
Scaling Server Selection using a Multi-Broker Architecture

Mohamed Vall O. Mohamed-Salem, University of Montreal
Gregor von Bochmann, University of Ottawa

Johnny W. Wong, University of Waterloo

Abstract

Server replication is a common approach to
improving the scalability of a service on the
Internet. For this approach, the task of finding an
appropriate server from a set of replicas is a
critical issue. We have proposed in a previous
work an architecture where a broker is used to
provide server selection on a per session basis.
When the number of servers and/or the number
of clients becomes large, a single broker may not
have sufficient capacity to handle the load. An
extended architecture based on the replication of
brokers is therefore considered. We first discuss
alternative organizations that support access to
multiple brokers and the needed cooperation
between brokers in order to achieve server
selection effectively. We then propose a server
selection policy for our multiple broker
architecture and evaluate its performance by
simulation.

1. Introduction

Server replication is a common approach to
improving the scalability of a service on the
Internet. For this approach, the task of finding an
appropriate server from a set of replicas is a
critical issue. Several replicated service
architectures have been proposed and
investigated [2,5,9,10] and some of them are
currently deployed on the Internet. In [3], we
presented an architecture where an independent
entity called “broker” is used to provide server
selection on a per session basis. Our architecture
allows flexible organization of resources used by
web sites. The broker could be at the server side
under the same authority as the replicated
servers. This case is applicable for example to
sites with heavy load and a high degree of
replication. Different sites may also share the

same broker. In this case, the broker could be an
independent brokerage service that manages the
assignment of servers for affiliated sites.

When more servers are deployed to cope
with increased user demand, the broker may
become the system bottleneck. It may then be
necessary to scale up the brokerage service by
replicating the broker. In this paper, we extend
our architecture in [3] to include replicated
brokers. Each broker manages its own cluster of
servers. The various brokers communicate and
cooperate in order to optimize the use of the
resources in their respective clusters. A client
first locates one of the brokers, and then interacts
with this broker for the selection of a server.

The brokers represent entry points to the
system of servers. Each service has a unique
public name, and for a given client, this public
name resolves to the address of a specific broker.
Methods to access one of the brokers include
domain name system (DNS) [5], connection
router [10] and network layer anycast [1]. An
important consideration in inter-broker
cooperation is the distribution of client sessions
evenly among the servers regardless of which
broker is accessed as the point of entry. Of
interest to this study is the design and evaluation
of server selection algorithms in our extended
architecture.

This paper is organized as follows. In
Section 2 we discuss issues that are related to
supporting the inter-broker cooperation. In
Section 3 we propose a server selection policy
that is capable of selecting a server globally
within all the clusters. Simulation results on the
performance of our proposed policy are
discussed in Section 4. Section 5 presents an
overview of related work. Finally, Section 6
contains a summary of our findings.

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

2. Management of Multiple Brokers

In this section, issues related to the
cooperation among a group of active broker are
discussed.

2.1 Joining/Leaving a Group of Brokers

Each active broker keeps track of
information on members of the same group. This
includes address information and status of the
server cluster. When a group is first created, the
first member has only status information on its
own cluster. A newly activated broker joins the
group by first sending a query message to one of
the active brokers in order to get the list of all
other members, and then broadcasts a “join”
message to these members. When a broker goes
offline, it informs the rest of the group by
sending them a “leave” message.

2.2 Reporting Performance Information

The objective of inter-broker cooperation is
to select the best server globally for a client
session. To do so, brokers must be able to report
the status of their clusters to each other. The
following alternatives may be considered:

• Continuous reporting: A summary of the
status information is periodically transmitted
to all the members of the group.

• Explicit status request: Status information is
sent only when explicitly requested by a
broker.

• Selective continuous reporting: Status
information is sent periodically to interested
brokers only. A broker expresses interest by
sending a subscription message to other
members of the group.

2.3 Server Selection

Each broker implements a server selection
algorithm within its own cluster. Examples
algorithms include round robin, least active
sessions and least utilization (see [3] for details
of these algorithms). Different brokers may
implement different algorithms. With multiple
brokers, each broker has to decide when it should
limit the scope of server selection to its own
cluster and when it should start looking for better
alternatives in other clusters. In the latter case,
the broker identifies the most suitable cluster,
and sends a server selection request to this

remote broker. Upon receiving a response from
the remote broker, the address of the selected
server is forwarded to the client. If the remote
broker rejects the request, the broker may repeat
the same process with other brokers.

3. A Global Server Selection Method

In this section we presents a global server
selection method for our replicated broker
architecture. We assume that all brokers
implement the same server selection policy,
referred to as Global Least Utilized (GLU). This
is an extension of the Least Utilized (LU) policy
in [3]; it selects the server that has the lowest
utilization.

As discussed in Section 2, each broker is
able to gather status information on other
clusters in order to build a global view of the
status of the system. This global view allows
overloaded brokers to identify potential
candidate brokers (or clusters) to which new
client requests can be directed. For this purpose,
we define two zones of operation for each
cluster: green and red (see Figure 1). Green
means that the cluster is operating with an
acceptable level of performance and can handle
the incoming load. On the other hand, red means
that the cluster is under heavy load, and requests
for new client sessions should be redirected to
other clusters.

The boundary between the two zones is
defined by a threshold based on the average
utilization of servers within the cluster (denoted
by u). At any instant in time, each cluster is
considered to be in one and only one of two sets
based on its state: Green (GS) if thresholdu ≤
and Red (RS) otherwise. Each broker keeps track
of the membership of GS and RS, based on
status information received.

Performanceis
acceptable,uselocal

resources

Remoteclustersmay
bepreferableoverthe

localcluster

Performancebetter worst

Threshold

Performanceis
acceptable,uselocal

resources

Remoteclustersmay
bepreferableoverthe

localcluster

Performancebetter worstPerformancebetterbetter worstworst

Threshold

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

Figure 1: State of a cluster

We distinguish between two variants of
our global least utilized policy (GLU),
depending on whether the threshold is statically
set or dynamically adjusted. We will refer to
these two variants by static GLU (SGLU) and
dynamic GLU (DGLU) respectively. SGLU uses
a predefined threshold that is common to all
clusters. Its performance depends largely on the
choice of this threshold. DGLU, on the other
hand, uses a dynamic threshold that depends on
the status of the system and hence may not be the
same at the different clusters at any instant of
time. This threshold is computed as follows.
Each broker periodically computes the average
utilization over all clusters using the latest status
information received. The resulting value is used
as its threshold. With this approach, a cluster
with utilization lower than the overall average
will marks itself as green. Otherwise, the cluster
will mark itself as red and start dispatching new
requests to its peers.

The key step used by a broker, say broker k,
in our GLU server selection algorithm can now
be defined as follows:

if { }GSkcluster ∈ , use LU to select a server
from the local cluster,

else if GS not empty, request the best broker
in GS to select a server

If a server cannot be found, the client
request is rejected.

4. Performance Evaluation

4.1 Simulation Model

In this section, we use simulation to
evaluate the performance of our global server
selection algorithm. Our simulation model
consists of K brokers, each of which manages a
cluster of N servers. Each cluster is situated at a
different region. The load on the system is
generated by a fixed number M of concurrent
sessions. When a session is newly created, it has
probability Pi of being from region i and uses the
broker of that region as an entry point to the
server side. The session length follows an
exponential distribution with a mean of 36 pages
in accordance with the results presented in [7].
When a session ends, a new session is

immediately created so that the total number of
active sessions is maintained at M.

We assume that at the client, object
requests are submitted sequentially as required in
HTTP 1.0. This is modeled as follows. When a
response is received for an object request, the
next object request is submitted after some
processing at the client. When all the objects
have been received, the page request is satisfied,
and the client starts the next user think time. We
further assume that objects are not cached and
network delays are assumed to be negligible. As
in [6], two heavy-tailed distributions, namely
Pareto and Weibull, are used to model the user
think time, the number of objects per page, and
the processing time between object requests in a
same page. Each server is modeled by a capacity
parameter measured by the time required by a
server to process one byte of data [5]. For
example, if a server has a capacity of 106

bytes/sec and the average size of an object is
10,000 bytes, then the server can process on
average 100 objects per second.

4.2 Simulation Experiments

In our simulation experiments, each
cluster has two servers; each has a capacity of
106 bytes/sec. The broker uses the LU algorithm
as described in [3] for server selection within its
own cluster. Two levels of load are simulated:
heavy load and moderate load. For the heavy
load case, M = 2000 which yields an average
server utilization of approximately 96%. The
corresponding values for moderate load are M =
1500 and 79% respectively. A configuration with
three clusters is considered. For each newly
created session, the probability Pi that the session
is in region i is set as follows: P1 = 0.2, P2 = 0.3,
and P3 = 0.5.

4.3 Simulation Results

In [3], it was shown that LU is capable
of realizing good load balancing among servers
of different capacities and under different load
conditions. In this paper, our objective is to
investigate the feasibility and performance of
using a similar algorithm for global load
balancing in a multi-broker architecture.

We first study the performance of the
two variants of GLU algorithm, namely SGLU
and DGLU. Figure 2 shows the response time
percentiles achieved by SGLU under heavy load

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

conditions for four values of the threshold: 65%,
75%, 85%, and 95%. As mentioned previously,
when the average server utilization exceeds this
threshold, a broker starts dispatching sessions to
other brokers and refuses incoming requests
from these brokers.

For comparison purposes, we show in
Figure 2 a curve labeled “one cluster”, which is
the performance achieved when all servers are
included in a single cluster. This represents the
ideal performance for global server selection. We
also show a curve labeled “independent
clusters”, which is the performance achieved in
the absence of any cooperation between the
clusters. This represents the worst case that can
be achieved by a global policy.

The results in Figure 2 lead to the
following observations. For small values of the
threshold, each cluster reaches the red zone
quickly, leaving little room to accommodate
requests from other clusters. The cooperation
between brokers is then very limited and a large
number of requests are served in their original
regions with whatever QoS available. As the
threshold increases towards values that are close
to the offered load, the overall QoS improves
steadily. For example, the percentile of requests
completed in less than 1.5 seconds with
thresholds 95%, 85%, 75% and 65% are 88%,
69%, 59% and 56% respectively. The
corresponding value for the worst case of no
cooperation among brokers is 50%.

Similar results were obtained for the
case of moderate load conditions. These results
are reported in [14].

Response time achieved by SGLU for different values of the cooperation
threshold

(3 clusters under high laod conditions)

0.20

0.40

0.60

0.80

1.00

0.15

0.45

0.75

1.05

1.35

1.65

1.95

2.25

2.55

2.85

Response time (sec.)

P
er

ce
nt

ile
s

one cluster

SGLU/65%

SGLU/75%

SGLU/85%

SGLU/95%

indep. Clusters

Figure 2: SGLU in high load conditions

The results in Figure 2 lead to two key
observations: (1) Cooperation between brokers is
beneficial when one considers global load
sharing; and (2) Choosing an appropriate
threshold for SGLU may be difficult because it is
affected by the load on the overall system.
Observation (2) has motivated the design of
DGLU. In Figure 3, we show the results for
DGLU under heavy load conditions. As
discussed in Section 3, DGLU computes the
threshold dynamically using performance data
exchanged periodically between brokers. Three
different values for the length of the reporting
interval are used in our simulation. They are 11,
51, and 101 seconds respectively.

We observe from the results in Figure 3
that DGLU is superior to SGLU, and yields
performance results very close to ideal case of a
single cluster. The main advantage of DGLU is
the automatic adjustment of the threshold. Our
results also show that the performance of DGLU
is not sensitive to the length of reporting
intervals, for the three values considered.

Once again, the results for the case of
moderate load conditions are similar (see [14] for
details).

Response time achieved by DGLU for different values of the ineterbrokers
reporting intervals

(3 clusters under high load conditions)

0.20

0.40

0.60

0.80

1.00

0.15

0.45

0.75

1.05

1.35

1.65

1.95

2.25

2.55

2.85

3&
+

Response time (sec.)

P
er

ce
nt

ile
s one cluster

DGLU/11 sec.

DGLU/51sec.

DGLU/101sec.

indep. Clusters

Figure 3: DGLU in high load conditions

5. Related Work

Several architectures have been proposed in
the literature for the management and realization
of scalable services [2,3,5,9,10]. In all cases, the
issue of scalability of the server selection process
was addressed. An early work on this issue was
based on the use of an anycast service at the
network layer for service discovery and selection
[1]. The objective is to allow an application to
send a request to potentially multiple recipients
in order to be connected with one and preferably

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

just one of these recipients only. This issue of
scalability of anycast was investigated in [11,12].
An application layer anycast paradigm has also
been proposed for the localization of servers
across the Internet [2].

A two-level server assignment approach was
proposed in [8] in which DNS performs a first
level dispatching of clients to servers, and if
necessary an overloaded server performs a
redirection to other servers. In [4], a three-level
architecture based on DNS was also proposed.

In all the above proposals, the server
assignment process, including the redirection by
servers, is done on a per connection (or request)
basis. In our architecture [3], however, server
selection is performed at the session level where
each client is assigned to a server for the duration
of its session. Control information is centralized
at brokers and servers do not need to be
involved. Our approach necessitates some
modification to client software. However, all
information necessary for server selection
decision is kept at the server side and at the
brokers. This gives service providers the
flexibility to implement server selection policies
that suit their specific needs.

6. Conclusions

In this paper we have investigated the
scalability of the server selection process based
on an extension of the architecture that we have
proposed previously [3]. This extended
architecture consists of multiple brokers where
each broker manages a server cluster and
cooperates with other brokers to achieve global
load balancing. We have also defined a group
management protocol that allows multiple
brokers to cooperate. This protocol provides
support for membership management, exchange
of performance data, and an inter-broker
negotiation.

We have developed a global server selection
policy that can be used by a set of cooperating
brokers. This policy is based on the definition of
a performance threshold. When this threshold is
exceeded at a cluster, new requests for server
selection are sent to other clusters. Two variants
of this policy, depending on whether the
threshold is set statically or adjusted
dynamically, have been evaluated by simulation.
It was found that that both variants yield a
significant performance improvement when

compared to the case of totally independent
clusters. We also observed that the dynamic
variant has by far better performance than its
static counterpart. This is mainly due to the fact
that the best value for the threshold depends
largely on the load on the system.

Our architecture is quite flexible; it allows
clients to select servers by specifying their own
QoS requirements. Our algorithm can also be
adapted easily to include different classes of
clients. In this case, the global selection may be
limited to a certain class of clients and a cluster
may serve specific classes only [13].

References

[1] C. Patridge, T. Mendez and W. Milliken,
“Host Anycasting Service”, Internet RFC
1546, 1993.

[2] S. Bhattacharjee, M.H. Ammar, E.W.
Zegura, V. Shah and Z. Fei, “Application
Layer Anycasting”. Proc. IEEE INFOCOM
97, 1997.

[3] Mohamed-Vall M. Salem, J.W. Wong and
G.v. Bochmann, “A Scalable Load-Sharing
Architecture for Distributed Applications”,
Proc. SoftCom '2001, Split, Croatia.

[4] V. Cardellini, M. Colajanni and P.S. Yu,
“Geographic Load Balancing for Scalable
Distributed Web Systems'', Proc. Eighth
International Symposium on Modeling,
Analysis and Simulation of Computer and
Telecommunication Systems, San Francisco,
2000.

[5] V. Cardellini, M. Colajanni and P.S. Yu,
“DNS Dispatching Algorithms with State
Estimators for Scalable Web-Server
Clusters”', World Wide Web Journal, Vol. 2,
No. 3, pp. 101-113, 1999.

[6] P. Barford and M. Crovella, “Generating
Representative Web Workloads for Network
and Server Performance Evaluation”, Proc.
ACM SIGMETRICS Conference on
Measurement and Modeling of Computer
Systems, pp. 151-160, 1998.

[7] L. Cherkasova, and P. Phaal, “Session Based
Admission Control: a Mechanism for
Improving Performance of Commercial Web
Sites”, Proc. 7th International Workshop on
Quality of Service, London, 1999.

[8] D. Andresen, T. Yang, V. Holmedahl, and
O. Ibarra, “SWEB: Towards a Scalable

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

[9] World Wide Web Server on Multi-
computers”, Proc. 10th International Parallel
Processing Symposium, Hawaii, 1996.

[10]E.D. Katz, M. Butler and R.A. McGrath, “A
Scalable HTTP Server: The NCSA
Prototype”, Computer Networks and ISDN
systems, volume 27, pp. 155-164, 1994.

[11]Cisco Distributed Director, available at
http://www.cisco.com/warp/public/cc/pd/cxs
r/dd/index.shtml.

[12]R. Engel, V. Peris, E. Basturk, V. Peris and
D. Saha, “Using IP Anycast for Load
Distribution and Server Location”, Proc.
Third Global Internet Mini-Conference in
conjunction with Globecom '98, 1998.

[13]D. Katabi and J. Wroclawski, “A
Framework for Global IP-Anycast (GIA)”,
Proc. ACM SIGCOMM 2000, Stockholm,
Sweden, 2000.

[14]Mohamed-Vall M. Salem, G.v. Bochmann
and J.W. Wong, "Server Selection for
Differentiated Classes of Users”, Proc. 2002
International Symposium on Performance
Evaluation of Computer and
Telecommunication Systems, San Diego.

[15]Mohamed-Vall M. Salem: “Scalable Server
Selection Using a Broker Node,” Ph.D.
Thesis, Université de Montréal, 2002.

Acknowledgement

This work was supported by the Canadian
Institute for Telecommunications Research under
the Networks of Centres of Excellence Program
of the Government of Canada, the IBM Toronto
Laboratory Centre for Advanced Studies, an
IBM Faculty Partnership Award, and the Natural
Sciences and Engineering Research Council of
Canada under a cooperative research and
development grant.

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

