where W = Ext1 ∪ Int and Ext = Ext1 ∪ Ext2 ∪ U .

Given an automaton P = 〈R, V, �P , r0, FP 〉, where V = Ext2 ∪ Int, an action e of the specification C is blocked at
state q of C if the external restriction of the language generated at some state (s, r, q) of A↑V ∩P↑W ∩C↑W∪V does not
contain words with the prefix e. Correspondingly, a state (s, r, q) of A↑V ∩ P↑W ∩ C↑W∪V is called progressive if the
external restriction of the language generated at state (s, r, q) of A↑V ∩ P↑W ∩ C↑W∪V equals the language generated
at state q of the specification C. If P is a solution to the equation A ♦ ExtX�C then P is called a progressive solution,
if each state of A↑V ∩ P↑W ∩ C↑W∪V is progressive. That is for each state (s, r, q) of A↑V ∩ P↑W ∩ C↑W∪V , it holds
that L(s,r,q)(A↑V ∩ P↑W ∩ C↑W∪V )↓Ext = Lq(C). By definition, if P is a progressive solution then P combined with
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the context does not block an external event that is possible in the specification. Hereafter, for the simplicity of the
presentation, we let the automaton � (A, P, C) denote the automaton A↑V ∩ P↑W ∩ C↑W∪V . A state of �(A, P, C)

is a triple (s, r, q), where s is a state of the automaton A, r is a state of the automaton P, and q is a state of the
automaton C.

Since a progressive solution P is defined through properties of the automaton � (A, P, C), we establish some
properties of the states of this automaton and of the states of its V-restriction to the alphabet V of the solution. By the
definition of the expansion operator, we establish the following conditions for a triplet (s, r, q) to be reachable from
the initial state of the intersection A↑V ∩ P↑W ∩ C↑W∪V .

Proposition 4. Let (s, r, q) be a triplet, where s is a state of the automaton A, r is a state of the automaton P, and q is
a state of the automaton C. The triplet is a state of the intersection A↑V ∩ P↑W ∩ C↑W∪V if and only if there exists a
sequence � over the alphabet W ∪ V such that the W-restriction of � takes the context A from the initial state to state
s, the V-restriction of � takes the automaton P from the initial state to state r , and the Ext-restriction of � takes the
specification C from the initial state to state q.

Proposition 5. Given a deterministic automaton P over the alphabet V, let B be a trim reduction of P and (t, r) be
a state of the intersection B ∩ P . Given states s and q of A and C, if the triplet (s, t, q) is a state of the intersection
A↑V ∩ B↑W ∩ C↑W∪V , then the triplet (s, r, q) is a state of the intersection A↑V ∩ P↑W ∩ C↑W∪V . Moreover, the
language generated at state (s, t, q) of the A↑V ∩ B↑W ∩ C↑W∪V is a subset of that generated at state (s, r, q) of the
automaton A↑V ∩ P↑W ∩ C↑W∪V .

Proof. The first statement of the above proposition is a direct corollary to Proposition 4. By the definition of the
intersection operator, the language generated at state (s, t, q) of A↑V ∩ B↑W ∩ C↑W∪V is the intersection Ls(A)↑V ∩
Lt(B)↑W ∩ Lq(C)↑W∪V . The intersection of deterministic automata is deterministic; therefore, Proposition 2 implies
the second statement of the proposition. �

Consider now the state z = {(s1, r1, q1), . . . , (sk, rk, qk)} of the V-restriction of the automaton A↑V ∩P↑W ∩C↑W∪V

and let Lz be the language accepted at state z. Due to Proposition 3, the V-restriction of the language accepted at
each state of the set z contains Lz. Therefore, each state r1, . . . , rk accepts each sequence of the language Lz in the
automaton P (Proposition 4). Since P is deterministic, for each sequence of the language Lz, there exists only one state
in P accepting the sequence, i.e., the following statement holds.

Proposition 6. Given the V-restriction of the automaton A↑V ∩ P↑W ∩ C↑W∪V , let z = {(s1, r1, q1), . . . , (sk, rk, qk)}
be a state of this V-restriction. If P is deterministic then r1 = · · · = rk .

Given a trim deterministic automaton A = 〈S, W, �A, s0, FA〉 representing the context and a trim deterministic
automaton C = 〈Q, Ext, �C, q0, FC〉 representing the specification, and a trim deterministic solution M = 〈R, V, �M,

r0, FM 〉 to the equation A ♦ ExtX�C, we now establish necessary and sufficient conditions for a state of the automaton
�(A, M, C) to be progressive.

Let (s, r, q) be a state of the automaton � (A, M, C) and e ∈ Ext be an external action such that there is a transition
from state q with the action e. If the action e takes the automaton C from the state q to a non-final state then we define
the set Re[(s, r, q), e] as the set of sequences � ∈ (W ∪ V )∗ such that � is a prefix of a sequence in the language
generated at state (s, r, q) and �↓Ext = e. If the action e takes the automaton C from the state q to a final state then
the set Re[(s, r, q), e] is defined as the set of sequences � ∈ (W ∪ V )∗ such that � is in the language of the automaton
� (A, M, C) generated at state (s, r, q) and �↓Ext = e.

Formally, if the action e takes the automaton C from the state q to a non-final state then Re[(s, r, q), e] = {� | �↓Ext =
e & � ∈ L(s,r,q)(〈� (A, M, C)〉)}. If the action e takes the automaton C from the state q to a final state then
Re[(s, r, q), e] = {� | �↓Ext = e & � ∈ L(s,r,q)(� (A, M, C))}. Here we note that since the restriction and prefix
closure of a regular language are regular, each set Re[(s, r, q), e] is a regular set and thus, can be represented by an
automaton.

Based on the construction of the sets Re[(s, r, q), e], we can show, by induction, that each state of the automaton
� (A, M, C) is progressive if and only if for each state (s, r, q) of the automaton and each external action e for which
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Automaton B2 Automaton Λ(A,B1,C)(1) (2)

Fig. 4. Progressive solution B2 and the automaton � (A, B1, C).

there is a transition from state q with the action e, the set Re[(s, r, q), e] is not empty. The above result is stated in the
following proposition.

Proposition 7. Given a solution M to the equation A ♦ ExtX�C, each state of the automaton � (A, M, C) is pro-
gressive if and only if for each state (s, r, q) of the automaton and each external action e for which there is a transition
from state q with the action e, the set Re[(s, r, q), e] is not empty.

As an example of progressive and non-progressive solutions, consider the context A, the specification C, and the
solution B1 shown in Figs. 3(1)–3(3), respectively, and the automaton � (A, B1, C) shown in Fig. 4(2). The automaton
B1 is not progressive since the set Re[(dA3), o2] is empty. On the other hand, the equation has a progressive solution
that is a reduction of B1. By direct inspection, one can assure that the automaton B2 shown in Fig. 4(1) is a reduction
of B1 and it is a progressive solution to the equation, since all the states of the automaton � (A, B2, C) are progressive.
We note that a progressive reduction of the automaton B1 cannot be derived by deleting the non-progressive states of
the automaton � (A, B1, C) shown in Fig. 4(2). If we delete the non-progressive states fA3, kB3, and dA3 and restrict
the obtained automaton to the alphabet of the solution, we obtain a non-progressive solution.

3.3. Largest progressive reductions

In this section, we assume that a given automaton P is a solution (not necessarily a largest, and not necessarily
progressive) to the equation A ♦ ExtX�C. We are then interested in finding a largest reduction of P that is a progressive
solution of the equation. For this purpose, we first refine the automaton P, i.e., transform P into an equivalent perfect
automaton Pperfect. A largest progressive reduction of P is a submachine of Pperfect. This submachine can be obtained by
trimming states and transitions from Pperfect. The perfect automaton can also be used for the complete characterization
of all reductions of P that are progressive solutions to the equation.

In the following two sections we give the ideas and the details of building a perfect automaton and its largest
progressive submachine.

3.3.1. Perfect automata
In this section, we first discuss the idea of a perfect automaton and then present an algorithm for building such an

automaton.
Let P = 〈R, V, �P , r0, FP 〉 be an automaton over the alphabet V. If P is not a progressive solution to the equation,

then we have to delete some sequences from the language of P. These are the sequences whose extensions to W take
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the composition � (A, P, C) to non-progressive states. However, the number of such sequences can be infinite and in
order to have a procedure that terminates, we may try to delete appropriate states of P. Accordingly, all the sequences
accepted at these states are deleted from the language of P. However, the problem we face with this procedure is
the following. Given a state r of P, the V-restriction of the language accepted at state (s, r, q) of � (A, P, C) is a
subset of the language accepted at state r, i.e., L(s,r,q)↓V ⊆ Lr (Proposition 4). If state (s, r, q) is not progressive,
then each sequence of the set L(s,r,q)↓V has to be deleted from the language of the largest progressive reduction of
P, since all these sequences take the composition to the state that is not progressive. All the sequences of the set
L(s,r,q)↓V take the automaton P to state r. But, when the language L(s,r,q)↓V is a proper subset of Lr , i.e., when
L(s,r,q)↓V ⊂ Lr , we cannot delete state r from P since the language accepted at state r may have sequences that
can be included in a progressive solution. Those are the sequences that are in Lr\L(s,r,q)↓V . Therefore, we refine the
automaton P and obtain an equivalent perfect (w.r.t. the given context and specification) automaton Pperfect. Formally,
the automaton P is perfect (w.r.t. the given context and specification) if for each state r of P, the V-restriction of
the language accepted at state (s, r, q) of � (A, P, C) equals the language accepted at state r, i.e., L(s,r,q)↓V =
Lr . If P is perfect and state r is not progressive, we can delete r without losing any progressive solution that is a
reduction of P.

The idea of constructing such a “perfect” automaton Pperfect is as follows. For each sequence � in the language of
the automaton P, we determine the set of all triplets in � (A, P, C) reachable through sequences with the V-restriction
equal to �. In general, for many sequences in the language of P, we will have the same set of triplets in � (A, P, C).
Each triplet of a subset accepts the language of sequences with the same V-restriction (Proposition 3). Consider states s
and q of the automata A and C such that the triplet (s, r, q) is a state of the subset. Due to Proposition 4, the V-restriction
of the intersection Ls(A)↑V ∩ L(s,r,q)↑W ∩ Lq(C)↑W∪V where Ls(A) and Lq(C) are languages accepted at states s
and q, equals Lr(Pperfect). This implies that such subsets of triplets can serve as states of the automaton Pperfect. We
then add to the language of Pperfect, all sequences of the language of P that do not participate in the composition with
the context A. This is done in order to keep Pperfect equivalent to P.

For example, the automaton B1 shown in Fig. 3(3) is not perfect. The language accepted at state sA2 (Fig. 4(2))
has no sequence u1v3 that is accepted at the state A of the automaton B1. On the contrary, the automaton B2 shown in
Fig. 4(1) is perfect.

Given a deterministic automaton P, the following is an algorithm for deriving Pperfect.

Algorithm 1. Deriving the perfect (w.r.t to the given context and specification) automaton Pperfect of P.
Input: A trim deterministic automaton P = 〈R, V, �P , r0, FP 〉, a trim deterministic context A = 〈S, W, �A, s0, FA〉,

and a trim deterministic specification C = 〈Q, Ext, �C, q0, FC〉.
Output: The deterministic perfect (w.r.t. the given context and specification) automaton Pperfect that is equivalent

to P.
Step 1: Declare all states of A↑V and C↑W∪V as accepting states and derive the automaton � (A, P, C) = A↑V ∩

P↑W ∩ C↑W∪V .
Step 2: Restrict the intersection � (A, P, C) to the alphabet V and let Ptemp = 〈Rtemp, V , �temp, rt0, Ftemp〉 denote

the resulting automaton.
Step 3: Add to the language of Ptemp all sequences of the language of P that do not participate in the composition with

the context A. Formally, the automaton Pperfect = 〈Z, V, �perfect, rt0, Ftemp ∪ FP 〉 where Z = Rtemp ∪ R, is obtained
from P and Ptemp as follows. The initial state of Pperfect is the initial state of Ptemp and the transition relation �perfect
contains the union of the transition relations �temp and �P of both automata Ptemp and P. Moreover, for each transition
(r1, a, r2) of P and each subset z of triplets of Ptemp that has a triplet (s, r1, q) with state r1, we check if there is a
transition from the subset with the label a in Ptemp. If there is no such transition then we add to Ptemp a transition
(z, a, r2) . Denote Pperfect the obtained automaton.

Theorem 1. The automaton Pperfect returned by Algorithm 1 is deterministic, equivalent to P and perfect (w.r.t. the
given context and specification).

Proof. By definition of the restriction and intersection operators, Ptemp is deterministic. Due to Proposition 4, the
language of Ptemp is a subset of that of P. In Step 3, when deriving Pperfect from the automaton Ptemp, the languages of
the automata Pperfect and P are made equal; thus, Pperfect is deterministic and equivalent to P.
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Fig. 5. The perfect automaton Mperfect .

In order to show that the obtained automaton Pperfect is perfect, we first notice that only sequences of the lan-
guage of Ptemp participate in the composition. Consider a state z of the automaton Ptemp that is the set of triplets
{(s1, r, q1), . . . , (sk, r, qk)} (Proposition 6). The language Lz(Pperfect) accepted at state z is the intersection of the
V-restrictions of the languages accepted at states (sj , r, qj ) over all j = 1, . . . , k (Proposition 3), i.e., formally
Lz(Pperfect) = ⋂

j=1,...,k (Lr(P )↑W ∩ Lsj (A)↑V ∩ Lqj (C)↑W∪V )↓V , i.e., for each j = 1, . . . , k it holds
that Lqj :

Lz(Pperfect) = (Lz(Pperfect)↑W ∩ Lsj (A)↑V ∩ Lqj (C)↑W∪V )↓V . (1)

Given states s and q of the context A and the specification C, the triplet (s, z, q) is a state of the intersection
A↑V ∩ (Pperfect)↑W ∩ C↑W∪V if and only if the pair (s, q) coincides with an appropriate pair (sj , qj ), j = 1, . . . , k

(Proposition 4). Therefore, according to (1), the V-restriction of the language accepted at state (s, z, q) of the automaton
A↑V ∩ (Pperfect)↑W ∩ C↑W∪V coincides with the language Lz(Pperfect). �

As an application example of Algorithm 1, we consider the context A and the specification C shown in Figs. 3(1)
and 3(2), respectively. We assume that V = {u1, u2, v1, v2, v3, x, y} is the alphabet of a solution X to the equation
A ♦ {i1,i2,o1,o2,x,y}X�C. The solution B1 to this equation, shown in Fig. 3(3), is not progressive. Therefore, we apply
Step 1 of Algorithm 1 and we obtain the automaton � (A, B1, C) shown in Fig. 4(2). Then, we apply Steps 2 and 3
and obtain the perfect automaton Mperfect shown in Fig. 5.

3.3.2. Deriving a largest progressive reduction
Given the trim deterministic context A and the trim deterministic specification C, let Pp = 〈Z, V, �p, z0, FPp〉

be a perfect automaton w.r.t. the automata A and C. In order to derive a largest progressive solution to the equation
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A ♦ ExtX�C which is a reduction of Pp, we have to delete from the automaton Pp each state z that has a corresponding
triplet (s, z, q) in the intersection � (A, Pp, C) such that the external restriction of the language generated at (s, z, q)

in not equal to the language generated at state q of C. However, after deleting all such states from Pp some other states
of the intersection � (A, Pp, C) might get the property that the external projection of the language generated at each
of these states is not equal to the language generated at the corresponding state of the specification. Accordingly, we
define, inductively, the notion of a non-progressive state.

A state (s, z, q) of the automaton A↑V ∩ Pp↑W ∩ C↑W∪V is called 1-non-progressive, if the Ext-restriction of the
language generated at the (s, z, q) does not coincide with the language generated by the specification C at state q,
i.e., L(s,z,q)(A↑V ∩ Pp↑W ∩ C↑W∪V )↓Ext �= Lq(C). That is, there exists an external action e ∈ Ext such that there
is a transition from state q with the action e and there is no sequence � ∈ (W ∪ V )∗ that is a prefix of a sequence in
the language generated at state (s, z, q) such that �↓Ext = e. Suppose we have defined the k-non-progressive states
for k�1. A state (s, z, q) of the automaton A↑V ∩ Pp↑W ∩ C↑W∪V is called (k + 1)-non-progressive if (s, z, q) is
k-non-progressive or if for some e ∈ Ext such that there is a transition from state q with the action e, each state reached
from (s, z, q) through a sequence � ∈ (W ∪ V )∗ such that �↓Ext = e is k-non-progressive. A state is non-progressive
(or not progressive) if there exists a k such that the state (s, z, q) is k-non-progressive. Otherwise, a state is called
progressive.

Given the equation A ♦ ExtX�C, let Pp be a perfect automaton over alphabet V. A state z of Pp is non-progressive
if there is a non-progressive triplet (s, z, q) in the automaton � (A, Pp, C). We recall that each sequence that takes the
automaton Pp to a non-progressive state cannot be included in a progressive solution. Thus, in order to get the largest
progressive reduction of Pp, we are required to delete all non-progressive states from Pp. The largest submachine of
Pp that does not have non-progressive states is the largest progressive solution to the equation. This submachine can
be obtained from Pp by deleting its non-progressive states and all the states that become unreachable from the initial
state. If the initial state of Pp is deleted, then none of the reductions of the automaton Pp is a progressive solution
to the A ♦ ExtX�C. Otherwise, the obtained submachine of Pp is the largest progressive solution to the equation
A ♦ ExtX�C.

Given a deterministic automaton P, we propose the following algorithm for deriving a largest progressive reduction
of P.

Algorithm 2. Deriving a largest progressive reduction of P.
Input: A trim deterministic automaton P = 〈R, V, �P , r0, FP 〉, a trim deterministic context A = 〈S, W, �A, s0, FA〉,

and a trim deterministic specification C = 〈Q, Ext, �C, q0, FC〉.
Output: A largest progressive reduction of P.
Step 1: Call Algorithm 1 that returns the perfect deterministic automaton Pperfect that is equivalent to P.
Step 2: Determine and delete all non-progressive states of the automaton Pperfect as described above. If the initial

state of Pperfect is non-progressive (i.e., deleted), then the equation A ♦ ExtX�C has no progressive solutions that
are reductions of P. Otherwise, the obtained submachine of Pperfect is the largest reduction of P that is a progressive
solution of the equation.

As an example, consider the perfect automaton Mperfect for B1 shown in Fig. 5, derived using Algorithm 1, and the
corresponding automaton � (A, Mperfect, C) shown in Fig. 6. States fG3, kH3, fK3, dM3 and kL3 of � (A, Mperfect, C)

are 1-non-progressive, thus we delete fromMperfect the statesG, H, K, L, M , and we delete from� (A, Mperfect, C) each
state that has G, H, K, L, or M as a component. Afterwards, we observe that states cC2 and sE2 of � (A, Mperfect, C)

become non-progressive, i.e., these states are 2-non-progressive. Thus, we delete states C and E from Mperfect and obtain
the automaton shown in Fig. 4(1). Moreover, we delete each state with a component C or E from � (A, Mperfect, C).
The obtained automaton � (A, Mperfect, C) has only progressive states, thus the automaton of Fig. 4(1) is a largest
reduction of B1 that is a progressive solution.

Theorem 2. Let Pp be a perfect automaton over alphabet V (w.r.t. the given context A and specification C). The largest
submachine of Pp that does not contain non-progressive states (if such a submachine exists) is a largest reduction of
Pp that is a progressive solution to the equation A ♦ ExtX�C.

As a corollary, if Pp is the largest submachine of a perfect largest solution to the equation A ♦ ExtX�C then a
largest progressive reduction of Pp coincides with a largest progressive solution to the equation.
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Fig. 6. Automaton � (A, Mperfect, C).

Corollary 1. The largest submachine of a perfect largest solution to the equation A ♦ ExtX�C (w.r.t. the automata
A and C) that does not contain non-progressive states (if it exists) is a largest progressive solution to the equation.

Proof of Theorem 2. Consider a non-progressive state z of Pp that induces an 1-non-progressive state (s, z, q) in
� (A, Pp, C). The V-restriction of each trace accepted by state (s, z, q) has to be deleted from the language of
a largest progressive solution. A solution that has a trace accepted at the state z cannot be progressive. Since Pp
is perfect this V-restriction coincides with the language accepted at state z of the automaton Pp, and thus, state z
can be deleted from Pp. After deleting such non-progressive states from Pp we obtain a submachine PP1. The au-
tomaton PP1 also is perfect, since a trace � is deleted from Pp if and only if all the traces with the V-restriction
� are deleted from � (A, Pp, C). If PP1 is not progressive the automaton � (A, PP1, C) has a 1-non-progressive
state. Since the number of states of the automaton Pp is finite, the statement of the theorem can be easily proved by
induction. �
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We note that each automaton P over the alphabet V can be considered as an automaton over a bigger alphabet V ′ ⊇ V

with the same set of transitions and accepting states. For this reason, if the equation A ♦ ExtX�C has no progressive
solution over the alphabet W ∪ Ext then the equation has no progressive solution over any alphabet V ⊂ W ∪ Ext.
Moreover, the procedure of deriving a largest progressive reduction of the automaton P over the alphabet V = W ∪Ext
is simpler than described above for the case when V ⊂ W ∪Ext. In this case, Step 2 of Algorithm 1 is skipped since the
V-restriction of the automaton � (A, P, C) coincides with the automaton � (A, P, C)↓V . Moreover, we do not have to
compose the perfect automaton Pp of P with the specification and context in order to determine non-progressive states
of Pp while deriving the largest progressive reduction of Pp. It is sufficient to delete non-progressive states directly from
the automaton � (A, P, C). The V-restriction of the obtained automaton (if it exists) is a largest progressive reduction
of the automaton P over the alphabet V = W ∪ Ext.

3.4. Characterization of all progressive solutions

A characterization of all progressive solutions to the equation A ♦ ExtX�C over I/O automata is proposed in [4].
In this section, we establish the conditions that allow us to describe all progressive solutions for a parallel automata
equation. In other words, we propose a complete characterization of all progressive solutions of the automata equation
A ♦ ExtX�C.

Our characterization is very close to that proposed in [4]. We associate with each state of a largest progressive
solution ML a family of regular sets. In Section 3.2 we described how we obtain these sets. A reduction B of the
largest progressive solution ML is a progressive solution if and only if for each pair (t, r) of the intersection B ∩
ML, the language of the reduction B at state t intersects each regular set of the family associated with the state r
of ML.

We recall that if a largest solution to a given automata equation is progressive then it is a largest progressive solution
to the equation. Moreover, there exist an infinite number of equivalent largest solutions. Not each largest progressive
solution can be used for the complete characterization of progressive solutions [3]. However, we show that a perfect
largest progressive solution can be used for the complete characterization of all progressive solutions.

Given a deterministic largest progressive solution ML with the state set R to the equation, each progressive solution is
a reduction of ML. However, not each reduction of ML is progressive. By definition, a reduction B = 〈T , V, �B, t0, FB〉
of ML is progressive if and only if each state of the automaton �(A, B, C) is progressive. Given a state (s, t, q) of
� (A, B, C), let � ∈ L(s,t,q)(� (A, B, C)) be a sequence such that the V-restriction � of � (i.e., � = �↓V ) takes the
intersection B ∩ML of the automata ML and B to the state pair (t, r). Since B is a reduction of the deterministic ML, for
a given t there always exists such an r (Proposition 1). Now, let (s, r, q) be a state of the automaton � (A, ML, C) that
is reachable from the initial state through the sequence �. Since ML is progressive, each state (s, r, q) of the automaton
� (A, ML, C) is progressive. This means that for each external action e that can be executed at state q of the specification
C, the set of sequences Re[(s, r, q), e] is not empty (Proposition 7) and thus, the V-restriction Re[(s, r, q), e]↓V is also
not empty. Since B is a reduction of ML, the set of sequences generated at state (s, t, q) of � (A, B, C) is a subset of
that generated at state (s, r, q) of � (A, ML, C) (Proposition 5). Therefore, for (s, t, q) to be progressive, at least one
sequence from the set Re[(s, r, q), e]↓V has to be generated at state t.

Therefore, for each state (s, r, q) of the automaton �(A, ML, C) and for each external action e produced at state q,
we associate the corresponding set of sequences Re[(s, r, q), e]↓V with state r of ML. For a reduction B of ML to be
progressive, it is sufficient that for each pair (t, r) in the intersection B ∩ ML, the automaton B at state t generates at
least one sequence from each set of sequences associated with r. In this case, we say that B satisfies the condition to be
progressive.

Unfortunately, for an arbitrary largest solution ML, we could have a progressive solution that does not satisfy
this condition. This happens when there exists a triplet (s, r, q) of the automaton �(A, ML, C) such that the V re-
striction of the language accepted at (s, r, q) is not equal to the language accepted at state r. Thus, the intersec-
tion B ∩ ML may have a pair (t, r) reachable by a sequence that is in the difference Lr\L(s,r,q)

↓V . In this case, it
may happen that for (s, r, q)of� (A, ML, C) there does not exist a corresponding state (s, t, q) in� (A, B, C). However,
by construction, we have selected superfluous sequences from all the sets that relate to (s, r, q) and
every external action e that can be produced at state (s, r, q), independent of whether there exists a state (s, t, q)

in � (A, B, C). The above situation cannot happen for a perfect largest solution Mperfect with the state set Z since
the language accepted at state (s, z, q) of � (A, MPerfect, C) equals the language accepted at state z of Mperfect (i.e.,
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Lr\L(s,z,q)
↓V = ∅). In other words, for every state (s, z, q) of � (A, MPerfect, C) there exists a corresponding state (s, t, q)

in � (A, B, C).

Proposition 8. Given a trim deterministic context A and a trim deterministic specification C, let Mperfect = 〈Z, V, �M,

z0, FM 〉 be a perfect automaton (w.r.t the automata A and C) that is equivalent to a largest progressive solution ML to
the equation A ♦ ExtX�C. Let an automaton B be a trim reduction of Mperfect, a pair (t, z) be a state of the intersection
B ∩ Mperfect, and states s and q be states of the automata A and C, respectively. If the automaton � (A, Mperfect, C)

has a state (s, z, q) then the automaton � (A, B, C) has a state (s, t, q).

Proof. Let B be a reduction of Mperfect with the properties stated in the proposition, (t, z) be a state of the intersection
B ∩ Mperfect and let (s, z, q) be a state of the automaton �(A, Mperfect, C). Since Mperfect is a perfect automaton,

Lz(Mperfect) = L
(s,z,q)
↓V , i.e., for each sequence � of the language Lz(Mperfect) accepted at state z, there exists a

sequence � with the V-restriction � that takes the automaton � (A, Mperfect, C) to state (s, z, q).
Consider the sequence � of the language Lz(Mperfect) that takes the automaton B from the initial state to state t and

a corresponding sequence � with the V-restriction � that takes the automaton �(A, Mperfect, C) to state (s, z, q). Since
the pair (t, z) is a state of the intersection B ∩ Mperfect, such a sequence � exists. Due to Proposition 4, sequence �
takes the automaton � (A, B, C) from the initial state to state (s, t, q). �

Consequently, in order to have a complete characterization of all progressive solutions over a given alphabet, we
use the perfect automaton Mperfect of a largest progressive solution ML. By definition, if a triple (s, z, q) is not a state
of the automaton � (A, Mperfect, C), then for each external action e ∈ Ext the set Re[(s, z, q), e] is empty. Given an
automaton Mperfect, we denote by Re(z) the set of all non-empty sets Re[(s, z, q), e]↓V , for all (s, q, e) ∈ S ×Q× Ext.
An automaton B = 〈T , V, �B, t0, FB〉 is progressive if for each pair of the intersection Mperfect ∩ B, the prefix-
closure of the language generated at state t of the automaton B intersects each set from Re(z), i.e., the following
holds:

Re(z) �= ∅ ⇒ ∀L ∈ Re(z)(L ∩ Lt(B) �= ∅).

The following theorem formally establishes the above necessary and sufficient conditions for a reduction of a largest
progressive solution to be progressive.

Theorem 3. Given a deterministic perfect largest progressive solution Mperfect to the equation A ♦ ExtX � C, a trim
automaton B is a progressive solution to the equation if and only if B is a reduction of the automaton Mperfect and
for each state pair (t, z) in the intersection B ∩ Mperfect, the prefix-closure of the language generated at state t of the
automaton B intersects each set from Re(z).

Proof (If part). Let B be a reduction of Mperfect and for each state pair (t, z) in the intersection B ∩ Mperfect , the
prefix-closure of the language generated at state t of the automaton B intersects each set from Re(z). Consider state
(t, z) of the intersection B ∩ Mperfect. Let state (s, t, q) be a state of the automaton � (A, B, C). Then triplet (s, z, q)

is a state of the automaton � (A, Mperfect, C) (Proposition 5). Due to the stated conditions, for each action e defined at
state q of the specification the set Re[(s, z, q), e]↓V comprises the V-restriction of all prefixes of sequences generated at
state (s, z, q) that have the Ext-restriction e. Since the prefix-closure of the language generated at state t intersects the
set Re[(s, z, q), e], at least one of these prefixes is generated at state (s, t, q). Therefore, the state (s, t, q) is progressive
(Proposition 7).

(Only if part). Let B be a progressive solution. Each progressive solution is a reduction of a largest progressive
solution, i.e., B is a reduction of Mperfect. Consider a state (t, z) of the intersection B ∩ Mperfect. If triplet (s, z, q) is a
state of the �(A, Mperfect, C) then triplet (s, t, q) is a state of the �(A, B, C) (Proposition 8). Moreover, the language
generated at state (s, t, q) of the automaton � (A, B, C) is a subset of that generated at state (s, z, q) of the automaton
� (A, Mperfect, C) (Proposition 5). Therefore, in order to have a state (s, t, q) progressive the prefix-closure of the
language generated at state t has to intersect each set Re[(s, z, q), e]↓V for each e that is defined at state q of the
specification. �
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4. Conclusions

In this paper we have addressed the problem of characterizing progressive solutions to an automata equation where
the automata communicate by rendezvous. A progressive solution is of special interest, since when combined with the
context it does not block any action that is possible in the specification. Given an alphabet of a solution and an automaton
over this alphabet, we have proposed a technique for deriving a largest reduction of the automaton that is a progressive
solution to the equation (if it exists). The technique can be used in order to determine a largest progressive solution.
However, not each reduction of a largest progressive solution is progressive and therefore, the problem of characterizing
all progressive solutions is not trivial. In this paper, we have established necessary and sufficient conditions that allow
us to characterize all progressive solutions. The complete characterization of progressive solutions enables us to select
an “optimal” solution according to different criteria. For example, an optimal solution may be defined as the one with
the smallest number of states, actions or transitions, or as the fastest one, that is, the solution that, when combined with
the context, executes the external actions with a shortest internal dialog between the components.
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