
H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 342–347, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Revisiting Join Site Selection in Distributed Database
Systems

Haiwei Ye1, Brigitte Kerhervé 2, and Gregor v. Bochmann 3

1 Département d’ IRO, Université de Montréal, CP 6128 succ Centre-Ville,
Montréal Québec, Canada H3C 3J7

ye@iro.umontreal.ca
2 Département d'informatique, Université du Québec à Montréal, CP 8888,

succ Centre-ville, Montréal Québec, Canada H3C 3P8
Kerherve.Brigitte@uqam.ca

3 School of Information Technology & Engineering, University of Ottawa
P.O. Box 450, Stn A, Ottawa Ontario, Canada K1N 6N5

bochmann@site.uottawa.ca

Abstract. New characteristics for e-commerce applications, such as highly dis-
tributed data and unpredictable system nature, require us to revisit query proc-
essing for distributed database systems. As join operations involve relations
over multiple sites, the site to carry out the join operation can have a significant
impact on the performance. In this paper, we propose a new join site selection
method. Our method is different from traditional methods in the following
ways. First, the candidate sites are not restricted to the operand sites or query
site as adopted by most database systems. Second, it considers dynamic system
properties such as available bandwidth and system loads. We also conducted
some experiments to offer a comparison between our method and the traditional
one. The results show the advantage of our method under various system
statuses.

1 Introduction

Given the explosive growth of data over the Internet and prevalence of web-based
applications such as e-commerce, how to manage large volumes of data and provide
fast and timely answers to queries become more challenging in today’s information
systems. Data are usually distributed across multiple locations in a distributed data-
base system for the purpose of scalability and availability. As a result, a database
query issued against a distributed database system generally requires retrieval of data
from several locations to compute the final answer. Typical operations to combine the
data from different locations are binary operations such as join. Even if techniques
such as semi-joins have been introduced to reduce the cost of queries [1], where to
perform the join is still of interest since it does have a great impact on the overall
system performance, especially in today’s Internet environment. The research dedi-
cated to join site selection has not received adequate attention. Existing approaches of

Revisiting Join Site Selection in Distributed Database Systems 343

join site selection do not consider the dynamic nature of the Internet environment. We
propose an approach to integrate user-defined QoS requirements into a distributed
query processing environment [2]. Join site selection is regarded as one of the essen-
tial steps in our QoS-aware query processing.

In a recent survey [3], Kossmann summarized three site selection strategies for cli-
ent-server architectures. Depending on whether to move the query to the data (execu-
tion at servers) or to move the data to the query (execution at clients), the strategy is
called query-shipping or data-shipping. A hybrid approach of these two solutions is
also possible. Traditionally [4, 5], two types of strategies were proposed: Move-Small
and Query-Site. In the query-site strategy, all joins are performed at the site where the
query was submitted. In the move-small strategy, for each join operation, the smaller
(perhaps temporary) relation participating in the join is always sent to the site of the
larger relation. Selinger and Adiba suggested another option in [5]. They mentioned
that for a join of two given tables at different sites, they could move both tables to a
“third” site yet to be specified. However, this “third” site strategy has not been com-
pletely studied and not been adopted by commercial database systems.

The above strategies for join site selection in a distributed environment are inade-
quate in the sense that they are only suitable in a static environment where network
performance and load of the database server are fixed and predictable. This is obvi-
ously not the case for today’s highly distributed and dynamic systems. In this paper,
we address the issue of join site selection in distributed multidatabase systems de-
ployed for e-commerce applications. We propose an approach where dynamic system
properties such as the performance of the Internet and the load of the server are taken
into account in cost-based decisions for join site selection. In the next section we de-
scribe our approach and we provide a performance analysis in Section 3.

2 Considering a Third-Site in Join Site Selection

In order to select the site where the join operation will be processed, we first build the
set of candidate sites where we consider both operand sites as well as possible third
sites. In this set, we then select the optimal site. This decision is based on the cost
model we propose, where dynamic system properties are considered. A QoS monitor-
ing tool is used to periodically collect system status information and to provide dy-
namic system properties to the query optimizer.

2.1 Building the Set of Candidate Sites

The key issue in site selection is to decide which site is the best (optimal) for each
binary operator. The site selection process becomes complicated when several candi-
date sites are capable of handling the operator. In fact, the crucial question is how
many candidates should be considered for the third site. There are three possible ap-
proaches to determine candidate sites:

344 H. Ye, B. Kerhervé , and G. v. Bochmann

1) Consider all the available sites in the system. This is simple but this will usually
incur too much overhead for the optimizer.

2) We can shrink the above set to all the sites involved in this particular query. By
considering these sites, we may benefit from the situation where the result of
this join needs to be shipped to the selected third site for further calculation.
However, if the number of locations involved in the query is large, we may
have the same problem as above: too much optimization overhead.

3) We can apply some heuristics to further decrease the size of the candidate sites
set. For example, we can restrict the third site for a particular join operator to its
“close relatives”, such as niece/nephew sites in the join tree.

In our approach, we combine options 2 and 3. A threshold for the number of sites is
therefore used to describe the situation where option 3 should be used. That is,

where N is the total number of sites involved in the query. The value of threshold
should be derived from the experiment. In the following algorithm, we use a proce-
dure CandidateSitesSelection() to represent this procedure.

2.2 Algorithm

The procedure of join site selection can be regarded as marking the site for each join
node in the tree, usually done in a bottom-up fashion. Thus we can employ one of the
standard bottom-up tree traversal algorithms for this purpose. In our algorithm, we use
post order tree traversal to visit the internal nodes of the tree. We ignore the post order
algorithm and only give the algorithm (SiteSelection()) to visit each node.

Algorithm: SiteSelection (treenode)
1. {
2. if (hasChild(treenode) == true) {
3. candidate_set[] = CandidateSitesSelection (treenode);
4. for each site_s in candidate_set
5. cost [s] = Cost-node (treenode, site_s);//Use the cost

model to compute the cost if the join is performed on this site
6. min_site = select-min (cost[]);
7. treenode.join_site = min_site;
8. if (site_s is also marked as join site for another node m

in treenode)
9. Cost-node (m, site_s); //recalculate cost for node m under the new

added load introduced by choosing site_s
10. } // end if
11. }

The procedure of SiteSelection() picks up the join site based on the cost model and
records the join site in the root node of the input tree. The procedure of SiteSelection()
picks up the join site based on the cost model and records the join site in the root node
of the input tree. In the algorithm (Line 8 and 9), we consider the impact of this site
selection on other nodes of the tree. We then recalculate the cost for node m, taking

Candidate sites for a join =
All the sites in the tree, if N < =threshold

Close relative (children and niece), otherwise

Revisiting Join Site Selection in Distributed Database Systems 345

into account the additional load introduced by choosing site_s. Due to the optimization
overhead that would increase if we recursively consider the impact, in the current
algorithm, we do not check whether the site selection is still optimal. This is part of
our future work.

2.3 Cost Model and QoS Information

The Cost-node() implements the cost model which provides an evaluation of the cost
for each node in the query execution plan and enables the adaptation to the changing
conditions in distributed systems. The cost function includes two major parts: the local
part and the network part. The following formulas define our cost models to execute a
join at a candidate site s:

Cost-node(treenode, site_s) = Local_cost site_s + Network_cost;
Local_cost site_s = join-cost (node.left, node.right, load site_s);
Network_cost =max{ship-cost (node.left, site_s), ship-cost (node.right, site_s)};

ship-cost (node, site_s) = node.data / bwd.site i, site_s + delay site i, site_s;
where bwd node.site, i and delay node.site, i represent the available TCP bandwidth and delay,
respectively, from the site of the node to site i.

The accuracy of our cost models relies on the up-to-date information of the current
system status. Therefore, to keep track of the current dynamic performance informa-
tion about the underlying network and database server, we use the QoS monitoring
tools developed in our work [6].

3 Experimentation

In this section, we evaluate the performance of our join site selection strategy accord-
ing to the framework proposed in the previous section. The objective of our experi-
ment is to show that our strategy can adapt to workload changes (both server load and
network load) and always provides a better performance as compared to traditional
strategy. For the purpose of comparison, we also implement the traditional join site
selection strategy where the chosen site is always the site where the larger table re-
sides; we call this strategy “larger-site” strategy.

Two types of system loads are used for our measurement: network load and server
load. For network load, we mainly focus on the available bandwidth as the indication
of network congestion level. For server load, we concentrate on the CPU utilization as
the indication of server load. We observed the TCP traffic using IPERF [7]. As a re-
sult, the network congestion levels are classified into 6 levels: level 0 (no congestion)
to level 5 (highest congestion). Concerning the server load, we degrade the perform-
ance of one server by loading it with additional processes. Each process simply eats up
CPU and competes with the database system for CPU utilization. Additional load is

346 H. Ye, B. Kerhervé , and G. v. Bochmann

quantified by the number of these processes spawned on a server. We categorize this
load into 4 levels: no load, low load, medium load, and high load.

It should be noted that as an experimental prototype, our execution engine was de-
signed for ease of implementation and was not tuned for performance. The main pur-
pose is to demonstrate the feasibility of our ideas. We conducted a number of experi-
ments on two-way join and collected performance data for the two sets of experiments
identified previously. Figure 1 provides a comparison of various loads.

Fig. 1. Third-site vs. Larger-site with various server loads

The number of records in the resulting table (noted as resulting cardinality) varied
from 180 to 3075. In the experiment, the network condition is the same for the entire
load test, and the result in Figure 1 is collected while the network bandwidth is 5Mbps
for all links. We only load the servers taking part in the joins and the rest remains un-
loaded. This open up the possibility to ship joined tables to other nodes for the purpose
of performance gain.

We also conducted some experiments to compare the performance under different
network congestion levels. In these tests, we assume that the links among the nodes
involved in the join are congested while other links have the normal throughput
(5Mbps). In addition, there is no load of the server during the experimental periods.
The results show that, under the no load circumstance, the two strategies get the same
performance. With the increasing load, the “third-site” selection strategy almost pro-
vides the same performance, while the “larger-site” strategy will experience higher
response time. The advantage of third-site strategy increases with the increasing of
server load. Traditional site selection fixes the join site to the larger site. As the net-
work congestion level increases, the data transfer time will increase too, which will in
turn affect the response time of the whole query. However, for the third site selection,

3rd-site vs larger site, changing server load

0,2

1,2

2,2

3,2

4,2

5,2

6,2

0 10000 20000 30000 40000 50000 60000 70000
resulting cardinality

re
sp

on
se

 ti
m

e
(s

ec
)

no load (all users)

3rd-site (low load)

3rd-site (med load)

3rd-site (high load)

larger-site (low load)

larger-site (medium load)

larger-site (high load)

Revisiting Join Site Selection in Distributed Database Systems 347

when the network congestion level reaches a certain point (usually at level 3, called
shifting point), the algorithm will suggest to avoid the congested link and ship the two
tables to a third site. This also explains why the response times (for the third-site algo-
rithm) after the shifting point remain the same. In the performance study of the site
selection problem, our third-site strategy not only reduces the response time but also
achieves good load balancing among different database servers. According to our
algorithm, if a server is heavily loaded, then the cost to perform a join operation on
that server might be higher. This leads to the optimizer to avoid using that database
server.

Both sets of experiments show the superiority of our “third-site” selection algo-
rithm: it can pick up the fast response plan under different system conditions. In addi-
tion, it achieves good load balancing among different database servers. According to
our algorithm, if a server is heavily loaded, then the cost to perform a join operation
might be higher leading the optimizer to avoid using that server.

4 Conclusion

In this paper, we have proposed a new join site selection strategy for our QoS-aware
distributed query processing environment. The strategy is based on cost models which
integrate dynamic system properties. The candidate sites set considered in our ap-
proach is not restricted to the two operand sites as used in the traditional way. For the
moment, we focus on the performance aspect of the QoS parameters provided by the
QoS monitor. In the future, we will consider other QoS parameters, such as money
cost or data quality.

References

1. Stocker, K., Kossmann, D., Braumandl, R., Kemper, A.: Integrating Semi-Join-Reducers
into State of the Art Query Processors. ICDE 2001, pp. 575–584.

2. Ye, H., Kerhervé, B., Bochmann, G.v., Oria, V.,: Pushing Quality of Service Information
and Requirements into Global Query Optimization, the Seventh International Database
Engineering and Applications Symposium (IDEAS 2003), Hong Kong, China, July 16–18

3. Kossmann, D.: The state of the art in distributed query processing, ACM Computing Sur-
veys (CSUR), Volume 32, Issue 4, December 2000, pp 422–469.

4. Cornell, D. W., Yu, P. S.: Site Assignment for Relations and Join Operations in the Dis-
tributed Transaction Processing Environment. ICDE 1988, pp. 100–108.

5. Selinger P. G., Adiba, M.:Access path selection in distributed data base management sys-
tems. In Proc. of the International Conference on Data Bases, 1980, pp. 204–215.

6. Ye, H.: Integrating Quality of Service Requirements in a Distributed Query Processing
Environment, Ph.D thesis, University of Montreal, May 2003.

7. National Laboratory for Applied Network Research, http://www.nlanr.net/

	1 Introduction
	2 Considering a Third-Site in Join Site Selection
	2.1 Building the Set of Candidate Sites
	2.2 Algorithm
	2.3 Cost Model and QoS Information

	3 Experimentation
	4 Conclusion
	References

