
Pushing Quality of Service Information and Requirements
into Global Query Optimization*

Haiwei Ye
Université de

Montréal
ye@iro.umontreal.ca

Brigitte Kerhervé
Université du Québec à

Montréal
Kerherve.Brigitte@uqam.ca

Gregor v. Bochmann
University of Ottawa

bochmann@site.uottawa.ca

Vincent Oria
New Jersey Institute

of Technology
oria@homer.njit.ed

u

Abstract

In recent years, a lot of research effort has been
dedicated to the management of Quality of Service (QoS),
mainly in the fields of telecommunication networks and
multimedia systems. Emerging applications such as
electronic commerce, health-care applications, digital
publishing or data mining also have requirements
regarding the quality of the service, the cost of the
service, the quality of data to be delivered, the accuracy,
and the precision of the retrieved data. These examples
show the need to consider the concept of QoS from a
broader perspective, requiring the collaboration of all the
distributed system components involved. In this paper, we
propose an approach to integrate user-defined QoS
requirements, together with the dynamic properties of the
system components involved, into a distributed query
processing environment. We then propose a query
optimization strategy in which multiple goals may be
considered with separate cost models. Furthermore, we
discuss some experiment results confirming the
effectiveness of our approach.

1. Introduction

Quality of Service (QoS) management has attracted a
lot of research in the last decade, mainly in the fields of
telecommunication networks and multimedia systems. To
support QoS activities, mechanisms have been provided
mainly for individual components such as operating
systems, transport systems, or multimedia storage servers
and integrated into QoS architectures for end-to-end QoS
provisions[1]. None of these proposals take database

systems into consideration although database systems are
an important component of present distributed systems.

Traditional database optimizers aim at minimizing the
query response time and/or the number of disk I/O.
Consideration of QoS within query processing means the
inclusion of other dimensions such as the cost of the
query, the data quality, or the throughput of the database
systems. Single optimization goal strategies deployed in
the traditional database optimizers cannot satisfy such
QoS requirements. We argue that query optimization
should take into account user-defined quality of service
constraints[2]. In an electronic commerce application for
example, a user could specify QoS requirements such as:
"I want the most up-to-date information even if it takes
time. However, if the response time is longer than 3
minutes, I will accept less recent information, but only if
it is less than 10 hours old". Based on the specified QoS
requirements and using the QoS metadata, in this example
the query optimizer has to choose the most up-to-date
information from the catalogs.

In our approach, the treatment of QoS requirements is
reflected in the aspects of integrating multiple
optimization goals and how to select a query access plan
that is overall optimal. The related issues consist of
identifying the possible optimization goal, the selection of
cost models, the way to obtain the user’s priority between
different optimization goals, and how to obtain an overall
optimal goal according to the user’s preference.

In this paper, we propose an approach to integrate
user-defined QoS requirements, in addition to the
dynamic properties of the system components involved,
into a distributed query processing environment. We then
propose a query optimization strategy in which multiple
goals may be considered with several cost models.
Furthermore, we discuss some experimental results
confirming the effectiveness of our approach.

The rest of the paper is organized as follows. The next
section describes our QoS-based distributed query

*This work was supported by a grant from the Canadian Institute for
Telecommunication Research (CITR), under the Network of Center for Excellence
Program of the Canadian Government, a collaborative research and development
grant from NSERC no CRD-226962-99, by a student fellowship from IBM and an
individual research grant from NSERC no RGPIN138210.

processing. Section 3 presents the results of our
experimentation. Section 4 discusses related work.
Section 5 concludes and suggests future work.

2. QoS-based query processing

To support QoS in database systems, we propose to
enrich query processing with some QoS features. We
consider factors like user requirements, dynamic network
performance, and dynamic server load in the procedure of
global query processing. By global query processing, we
mean that we position our work on top of existing
database systems. The QoS features are plugged into the
query processor that deals with inter-database operations.
Therefore, our method does not require the modification
of local database query processors. The main objective is
to provide a flexible QoS model for multidatabase
management systems and to offer differentiated services.

We base our work on classes of users, cost models for
distributed query processing, and utility functions to
describe system or user satisfaction for different
optimization goals. Usually the utility function maps the
value of one QoS dimension to a real number, which
corresponds to a satisfaction level. For example, the
following formulas give the utility functions for the
response time and the service charge:

ut(t) = 1 / t
u$ (x) = 1 / x

where t is the response time for a query plan and x is
the corresponding service charge for that plan. Utility
functions are used in our cost model to achieve an overall
optimization since it is used to compare the quality of the
access plans. It also provides an important link between
the quality of a query plan and the user satisfaction. A
user class is a generalization of a number of users sharing
common characteristics. Classification of the users may
be based on different policies and criteria[3]. For
example, different users may exhibit various patterns of
navigation through an e-commerce site, therefore based
on the user’s navigation behavior, we may segregate
users into two classes: buyer and browser. We propose a
new approach to the problem of evaluating the cost of a
query plan in a multidatabase system. Our cost models are
adaptive in the sense that first, they combine multiple
optimization criteria (for example response time and
money cost, into a simple cost model) and second they
can give a more precise response time estimation based
on the information captured by QoS monitoring of the
network and the server.

2.1. Query processing and optimization revisited

When designing the QoS-based query processor we
are guided by two main goals: 1) recognition of
individual user requirements, and 2) consideration of the

dynamic nature of the underlying system. A logical
architecture is proposed in Figure 1 to show the
relationships between QoS management and query
processing.

Figure 1. A big picture for QoS-aware distributed

query processor
In this framework, we include the typical components

introduced in [4]. The user’s query is sent to the Parser to
be syntactically analyzed and validated against the
database schema. The output of the parser is transformed
by a set of rewriting rules in the rewriter. These rules
correspond to heuristics that transform the query into a
semantically equivalent form that may be processed more
efficiently.

The main tasks of the Global Optimizer are 1) choose
an execution plan which satisfies the optimization
objectives and 2) send it to the scheduler who coordinates
the execution of the plan among the participating
component DBMSs. We keep the traditional factors[4]
considered in the query processor. These typical factors
include table statistics, column statistics, and index
statistics. In addition, we include the QoS factors, which
are information from the QoS Information Base (QoSIB),
the User Profile, and the System Policies.

Adding QoS factors into a distributed query
processing environment has several impacts and requires:

• to provide new optimization goals;
• to modify the corresponding cost models; and
• to propose a new algorithm for query optimization.

2.2. User profiles, QoS monitoring information
and system policies

Pushing QoS into a distributed query processing
environment requires the description of the information
related to the user’s requirements, the QoS level provided
by the different system components and the objectives of
the system in terms of resource allocation.

Rules &
Heuristics

DB Statistics

QoS
Information

Base

User
Profile

 System
Policies

SQL

Parser &
Rewriter

Global
Optimizer

Scheduler

Query plan

Q
oS-aw

are Q
uery processor

Traditional
factors

QoS factors

User profiles. A user profile is built to store the user’s
QoS expectation for a particular service. The QoS
expectation is expressed according to different QoS
dimensions[5]. For example, a good quality of service
level may be expressed by the dimensions of response
time and dollar cost. The user profile allows users to
specify their QoS requirements by defining utility
functions for each dimension. As mentioned previously, a
utility function translates the values of an attribute into
“utility” units. We consider decreasing utility functions
since this type of utility function is practical in the case
that the utility decreases with the increasing of one QoS
dimension. Examples of such dimensions are response
time and service charge.

The user profile is also useful to derive the trade-off
between QoS dimensions, which is represented by the
weight assigned to each dimension. In our approach, the
Analytic Hierarchy Process (AHP) [6] is used to derive
the weights from user’s preference. This method only
requires the user to provide his or her judgments about
the relative importance of each criterion over another one
(pairwise comparison of goals) and then specify a
preference index. Based on these preference indexes, the
output of the AHP is a prioritized ranking indicating the
overall weights for each of the alternative decisions. In
short, the utility functions and weights are then used to
guide the optimizer for selecting a query access plan.

QoS information base. The QoS information base
(QoSIB) stores some information about the service level
offered by the different system components. Since we are
working in the context of Internet-like networks, the
performance of the TCP protocol is our key consideration
when talking about network performance. Among all the
performance factors, TCP throughput and TCP delay are
two key parameters considered in our distributed query
processor.

For the server performance category, the parameters
of interest include availability and server load (CPU
usage, memory usage, and the frequency of disk I/O). The
availability is the fundamental measurement of a server. It
includes the availability of hardware as well as the
software. In our research, we refer to the availability of
the database services. In our prototype, QoS information
is stored as XML files.

System policies. We believe that many future
applications, especially e-commerce systems, will be able
to provide different levels of service to different classes
of users[7]. In the simplest sense, the policy consists of
one or more rules that describe the action(s) to occur
when specific condition(s) exist[8]. In our study, the
system policies determine the constraints under which the
system resources can be used for providing services to the
users. Usually, a policy is a formal set of statements that
define the levels of services to be provided to particular

classes of users. If written in a natural language, policy
statements may take the following forms:

“Give the VIP users the best service”
“Give the normal users the resource-effective service”
Different policies may be enforced to different classes

of users. Policy statements are stored in System Policies.
The parameters that make up a system policy include the
optimization goals defined (as presented in Table 1), user
class information, and the weighting factors associated
with each goal.

Table 1 Example of optimization goals

Optimization category Optimization goal

Performance oriented - Minimize response time
- Maximize DB throughput

Money oriented
- Minimize the cost of a service
- Maximize the benefit of the database

system

Data quality - Multimedia vs. Plain text
- Recency of data

System oriented - Minimize resource utilization

When various optimization goals exist along multiple

QoS dimensions, we should find an optimal solution that
satisfies all of them, optimal either from the user
perspective or the system perspective, or both. One way
of combining various optimization objectives is to use
weighted combination (for example, a weighted sum) of
different goals. A weighted combination can express the
overall satisfaction of all the optimization goals. The user
must be presented with enough options that his or her
desires can be adequately expressed and they can then be
mapped to weighting factors associated with the different
objectives.

All this information is later integrated into the QoS-
aware distributed query processing for access plan
selection. Different optimization goals may lead to
different cost models or query processing strategies. In
the performance category, the cost factors comprise the
measures of local processing time, the communication
time as well as some overhead due to parallelism. There
are two types of query parallelism: inter-query parallelism
(which enables the parallel execution of multiple queries)
and intra-query optimization (which makes the parallel
execution of multiple operations possible within the same
query). For the optimization goals related to the
monetary, the cost measures include information on the
resource usage and the pricing scheme.

2.3. Global Query Optimization

Global query optimization is generally implemented in
three steps[4]. After parsing, a global query is first
decomposed into query units (subqueries) such that the
data needed by each subquery is available from a single

local database. Second, an optimized query plan is
generated based on the decomposition results. Finally,
each subquery of the query plan is dispatched to the
related local database server to be executed and the result
for each subquery is collected to compute the final
answer.

In our study, we focus on the first two steps and map
them to the problems of global query decomposition,
inter-site join ordering and join site selection[10]. Before
describing these three steps, we give an explanation about
the evaluation of the cost of query plans.
2.3.1. Evaluating the cost of query plans. We propose a
new approach to the problem of evaluating the cost of a
query plan in a multidatabase system. Our approach relies
on the information from QoS monitor user profiles. The
novelty of our approach lies in the consideration of user
requirements, user classes as well as the way to deal with
dynamic network performance.

In our work, three levels of cost models are used. The
first level is the global cost model, which is used to
calculate the overall utility of a query access plan. The
second level is used to calculate the cost for each node in
a query access plan. The last level is the local cost model,
which is used to estimate the cost of an operator locally.

Global cost model. As discussed earlier, multiple
optimization goals over different QoS dimensions are
considered in our query optimizer. Consequently, the
global cost model should reflect them. For our cost
model, we adopt the method proposed for multi-criteria
optimization in Operations Research area. Accordingly,
the general cost model for one user is

)}C({
1

iii

n

i
umax ⋅∑

=

ω

where ui is the utility function for cost component Ci

(based on one of the QoS dimensions i); ωi is the
weighting factor assigned to the cost component Ci. Note
that we want to maximize the utility for a given user;
therefore this model could also be called a utility model.
The range of ωi is [0,1] and Σωi = 1.

Plan cost model. A query access plan is represented
by a binary tree. Each internal node is an inter-site join
operation and each leaf node is the subquery executed at
one database server. Since we consider several cost
components, the cost of each node is also expressed
according to multiple dimensions. For example, if we
select the response time, the service charge and the
availability as our cost components, then the cost
information recorded in each node will include three
parts: time, dollar, and availability. The cost information
for leaf nodes is based on the local cost model and the
QoS Information Base (e.g. availability). The cost
information for the internal node is calculated as a
combination of the cost information of its left and right
child nodes. The cost formula for each QoS dimension is

different. Table 2 lists the cost functions for time, dollar,
and availability. The join time for each node is
determined by the load of the server and the current TCP
performance. The formula for each join is:

T join = local (site, query) + net (sitei, sitej)
where local (site, query) represents the local execution
time for the query at site, net (sitei, sitej) represents the
data transfer time spent over the network.

Table 2 Cost functions for each cost component

Cost
Component

Cost function Brief Description

Response
time

Join-time + max
(left.respose_time,
right.response_time)

The join time is the
response time to perform
the join between the left
and the right child.

Service
Charge

Join-charge +
left.charge
+ right.charge

The join charge is the
money cost to perform
the join between the left
and the right child.

Availability Left.availability *
right.availability

The probability that both
servers are available.

Figure 2 shows an example query plan marked with cost
information for each node. We use a vector (time, money,
availability) to record the cost information for each node
in the plan tree. By using this representation, the cost
information for the root node of the tree is the plan cost.
Each item in the vector associated with that node is
computed using the formula given in Table 2.

Figure 2. Cost calculation for a join node

Local cost model. As mentioned earlier, the local cost

information relies on the estimation of the execution of a
query at a local server, the pricing policy applied by the
local server for a service charge and the server
availability. Each local database server must report the
price and the availability. However, the execution
strategy, and therefore the execution time, of a query is
hard to obtain since local database systems do not report
the needed statistical information. To estimate the local
database cost, we adopt the sampling method[9], where
multiple regression models are used to guess the local
cost structure (in terms of time). The idea of the query
sampling method can be characterized by the following
steps: 1) queries are classified according to a number of
criteria; 2) sample queries from each class are selected
and issued to run against the local database; and 3) the
response time is then measured to derive the local cost

(1.4s, $0.3, 98%)

Site i
(0.8s, $0.1, 99%)

Site j
(0.9s, $0.1, 99%)

model by multiple regression analysis. Such a cost
formula includes a set of variables that affect the costs of
queries and a number of coefficients that reflect the
performance behaviour of the underlying DBMS. Due to
space limitation, we will not give detailed information
here. A complete discussion can be found in[11].
2.3.2. Global query processing. In our work, global
query processing is implemented by three steps: global
query decomposition, join ordering, and join site
selection.

Global query decomposition. The main task of the
global query decomposition is to break down a global
query into several subqueries so that the tables involved
in each subquery target one location. This is an NP-
Complete problem[12]. Therefore, this step is usually
guided by heuristics. Two goals used in our algorithm are
to simplify the optimization at the global level and to
reduce the data transmission among different sites.
Therefore, the heuristic used is to decompose a global
query into the largest possible subqueries.

The cost model used for this step mainly depends on
the local information, based on the optimization goal
selected. For example, if the optimization goal is the
response time, the cost model could be the response time
for each subqueries under various server loads. We do not
consider data transfer in this step; therefore
communication cost is not involved. The QoS factor
considered is mainly the system performance information
from QoS information base.

Join ordering. The global query decomposition phase
generates a set of subqueries with location information. In
the following join ordering step, the optimizer tries to
come up with a good ordering of how to combine these
joins between subqueries. The join ordering can be
represented as a binary tree, where leaf nodes are the sub-
queries and internal nodes are inter-site join operations.
Because we want to utilize the distributed nature of the
multidatabase system, we try to make this tree as low as
possible, which means we hope the join can be done in
parallel as much as possible.

A typical way is to generate a linear tree first and then
balance this linear tree to a bushy tree [10][12].
Following the same method, we first build a left-deep tree
using dynamic programming. The next step in the join
ordering is to transform the left deep join tree into a more
balanced bushy join tree. A feasible approach is to apply
a sequence of basic transformations that can be easily
identified and performed[11].

The cost models used in this step consist of both
global cost model and local cost model. In this step all the
QoS factors introduced in Section 3.2 are included in the
decision.

Join site selection. In case of data duplication, one
subquery might have several potential locations, thus the
optimizer should decide at which location this subquery

will be executed. Like the join ordering problem, all the
QoS metrics are taken into account.

The key issue in the site selection is to decide which
site is the best (depending on how the user defines his or
her optimization goal) for each binary operator.
Traditionally, the possible site to perform the join or the
union is chosen from one of the operand sites, i.e. the site
where one of its operands is located. However, there may
be circumstances when shipping the two operand tables to
a third site is a better solution, in terms of response time.
We call the join site to be a third site if the selected site is
neither of the operand sites.

For a binary operator node such as join or union, the
selection process becomes complicated when several
third sites are capable of handling the operator node.

After we decide which candidate set to choose for the
“third site”, the procedure of join site selection can be
regarded as deciding (based on the cost model) the site
for each internal node (which is usually the inter-site join
operation) in the query access tree. This process may be
done in a bottom-up fashion. In our algorithm, we use
post order tree traversal to visit the internal nodes of the
tree[11].

2.4. Prototype implementation

In order to validate our approach, we implemented a
prototype where we concentrated on those aspects that are
representative for the QoS-based distributed query
processing we propose. For simplicity, we only integrate
two QoS dimensions in the prototype. However, the
implementation is not limited to these two dimensions,
the modules implementing other dimensions can be easily
plugged into our prototype. Highlights of the
implementations are given below.
1) User classes: In order to show the differentiated

services in our prototype, we have adopted the priority-
based user classification and considered two user
classes, namely VIP user and normal user.

2) QoS consideration. The dynamic characteristics of the
underlying systems for our QoS consideration are
network performance, server load, and availability. For
the network performance, TCP performance is our
main concern. Accordingly the QoS dimensions we
considered are available bandwidth and delay. For the
consideration of server load, we categorize the load into
four levels: no load, low, medium, and high. They are
used to show different levels of resource contention. In
addition, a server is also characterized by its
availability (yes or no).

3) Optimization goal. For our prototype implementation,
we focus on two optimization goals: minimize the
response time and/or the service charge. Basically, we
want to demonstrate the integration of the criteria of
time and money into our prototype. Accordingly the

overall optimization goal is calculated by the following
formula:

Min { ωt ut (response_time) + ω$ u$ (service_charge) }

where ωt and ω$ are the weights specified by the users
for the response time and service charge, respectively;
ut and u$ are utility functions used for the response time
and service charge respectively. For the purpose of
simplicity, we assume the utility function for the
response time and the service charge are the utility
functions given at the beginning of Section 2.

4) Global cost models. The global cost model (as
explained in Section 2.3.1) contains two cost
components: response time and service charge.
Depending on the optimization goals, three cost models
can be selected:

i. Ctime = response_time;
ii. Cdollar = service_charge;
iii. Coverall = Wtime * ut(response_time) +

Wdollar * u$(service_charge)
The detailed cost model information can be found in

[13]. The calculation of the response time is
straightforward. The total response time of a query plan
(represented as a tree structure) is the sum of the
response time on each node along the critical path in
the query access tree.

For the service charge, we are dealing with a pricing
issue. Typically, two types of charging schemes are
popular today. They are flat-rate and usage-based [14].
We adopt the usage-based pricing policy for our
prototype implementation. We concentrate on network
bandwidth utilization. A complete pricing schema,
however, should consider all the resources including
both the network and the server. The reason for only
considering the network resource is not only because
we want to simplify the implementation, but also
because there have already been many studies for the
pricing for the Internet. We assume the service charge
of a query plan is proportional to the network resource
consumed. Accordingly, this second optimization goal
is eventually simplified as the problem of minimizing
the network bandwidth utilization.

Prototype architecture. The functional modules of
the prototype include the user interface part for SQL
input and QoS schema selection, the optimization part
based on the algorithms proposed, the visualization part
for the query plan and QoS information and the result
display part. Our prototype offers a simplified GUI for
SQL input. This component allows a user to specify a
query by selecting the desired attributes and tables as well
as join and restriction predicates.

The user can also choose to view the XML
representation of the specified query that will be
forwarded to the optimizer by clicking the “show query
(XML)” button. The other component integrated with the

SQL Input GUI is the User Preference manager, shown in
the lower part in Figure 4. In this part, the user can select
his trade-off between the response time and the service
charge. The sliding bars are used for this purpose and this
ratio is further integrated in the optimizer to derive the
overall optimization goal.

Figure 4 An example of SQL input interface and

selection of query preference

When an SQL query and the QoS preferences are

specified by the user, he/she can see the generated query
access plan. For the query specified as in Figure 4, the
query plan shown to the user will look like the one shown
in Figure 5.

In short, through the implementation of the prototype,
we have demonstrated the following points:
• Different user classes are provided in the prototype.

Users are classified based on priority and a system
policy is made for each user class;

• Two optimization goals are supported in the current
prototype, according to two QoS dimensions: response
time and service charge. The overall optimization goal
is achieved by using the weighted sum of the resulting
utility functions applied for different goals;

• Different query access plans can be generated for
different user classes;

• Dynamic QoS conditions for systems may affect the
decision. The system parameters include both the
network information and server characteristics.

EMP_ACT
(Ottawa) @Montreal

DEPARTMENT
(Montreal)

EMPLOYEE
(Quebec)

@Montreal @Kingston

PROJECT
(Toronto)

SALES
(Kingston)

@Montreal

Figure 5 An example of generated query access plan

3. Experimentation
In this section, we evaluate the performance of our

QoS-based query processing strategy according to the
framework proposed in the previous sections. The
objective of our experiment is to show that our query
optimizer can adapt itself to workload changes (both
server load and network load) and always chooses the
best plan for different user classes. In the experiment we
simulate two classes of users: VIP user and normal user.

The specific goals of the experimentation are two-
fold: (i) how our estimated plan cost (in terms of response
time) is close to the real execution cost; and (ii) what are
the quality of service for VIP user and normal user under
different workloads (we focus on response time in the
experiment). Corresponding to these goals, two sets of
experiments were set up. Two types of system loads are
used for our measurement, one for network and the other
for server load. For network load, we mainly focus on the
available bandwidth as the indication of network
congestion level. For server load, we concentrate on the
CPU utilization as the indication of server load.

In the first experiment, named estimated vs. executed,
we take the query plan generated by the prototype and
execute under different server loads. The network
bandwidth used for the plan estimation is 5Mbps since
this is the most representative maximum bandwidth
during the daytime according to our observation between
University of Montreal and University of Ottawa.

The second experiment, named VIP vs. normal is
designed to measure the response times for VIP users and
normal users under different server loads and network
congestion levels. The 3-way join with different resulting
cardinalities is used for the second experiment.

3.1. Experimental setup and assumptions

All tests were performed under Windows NT 4.0 (SP 6)
on a single Pentium III CPU and 192MB RAM. The
tables used in this experiment are based on the SAMPLE
database provided by the DB2 Universal Database [15].
The size of the database is about 7.5KB.

All the reported execution times of our experiments
represent the average of executing the query 20 times.
The purpose of this averaging is to avoid the influence of
disk I/O to our result. In the measurement of the data
transfer times, we have not included the disk I/O time for
retrieving a table into memory in order to send it over the

network. To simplify the discussion and highlight the
points of interest, we disregard the disk I/O.

We mentioned in the previous section that the network
congestion level and various server loads are two major
system dynamics for our experiment. To study their
influence in our prototype, we usually fix one and change
the other to collect the performance numbers. It should be
noted that as an experimental prototype, our execution
engine was designed for ease of implementation and has
not been tuned for performance. The main purpose is to
demonstrate the feasibility of our ideas in practice.

3.2. Workload classification

The workload in the experiment includes both server
load and network load. Concerning the server load, in our
experiments we degrade the performance of one server by
loading it with additional processes. Each process simply
eats up CPU and competes with the database system for
CPU utilization. Additional load is quantified by the
number of these processes spawned on a server. The
reason we concentrate on the CPU is that the buffer pool
size for the SAMPLE database is about 1MB (250 pages,
with size of 4KB for each page), which is more than
enough to hold the whole database. Therefore, the
number of disk I/Os does not affect our experiment result
very much. As discussed before, we categorized the
server load into 4 levels: no load, low load, medium load,
and high load.

As for the network load, we consider the TCP
congestion level. In our global database schema, we
assume the data are distributed among different cities in
Canada. Because performing experiments directly on the
Internet would not provide repeatable results, we instead
modeled the behavior of the network using trace data that
could be easily relayed. Therefore we need to have
knowledge about the available TCP throughput between
two cities. We choose Montreal and Ottawa as our
experimental base. For this purpose, we observed the
TCP traffic using IPERF[16] between UdeM (University
of Montreal) and UO (University of Ottawa).

The measurements were made in the morning, in the
afternoon and at night each day, and statistics were
collected. Based on the observation, we find the
maximum bandwidth ranging from 0.2Mbps to 10 Mbps
depending on the time of the day. Within this range,
5Mbps is the normal throughput during daytime and
8Mbps is the normal throughput at night. When the
network is congested, 2Mbps is the throughput we saw
around 4pm to 6pm. Very occasionally, we got 0.1 to 0.2
Mbps. These data are used to define our congestion level.
The corresponding congestion level is defined in Table 3.
A throughput of 8Mbps is regarded as no congestion.

Table 3 Measured network congestion levels

Network
bandwidth

0.1Mbp
s 0.2Mbps 1Mbps 2Mbps 5Mbps 8Mbps

Congestion
level 5 4 3 2 1 0

3.3. Result

We conducted a number of experiments and
performance data are collected for the two sets of
experiments identified previously.

Estimated versus execution time. In the first set of
experiments, estimated vs. executed, we first varied the
workload of the server. Then under different loads, a plan
is generated with an estimated time. This plan is then
executed and the observed execution time is recorded for
the purpose of comparison. The network congestion level
for all links is 1, that is 5Mbps. Figure 6 gives the plots
for the comparison of two times under different server
loads.

In Figure 6, the estimated times are given in dotted
line and the collected times are given in solid line. As it
can been seen from the figure, the two curves for each
load are very close. We also analyze the result statistically
by constructing a linear regression model of these two
times. The regression results (detailed in [11]) indicate
that the estimated times can explain about 95% of the real
execution times.

We compare the execution times for VIP users and
normal users under different server loads in Figure 7. The
curves marked with square and triangle signs represent
the performance for normal users and VIP users,
respectively. As we can see from the figure, under no
load, all the users will get the same performance (the
lowest curve in Figure 6). With the increasing load, the
VIP user always stays at the same curve (the same
performance), while the normal user will get higher
response time (the curves marked with square sign). And
the advantage of performance for VIP users increases
with increasing server load. In short, Figure 7 shows that
the VIP users always get best performance while the
normal user will suffer the slow response when the load
increases.

Figure 6. Estimated versus execution time, with

various server loads

Figure 7. VIP vs. normal user with various server loads

Figure 8 depicts the effect of network congestion on
the performance. In this set of tests, we assume that the
links among the nodes involved in the join are congested
while other links have the normal throughput (5Mbps). In
addition, there is no load of the server during the
experimental periods. Again, estimated times are used for
the comparison of this experiment. Each of the curves in
Figure 8 has six data points, which correspond to the six
congestion levels. The curves marked with a triangle sign
represent the VIP user. The curves marked with a square
sign represent the normal user. We observe the same
trend as in the load test, whenever the links are congested
to a certain level (usually at level 3), the plan for the VIP
user can choose another smooth route for data
transformation and maintain the fast response time. Since
doing so may incur extra data transmission, and this is
regarded as “expensive” for normal users, the normal user
will experience a slower query response in these cases.

VIP vs. Normal, with different network congestion levels (I)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 1 2 3 4 5

network congestion levels

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

5760

7380

6300

10080

12915

11808

Estimated vs. Executed time

0

1

2

3

4

5

6

7

8

9

10

0 10000 20000 30000 40000 50000 60000 70000

result cardinality

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

VIP vs normal, changing server load

0.2

1.2

2.2

3.2

4.2

5.2

6.2

0 10000 20000 30000 40000 50000 60000 70000
resulting cardinality

re
sp

on
se

 ti
m

e
(s

ec
)

no load (all users)

vip user (low load)

VIP user (med load)

VIP user (high load)

normal user (low load)

normal user (medium
load)
normal (high load)

+ No load
* Low load

 Medium load
o High load

(a)

(b)
Figure 8. VIP vs. normal user, with various network

congestion levels

3.4. Experiment summary

In the experiment discussed in this section, we first
evaluated how close the estimated query execution time
comes to the real execution time. The results shown in
Figure 6 illustrates that under various server loads, the
observed response time is very close to the estimated
time. We then demonstrate, through the second set of
experiments, that under all the circumstance the VIP user
will get fast response time, or in general the better
service.

Using the same experimental setup, we can also
compare our algorithm for join site selection (which
considers a third candidate site) with the traditional one
(which always ships the small table to the large table
site). The results in [11] also show the superiority of our
algorithm over the traditional algorithm under different
system loads. The experiment described in this section
attempts to demonstrate the feasibility of the integration
of QoS into distributed query processing, which means
different treatments for different classes of users.
Although our initial experimental result is a very first
attempt and is subject to future refinement, this first
attempt gives a fairly clear picture showing the capability
of delivering QoS differentiation in query processing.

4. Related work
In the last decade, several approaches have been

proposed for decomposition and optimization of queries
across different data sources. They can be classified into
two categories: 1) strategies for providing universal
access over multiple information sources and 2) dynamic
and adaptive query optimization strategies. Proposals for
the first category are based on mediator architectures,
where different data sources are described and integrated.

Different query capabilities are taken into account during
the query optimization. Such approaches include
Garlic[17], IRO-DB[18] and Mariposa [19]. The query
optimizer implemented in Garlic uses enumeration rules
for describing query capabilities and uses dynamic
programming to find a good plan. IRO-DB provides
federation of object-oriented and relational database
systems through the ODMG model and the OQL query
language. The global query processor uses services of
local cost tuners and their corresponding calibrating
procedure to derive the local cost parameters. The
originality of the approach proposed in Mariposa is its
economic model in the query optimization phase. The
bidding mechanism allows sites to observe their
environment from query to query, and autonomously
restate their costs of operation for subsequent queries.

The approaches proposed in the second category
generally provide techniques for dealing with delays in
data processing and transfer at remote sites [20][21] and
dynamic query processing [22][23]. Our approach falls
into the second category and we propose to use QoS
monitoring tools to push dynamic properties of the
systems into global query optimization. The novelty of
our approach lies in the fact that we take the user QoS
requirements and the system policies into consideration to
support several optimization goals.

5. Conclusion and future work
In this paper, we have proposed a general framework

for integrating QoS requirements in a distributed query
processing environment. This framework is based on user
classes, cost models, utility functions, and policy-based
management. Our approach allows to offer differentiated
services to different classes of users according to their
expectations in terms of QoS. We have presented our
QoS-based distributed query processing strategy where
we push QoS requirements and information into the
different steps of global query optimization: global query
decomposition, join ordering and join site selection. We
presented the prototype we have developed as well as
experimentation we have conducted to validate our
approach. The current prototype considers two classes of
users as well as two different optimization goals. In the
future, we will consider other QoS dimensions to be
specified by the user, such as data quality or freshness
and will work on rewriting rules to transform
specifications on these dimensions into optimization goals
and corresponding cost models. To test the feasibility of
our method, we designed a very simple scenario. To test
our algorithm in a more general case, further experiments
should be conducted on a larger and real database system.

References

VIP vs. Normal, with different network congestion levels (II)

0.9

0.95

1

1.05

1.1

1.15

1.2

0 1 2 3 4 5

network congestion level

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

27675

23625

13500

[1] C. Aurrecoechea, A. Campbell, and, L Hauw, A Survey of
QoS Architectures. ACM Multimedia Journal, 6, May
1998, pp. 138-151

[2] H. Ye, B. Kerhervé, G. v. Bochmann, QoS-aware
distributed query processing, DEXA Workshop on Query
Processing in Multimedia Information Systems (QPMIDS),
Florence, Italy, 1-3 September, 1999

[3] D.A. Menasce, V. A.F. Almeida, Scaling for E-Business
Technologies, Models, Performance, and Capacity
Planning, Prentice Hall Canada, 2000

[4] D. Kossmann, The state of the art in distributed query
processing, ACM Computing Surveys (CSUR), Volume
32, Issue 4, December 2000, pp 422 – 469

[5] Frolund, S., & Koistinen, J., Quality-of-Service
Specification in Distributed Object Systems. Distributed
Systems Engineering Journal (December 1998), vol 5 no 4,
pp 179-202.

[6] T. Saaty. Multicriteria Decision Making - The Analytic
Hierarchy Process. Technical report, University of
Pittsburgh, RWS Publications, 1992

[7] G.v. Bochmann, B. Kerhervé, H. Lutfiyya, M. M. Salem,
H. Ye, Introducing QoS to Electronic Commerce
Applications, Second International Symposium, ISEC 2001
Hong Kong, China, April 26-28, 2001, pp 138-147

[8] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B.
Quinn, S. Herzog, A. Huynh, M. Carlson, J. Perry, S.
Waldbusser Terminology for Policy-Based Management,
November 2001

[9] Q. Zhu, Y. Sun and S. Motheramgari, Developing Cost
Models with Qualitative Variables for Dynamic
Multidatabase Environment, Proceedings of IEEE Int’l
Conf. On Data Eng. (ICDE2000), San Diego, Feb 29-
March 3, 2000, pp 413-424

[10] W. Du, M.-C. Shan, U. Dayal, Reducing Multidatabase
Query Response Time by Tree Balancing. SIGMOD
Conference 1995, pp 293-303

[11] H. Ye, Integrating Quality of Service Information and
Requirements in a Distributed Query Processing
Environment, Ph.D thesis (preliminary draft), University of
Montreal, 2002

[12] C. Evrendilek, A. Dogac, S. Nural, and F. Ozcan,
Multidatabase Query Optimization, Distributed and
Parallel Databases, Volume 5, 1997, pp 1-39

[13] H. Ye, G.v. Bochmann, B. Kerhervé, An adaptive cost
model for distributed query processing, UQAM Technical
Report 2000-06, May 2000

[14] A.M. Odlyzko, Internet pricing and the history of
communications, Computer Networks 36 (2001), pp. 493-
517

[15] DB2 UDB Administration Guide V7.2, http://www-
4.ibm.com

[16] National Laboratory for Applied Network Research,
http://www.nlanr.net/

[17] Hass, L., Kossmann, D., Wimmers, E., Yang, J. Optimizing
queries across diverse data sources in Proceedings of tthe
Conference on Very Large Data Bases (VLDB), Greece,
Aug. 1997, pp276-285

[18] G. Gardarin, F. Sha, and Z. Tang, Calibrating the Query
Optimizer Cost Model of IRO-DB, an Object-Oriented
Federated Database System, Proceedings of the 22nd
VLDB, Mumbai (Bombay), India, 1996, pp 378-389

[19] Stonebraker, M. and al. Mariposa: A Wide-Area
Distributed Database System, VLDB Journal, 5,1 (January
1996) pp48-63

[20] Z. Ives, D. Florescu, M. Friedman, A. Levy, D. Weld, An
Adaptive Query Execution Engine for Data Integration
Proc. of ACM SIGMOD Conf. on Management of Data
1999

[21] J. Hellerstein, M. Franklin, S. Chandrasekaran, A.
Deshpande, K. Madden, S. Hildrum, V. Raman, M. Shah,
Adaptive Query Processing: Technology in Evolution. In
IEEE Bulletin on Data Engineering, vol 23, no 2, 2000, pp
7-18

[22] R. Cole, G. Graefe, Optimization of Dynamic Query
Evaluation Plans. SIGMOD Conference 1994, pp 150-160

[23] T. Urhan, M.J. Franklin, and L. Amsaleg, Cost-based
Query Scrambling for Initial Delays, SIGMOD’98,
Volume 27, Number 2, Seattle, June 1998

