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Abstract.  In this paper, we consider the problem of deriving a component X of 
a system knowing the behavior of the whole system C and the other 
components A. The component X is derived by solving the parallel automata 
equation A ◊ X ≅ C. We present algorithms for deriving the largest progressive 
solution to the equation that combined with A does not block any possible 
action in C and we introduce a new simulation relation between automata in 
order to characterize all progressive solutions. 

1 Introduction 

The equation solving problem is to describe a behavior of a component X of a system 
knowing the specifications of the other components and of the whole system. This 
problem may be formulated by the equation A ◊ X ≅ C over finite automata, where A 
represents the specification of the known part of the system, ◊ is a parallel 
composition operator, ≅ is a trace equivalence relation, and C represents the 
specification of the whole system.  

In 1980, a first paper [2] (see also [7]) gives a solution to the problem for the case 
when the system behavior is described in terms of labeled transition systems (LTS). 
This work was later extended to the cases where the behavior of the components is 
described in CCS or CSP [8], by FSM [9, 14] or input/output automata [11, 6, 3].  

The applications of the equation solving problem were first considered in the 
context of the design of communication protocols, where the components A and C 
represent two protocol entities [7]. Later it was recognized that this method could also 
be useful for the design of protocol converters in communication gateways [5, 12, 6], 
and for the selection of test cases for testing a module in a context [10]. Another 
application area of equation solving is the design of controllers for discrete event 
systems [13, 1]. Solutions to the automata equation A ◊ X ≅ C are characterized in [3, 
14] as proper reductions of the largest solution. However, not each solution to the 
equation is of practical use. Usually we are required to get a composed system that 
does not block any action that is possible in the specification, i.e. we are interested in 
what is called a progressive solution [6]. It is desirable to determine the largest 
progressive solution [6, 14] to the equation (if it exists) that contains all progressive 
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solutions. In this case, a progressive solution is a reduction of the largest progressive 
solution. That is, the set of traces of a progressive solution is a subset of that of the 
largest progressive solution. The largest progressive solution can be viewed as a 
reservoir of all possible solutions of our interest. However, not each reduction of the 
largest progressive solution possesses the property. For this reason, in order to 
determine an optimal solution we need to completely characterize all the reductions of 
the largest progressive solution that are progressive. The problem has been studied in 
[3] for Input/Output automata.  

In this paper, we generalize the results given in [6]. Given a solution to the 
automata equation, we suggest a procedure that derives its largest progressive 
reduction. First, we split the states of the given solution and obtain an equivalent 
perfect automaton. This automaton has a nice property: If a given sequence cannot be 
in a progressive solution, then this sequence takes the perfect automaton from its 
initial state to a state that is only reachable through non-progressive sequences. 
Consequently, we delete from the perfect automaton all states that are only reachable 
through non-progressive sequences and we obtain the largest progressive reduction of 
a given solution. Moreover, in this paper, we consider automata with both accepting 
and non-accepting states and we establish necessary and sufficient conditions for a 
solution to be progressive. For this purpose, for each state of a perfect automaton, we 
associate an appropriate collection of regular sets of actions. A solution is progressive 
if and only if there exists a simulation relation between the solution and the perfect 
automaton such that for each state pair of the simulation relation, the language 
generated at the state of the solution intersects each set of the collection associated 
with the state of the perfect automaton. In Section 3 we present the details of the 
above described work, while in Section 2 we include all related definitions. In Section 
4 we conclude the paper. 

2 Finite State Automata Relations, Operators, and Composition 

An alphabet V is a finite nonempty set of symbols. As usual, we let V 
* denote the set 

of all finite sequences of symbols of V including the empty sequence ε. A language 
over the alphabet V is a subset of V 

*. Given a sequence α ∈V 
* and an alphabet W, a W-

restriction of α, written α ↓W, is obtained by deleting from α all symbols that belong to 
the set V \ W. If α has no letters from alphabet W then the W-restriction α ↓W is the 
empty word. In the paper, we consider only regular languages, i.e. languages that are 
represented by finite state automata [4]. 

A finite state automaton, often called an automaton throughout the paper, is a 
quintuple P = 〈S, V, δ P, s0, FP〉, where S is a finite nonempty set of states with the initial 
state s0 and a subset FP of final (or accepting) states, V is an alphabet of actions, and 
δ P ⊆ S ×V × S is a transition relation. We say that there is a transition from a state s to a 
state s ' labeled with an action v, if and only if the triple (s, v, s ') is in the transition 
relation δP. 

The automaton P is called deterministic, if for each state s ∈ S and any action v∈V 
there exists at most one state s ', such that (s, v, s ')∈δ P. If P is not deterministic, then it 
is called nondeterministic. 
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As usual, the transition relation δP of the automaton P can be extended to sequences 
over the alphabet V. The extended relation is also denoted by δP and is a subset of 
S × V *

 × S. By definition, for each state s∈S of the automaton P the triple (s, ε, s) is in 
the relation δP. Given a triple (s, α, s ')∈δ P and an action v∈V, the triple (s, α v, s '') 
belongs to δ P, if and only if (s ', v, s '')∈δ P. 

Given a state s of the automaton P, the set Ls(P) = {α ∈V 
*

 | (s 0, α, s)∈δ P} is called the 
language accepted at the state s and the set Ls(P) = {α ∈V 

*
 | ∃ s '∈FP ((s, α, s ')∈δ P)} is 

called the language, generated at the state s. The language, generated by the 
automaton P at the initial state, is called the language generated or accepted by the 
automaton P and is denoted by L(P), for short. The language L(P) is the union of all 
languages accepted at final states of P. By definition, the language L(P) has the empty 
sequence, if and only if the initial state of P is final. It is worth to note that different 
automata can accept the same language. When we are interested only in the language 
of a given automaton we can use a reduced form of the automaton that does not have 
superfluous states at which the empty language is generated. In this paper, we call an 
automaton reduced if the language generated at each state is not empty1 

The automaton 〈{s 0}, V, δ, s 0, {s0}〉, where δ = S×V×S, is called chaos and is 
denoted by CHAOS(V). By definition, the chaos automaton CHAOS(V) accepts the 
language V 

*. 
A state s of an automaton is said to be reachable, if there exists a sequence that 

takes the automaton from the initial state to s, i.e. the state s accepts a nonempty 
language. The automaton is called connected, if each state is reachable. Any state that 
is not reachable, can be deleted from the automaton without affecting the language of 
the automaton. By this reason, we further consider only connected automata. 

Here, we recall some relations between finite automata defined over the same 
alphabet. Let P = 〈R, V, δ P, r 0, FP〉 and B = 〈T, V, δ B, t 0, FB 〉 be automata. 

A relation ϕ ⊆ T × R, is called a simulation relation [1], if for each pair (t, r)∈ϕ the 
following holds:  

1. t ∈ FB ⇒ r ∈ FP.  
2. For each (t, v, t ')∈δ B  there exists r'∈R such that (r, v, r ')∈δ P and (t ', r')∈ϕ. 
The automaton P simulates the automaton B or the automaton B is said to be 

simulated by the automaton P, written P ⊇ϕ B, if there exists a simulation relation ϕ, 
such that the pair (t0, r0) of the initial states is in the relation ϕ. 

The state t of the automaton B is called a reduction of the state r of automaton P, 
written t ≤ r, if the language of R generated at state t is a subset of that generated by 
the P at state r. Automaton R is called a reduction of the automaton P, written R ≤ P, 
if the language of R is a subset of that of P, i.e. L(R) ⊆ L(P). An automaton accepting 
the empty language is a reduction of any automaton over the same alphabet. 

The simulation relation refines the reduction relation [1], i.e. if P ⊇ϕ B then B ≤ P. 
The converse is not always true. However, a deterministic automaton simulates any of 
its reductions, i.e. the following statement holds. 
Proposition 1. [1]. Given a deterministic automaton P, let B be an automaton over the 
same alphabet. Then B is a reduction of P, if and only if P simulates B. � 

                                                           
1 A reduced automaton may have equivalent states, i.e. states where equal languages are 

generated. 
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Automata P and B are called trace equivalent or simply equivalent, written R ≅ B, if 
they accept the same language, i.e. B is a reduction of P and vice versa. 

Let P = 〈R, V, δ P, r 0, FP〉 and R = 〈Q, W, δ R, q 0, FR 〉 be two automata. We further 
describe some operations over finite state automata that will be used throughout the 
paper. 

Deterministic representation. Given the automaton P, there exists an equivalent 
deterministic automaton obtained from P by applying the algorithm of subset 
construction [4]. We denote this automaton by DFA (P) and call it the deterministic 
representation of P. Note that a state of DFA (P) is a subset of states of P and accepts 
the intersection of their languages. Due to the construction, the following statement 
holds. 

Prefix closure. Given the automaton P, the automaton <P > is obtained from P by 
declaring all states of P as accepting states. The language of the automaton < P > is 
the prefix closure of that of P, i.e. the language of < P > comprises each prefix of 
each sequence of the language L(P).  

Intersection. If alphabets V and W intersect then the intersection P ∩ R  of automata 
P and R is the largest connected sub-machine  of the automaton 
 〈S × Q, V∩ W, δ, (s0, q0), FP × FR〉. Given an action a∈V∩ W and a state (s, q), there is a 
transition at the state (s, q) labeled with a, if and only if there are transitions at states s 
and q labeled with a, i.e. δ = {((s, q), a, (s', q')) | (s, a, s ')∈δP ∧ (q, a, q ')∈δR }. The 
automaton P ∩ R accepts the intersection of languages L(P) and L(R). If V and W are 
disjoint then intersection of P and R is not defined, since the alphabet of an automaton 
can not be empty. 
Proposition 2. Given an automaton P, let B = 〈T, V, δ B, t 0, FB 〉 be a reduced reduction 
of P and t be a state of B. There exists a state r of P such that the pair (t,r) is a state of 
the intersection of B ∩ P. Moreover, if P is deterministic, then for each state (t,r) of 
the intersection B ∩ P state t is a reduction of r. �  

Restriction. Given an alphabet U, the U-restriction of P is the deterministic form 
P↓U of the automaton 〈S, U, δ, s 0, FP〉, where δ = {(s, u, s ') | ∃ α∈V 

* ∃ (s, α, s ')∈δ P 
(α ↓U = u)}.  The automaton P↓U accepts the language L(P)↓U = {α ∈U 

*
 | ∃β ∈L(P) 

(α = β ↓U)} called the U-restriction of the language L(P). The restriction of the 
language is empty if and only if the language is empty. Due to the definition of the 
restriction, the following statement can be established. 
Proposition 3. Given the U-restriction P↓U of the automaton P and state p = {s1, ..., sk} 
of the P↓U, let Lp be the language accepted at state p. The set p is the set of all states of 
P that accept the language over the alphabet V with the U-restriction Lp. � 

Expansion. Given an alphabet U, the U-expansion of P is the automaton 
P↑U = 〈S, V ∪U, δ, s 0, FP〉, where δ = δ P ∪{(s, u, s) | s ∈ S ∧ u ∈ U \ V }. The automaton 
P↑U is obtained from P by adding at each state a loop transition labeled with each 
action of the alphabet U \ V. If U is a subset of V then the automaton P↑U coincides 
with the automaton P. Automaton P↑U accepts the language L(P)↑U = 
{α ∈(V ∪ U )*

 | ∃ β ∈L(P) (α ↓V = β )} called the U-expansion of the language L(P). The 
U-expansion of the language is empty if and only if the language is empty.  
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 Fig. 1. Automata composition Fig. 2. Equation solving paradigm 
 
Consider a system of two interacting automata A = 〈T, W, δ A, t

0
, FA〉 and 

B = 〈S, V, δ B, s
0
, FB〉 shown in Figure 1. We assume A and B execute each action of the 

set V∩W together when both of them are ready to execute the action. Moreover, 
automata A and B share actions from the sets Ext1 = W \ V and Ext2 = V \ W, 
respectively, with an environment and execute these actions independently from each 
other, but not simultaneously. Moreover, we suppose that the subset U ⊆ V∩ W of 
actions shared by the automata can be observed externally. Thus, actions of the set 
Ext = Ext1 ∪ Ext2 ∪ U are called external, while actions from the alphabet Int = 
(V ∩ W) \ U are called internal. For an external observer, the automata interaction is 
described by the sequence of external actions. However, two consecutive external 
actions can be separated by a sequence of internal actions. 

Given the set Ext of external actions, the composition of automata A and B is the 
automaton A ◊Ext B ≅ (B↑W ∩ A↑V)↓Ext. The composition accepts the language 
(L(A)↑W ∩L(B)↑V)↓Ext. By definition, if a component automaton accepts the empty 
language, then the composition accepts the empty language as well. 

3 Solving Automata Equations 

Let A = 〈S, W, δ A, s0
, FA〉 and C = 〈Q, Ext, δ C, q0

, FC〉 be two deterministic reduced 
automata. A notation A ◊Ext X ≅ C is called an equation w.r.t. a free variable X, which is 
considered to be an automaton with a given alphabet V ⊆ W ∪ Ext. One may think of a 
composition A ◊Ext X as a network possessing the desired external behavior C as it is 
shown in Figure 2. The automaton A is usually called a context, and the automaton C 
is usually called a specification. Accepting states of the specification can be viewed as 
finishing an appropriate task [13]. 

An automaton B over the alphabet V is called a solution to the equation A ◊Ext X ≅ C, 
if A ◊Ext B ≅ C. Since the set of classes of equivalent automata is ordered by the 
reduction relation, we can introduce the largest solution that includes all solutions to 
the equation A ◊Ext X ≅ C as its reductions, i.e. each solution to the equation is a 
reduction of the largest solution. 

Not each solution to the equation is known to be of practical use. A practical 
solution is required to be progressive. A solution is called progressive if, when 
combined with the context, it will not block the occurrence of an external event if the 
latter is possible in the specification. If an equation has a progressive solution we will 
be interested in characterizing all such solutions in order to be able to select an 
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optimal one according to some criteria. In general, the equation may have an infinite 
number of progressive solutions. Thus, the problem of characterizing all of them 
appears to be not trivial. In this paper, we further show that if the equation has a 
progressive solution then it has a largest progressive solution. The set of traces of a 
progressive solution is a subset of that of the largest progressive solution. Thus, the 
largest progressive solution can be viewed as a general solution to the equation. Any 
progressive solution is a reduction of the largest. However, the converse is not true. 
Therefore, to completely characterize progressive solutions we first want to find the 
largest progressive solution to the equation A ◊Ext X ≅ C and then describe all its 
reductions that are progressive. We note that when the unknown component has no 
external actions a technique for the derivation of the largest progressive solution is 
proposed in [6]. 
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Fig. 3. The example of equation solving 
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As an example of equation solving (see Figure 3), we consider the context A 
defined over the alphabet W = {e

1
, e

2
, i}, and the specification C defined over the 

alphabet Ext = {e
1
,e

2
, x} of external actions. Moreover, consider the automaton B1 

defined over the alphabet V = {e
1
, e

2
, i, x} and shown in Figure 3.3. The behavior of 

the whole system A ◊{e
1
, e

2
, x} B

1
 is equivalent to the given specification. Thus, B1 is a 

solution to the equation A ◊Ext X ≅ C.  

3.1 A Progressive Solution 

In this subsection, we introduce the notion of a progressive solution to the equation 
A ◊Ext X ≅ C. Then, we give a detailed overview of the method how to derive a largest 
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progressive solution if it exists. Afterwards, we present the consecutive steps of this 
method along with application examples.  

Let A = 〈S, W, δ A, s
0
, FA〉 be a deterministic context, C = 〈Q, Ext, δ C, q

0
, Q〉 be a 

deterministic specification. 
Given an automaton P = 〈R, V, δ P, r

0
, FP〉 over alphabet V, a state (s, r, q) of the 

automaton A↑V ∩ P↑W ∩ C↑W∪V is called progressive, if the Ext-restriction of the 
language generated at the (s, r, q) coincides with the language generated by the 
specification C at state q, i.e. L(s, r, q)( A↑V ∩ P↑W ∩ C↑W ∪V )↓Ext =  Lq(C ). Otherwise, the 
state (s, r, q) is called non-progressive.  

A solution B to the equation A ◊Ext X ≅ C is called progressive, if each state in 
A↑V ∩ B↑W ∩ C↑W ∪V is progressive. By definition, if B is a progressive solution then B 
combined with the context does not block an external event that is possible in the 
specification. 

Hereafter, for simplicity of presentation, we let the automaton Λ (A, P, C) denote the 
automaton A↑V ∩ P↑W ∩ C↑W∪V. A state of Λ (A, P, C) is a triple (s, r, q), where s is a 
state of the automaton A, r is a state of the automaton P, and q is a state of the 
automaton C. 

We note that the equation A ◊Ext X ≅ C can have both progressive and non-
progressive solutions. For example, consider the context A shown in Figure 3.1 and 
the specification C shown in Figure 3.2. The solution B

1
 shown in Figure 3.3 is not 

progressive, since the automaton Λ(A, B
1
, C), shown in Figure 4.2, has a non-

progressive state c1A. On the other hand, another solution B
2
, shown in Figure 4.1, is 

progressive, since all the states of the automaton Λ (A, B
2
, C), shown in Figure 4.3, are 

progressive. 
Since a progressive solution is defined through properties of the automaton Λ (A, 

P, C), we establish some properties of the states of the automaton and of the states of 
its V-restriction to the alphabet V of a solution. By definition of the expansion 
operator, we establish conditions for a triplet (s, r, q) to be reachable from the initial 
state of the intersection A↑V ∩ B↑W ∩ C↑W∪V. 
Proposition 4. Let (s, r, q) be a triplet, where s is a state of the automaton A, r is a 
state of the automaton P, and q is a state of the automaton C. The triplet is a state of 
the intersection A↑V ∩ B↑W ∩ C↑W∪V if and only if the there exists a sequence β over the 
alphabet W∪V such that the W-restriction of β takes the context A from the initial 
state to state q, the V-restriction of β takes the automaton P from the initial state to 
state r, and the Ext-restriction of β takes the specification C from the initial state to 
state q. � 
Proposition 5. Given a deterministic automaton P over the alphabet V, let B be a 
reduction of P and (t,r) be a state of the intersection B∩ P. Given states s and q of A 
and C, if the triplet (s,t,q) is a state of the intersection A↑V ∩ B↑W ∩ C↑W∪V , then the 
triplet (s,r,q) is a state of the intersection A↑V ∩ P↑W∩ C↑W∪V. Moreover, the language 
generated at state (s,t,q) of the A↑V ∩ B↑W ∩ C↑W∪V  is a subset of that generated at state 
(s,r,q) of the automaton A↑V ∩ P↑W ∩ C↑W∪V. � 

Consider now the state p = {(s1, r1, q1), ...,  (sk, rk, qk)} of the V-restriction of the 
automaton A↑V ∩ P↑W∩ C↑W∪V  and let Lp be the language accepted at state p. Due to 
Proposition 3, the set p is the set of all states of the intersection that accept the 
language with the V-restriction Lp. Therefore, each state r1, ..., rk accepts the language 
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Lp in the automaton P (Proposition 4). Since P is deterministic, there exists only one 
state accepting the language, i.e. the following statement holds. � 
Proposition 6. Given the V-restriction of the automaton A↑V ∩ P↑W∩ C↑W∪V, let p = 
{(s1, r1, q1), ..., (sk, rk, qk)} be a state of the V-restriction. If P is deterministic then r1 = ... 
= rk. � 

Given a solution M to the equation A ◊Ext X ≅ C, we now establish necessary and 
sufficient conditions for a state the of the automaton Λ (A, M, C) to be progressive  

Given an automaton A = 〈S, W, δ A, s 0, FA〉 representing the context and an automaton 
C = 〈Q, Ext, δ C, q 0, Q〉 representing the specification, consider the automaton 
M = 〈R, V, δ M, r

0
, FM〉. Let (s, r, q) be a state of the automaton Λ (A, M, C) and e ∈ Ext be 

an external action such that there is a transition from state q with the action e. If the 
action e takes the automaton C from the state q to a non-final state then we define the 
set Re[(s, r, q), e] to be the set of sequences β ∈(W ∪V )* such that β is a prefix of a  
sequence in the language generated at state (s, r, q) and β ↓Ext = e. If the action e takes 
the automaton C from the state q to a final state then the set Re[(s, r, q), e] is defined to 
be the set of sequences β ∈(W ∪V )* such that β is in the language of the automaton 
Λ (A, M, C) generated at  state (s, r, q) and β ↓Ext = e.  

Formally, if the action e takes the automaton C from the state q to a non-final state 
then Re[(s, r, q), e] = {β  | β ↓Ext = e & β ∈ < L(s, r, q)( Λ (A, P, C))>}. If the action e takes 
the automaton C from the state q to a final state then Re[(s, r, q), e] = {β  | β ↓Ext = e & β 
∈ L(s, r, q)( Λ (A, P, C))}. 

Based on the construction of the sets Re[(s, r, q), e], we can show, by induction, that 
each state of the automaton Λ (A, M, C) is progressive if and only if for each state 
(s, r, q) of the automaton and each external action e for which there is a transition 
from state  q with the action e, the set Re[(s, r, q), e] is not empty. The above result is 
stated in the following proposition. 
Proposition 7. Given a solution M to the equation A ◊Ext X ≅ C, each state of the 
automaton Λ (A, M, C) is progressive if and only if for each state (s, r, q) of the 
automaton and each external action e for which there is a transition from state q with 
the action e, the set Re[(s, r, q), e] is not empty. � 

Here we note that since the restriction and prefix closure of a regular language are 
regular, each set Re[(s, r, q), e] is a regular set and thus, can be represented as an 
automaton. 

3.2 An Overview of the Method for Solving the Problem 

For automata that accept prefix-closed languages, and for a composition topology 
where the alphabet of a solution is a subset of that of the context, i.e. V ⊆ W, it is 
shown in [6] that the equation A ◊Ext X ≅ C has a progressive solution, if and only if a 
largest progressive solution to the equation exists. In Section 3.5 we generalize the 
result for the more general composition topology shown in Figure 1. Moreover, we 
propose an algorithm that returns the largest progressive reduction of an automaton 
over the alphabet V (if exists). As a corollary, we obtain a largest progressive solution 
if we start from the chaos automaton CHAOS(V) or the largest solution to the equation. 
The obtained largest progressive solution has a nice property that it includes all 
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progressive solutions, and thus can be used later for the characterization of these 
solutions. We also note that each automaton P over the alphabet V can be considered 
as an automaton over a bigger alphabet V′⊇V with the same set of transitions and final 
states. For this reason, if the equation A ◊Ext X ≅ C has no progressive solution over the 
alphabet W ∪ Ext then the equation has no progressive solution over any alphabet V ⊂ 
W ∪ Ext. Therefore, without any loss of generality we only consider the largest 
progressive solution over the alphabet V = W ∪ Ext.  

The problem of characterizing all progressive reductions of a largest progressive 
solution is not trivial, since the number of these reductions is infinite and, moreover, 
not each reduction of a largest progressive solution is progressive. We solve the 
problem by introducing the notion of a perfect automaton, the operation of a regular 
extension, and regular simulation relation. The idea behind the approach is described 
in details in Section 3.4. 

3.3 Largest Progressive Solutions 

Given two progressive solutions to the equation A ◊Ext X ≅ C, their union is also a 
progressive solution. In other words, the set of all progressive solutions ordered by the 
reduction relation is a semilattice. In general, the semilattice of all progressive 
solutions can be infinite, and thus the problem of determining if it has a largest 
element, i.e. if the equation A ◊Ext X ≅ C has a largest progressive solution, is not 
trivial. 

It is known [6] [14] that a solvable equation has a largest solution, i.e. there exists 
an automaton M, such that any solution to the equation is a reduction of M. Therefore, 
before we determine a largest progressive solution, we could check if the equation is 
solvable at all. Given a context A = 〈S, W, δ A, s 0, FA〉 and a specification 
C = 〈Q, Ext, δ C, q 0, Q〉 where each state is final, in [7] it is shown that the equation 

A ◊Ext X ≅ C is solvable if and only if the automaton A◊C\A◊C 2 is a solution to the 

equation. The automaton A◊C\A◊C is not the largest solution to the equation since the 
language of this automaton does not comprise traces that do not participate in the 
composition with the given context. The largest solution to an arbitrary automata 

equation is the automaton M ≅  ExtA C◊  [YVPBS99] if the composition A ◊Ext M is 
equivalent to C. If the composition is not equivalent to C, then the equation has no 
solution. The automaton B1 shown in Figure 3.3 is the chaos machine over alphabet 
{e

1
, e

2
, i, x} and therefore, B1 is the largest solution to the equation A ◊Ext X ≅ C, where 

A and C are shown in Figures 3.1 and 3.2, respectively. 
If the largest solution M = 〈R, V, δ M, r

0
, FM〉 to the equation A ◊Ext X ≅ C exists and is 

progressive, then it is a largest progressive solution. Otherwise, in order to obtain a 
largest progressive solution or to show that it does not exist, we first build a so-called 
perfect automaton Mperfect and then we use this automaton to get the largest reduction 
that is a progressive solution to the equation. The perfect automaton can also be used 
for the complete characterization of all progressive solutions of a given automata 

                                                           
2 C  denotes the automaton that accepts the complement of the language of C. 
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equation. In the following two subsections we give the ideas and the details of 
building a perfect automaton and its largest progressive reduction.  

Let P = 〈R, V, δ P, r0, FP 〉 be an automaton over the alphabet V. Given a non-
progressive state (s, r, q) of the automaton Λ(A, P, C), let β be a sequence that takes 
this automaton from its initial state to the state (s, r, q). We call the corresponding 
sequence α ∈ Lr(P), where α is the V-restriction of β (i.e. α = β ↓V), a non-progressive 
sequence. In other words, if a sequence α ∈ Lr(P) is non-progressive then there is no 
progressive solution with this sequence. Otherwise, the sequence α is called 
progressive. That is for a progressive sequence α, each sequence β with the V-
restriction α must take the automaton Λ(A, P, C) from the initial state to a progressive 
state. 

In order to derive the largest reduction of P that is a progressive solution (if it 
exists) we have to eliminate all non-progressive sequences from the language of the 
P. However, in general, the number of non-progressive sequences is infinite. On the 
other hand, we cannot delete states from the automaton P, since a state of the 
automaton P can accept both progressive and non-progressive sequences. As an 
example, consider the context A shown in Figure 3.1, the specification C shown in 
Figure 3.2, and the largest solution B1 shown in Figure 3.3. The initial state A of B1 
accepts a non-progressive sequence ii. However, if we delete this state, this implies 
that there is no progressive solution. Nevertheless, the solution B2 (Figure 4.1) is 
progressive. i.e. there exists a progressive solution. Consequently, we refine the 
automaton P and obtain the equivalent automaton Pperfect such that the largest reduction 
is the largest sub-machine of Pperfect that does not have non-progressive states. The 
number of sub-machines of an automaton is finite and the largest sub-machine 
without non-progressive states can be obtained by iterative deleting non-progressive 
states. Therefore, we refine P by splitting its states in order to obtain an equivalent 
automaton Pperfect such that each state of Pperfect accepts either progressive or non-
progressive sequences. The obtained automaton Pperfect is called perfect (w.r.t. the given 
context and specification). Each sub-machine obtained from Pperfect by deleting from 
Pperfect one of its non-progressive states, with its incoming and outgoing transitions, is 
perfect too. Thus, we (iteratively) delete from Pperfect all states that accept non-
progressive sequences. If the initial state of Pperfect is deleted, then we conclude that 
there is no progressive solution to the given equation that is a reduction of the P. 
Otherwise, the obtained automaton is the largest reduction of P that is a progressive 
solution. A largest progressive solution can be obtained when the initial automaton P 
is the largest solution to the equation or it is the chaos automaton over alphabet V, i.e. 
CHAOS(V), that generates the language V*. Any automaton over alphabet V is a 
reduction of CHAOS(V).  

3.3.1 Perfect Automata 

In this subsection, we first discuss the idea of constructing a perfect automaton. 
Afterwards, we present an algorithm for building such an automaton.  

The problem we face with an automaton P over alphabet V that in particular can be 
seen as a largest solution to the equation, is the following. Given a state r of P, there 
could exist sequences β1 and β2 in the language of Λ(A, P, C) with the V-restrictions α1 
and α2 such that  the sequence β1 takes the automaton Λ(A, P, C) from the initial state 
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to the triplet (s1, r, q1) that is progressive, while the β2 takes the automaton from the 
initial state to the triplet (s2, r, q2) that is non-progressive. Therefore, sequences α1 and 
α2 accepted at the state r of the automaton P possess different features: sequence α1 is 
progressive while α2 is a non-progressive sequence. Our objective is to delete the state 
r from P because it is reachable through the non-progressive sequence α2. However, 
when deriving the largest progressive reduction of the P we cannot delete r, since it is 
also reachable through the sequence α1 that can be executed by a progressive solution. 
Consequently, for such two sequences, we would like to split r into several states and 
obtain a perfect automaton Pperfect such that these sequences take Pperfect to two different 
states. As a result, we will not have any triplet in Λ(A, Pperfect, C) that is reachable by 
two sequences such that the V-restriction of these sequences are equal to α1 and α2. 
Therefore, each state r′ of Pperfect will only be reachable through either progressive or 
non-progressive sequences. This allows us later to delete state r′ if it accepts non-
progressive sequences without losing a progressive solution that is a reduction of the 
automaton P. Formally, given the context A and the specification C, an automaton 
P = 〈R, V, δ P, r0, FP〉 is called perfect (w.r.t. the given context and specification), if for 
any state (s, r, q) of the automaton Λ (A, P, C) the V-restriction of the language 
accepted at the state (s, r, q) coincides with the language accepted at the state r of the 
automaton P, i.e. L 

r

 (P) = L 

(s, r, q)

 ( Λ (A, P, C) )↓V. We further let Pperfect denote the 
perfect automaton obtained from P. 
Proposition 8.  Given a perfect automaton Pperfect (w.r.t. a given context A and 
specification C), each state of Pperfect accepts either non-progressive or progressive 
sequences. Moreover, each sub-machine, Sub(Pperfect), obtained from  Pperfect by deleting 
from Pperfect one of its non-progressive states with its incoming and outgoing 
transitions, is also perfect. �  

Given an automaton P over the alphabet V, the idea of constructing a perfect 
automaton Pperfect that is equivalent to P is as follows. For each sequence α in the 
language of the automaton P, we determine the subset of all triplets in Λ (A, P, C) 
reachable through sequences with the V-restriction equal to α. In general, for many 
sequences in the language of P, we will have the same subset of triplets in Λ (A, 
P, C). Each triplet of a subset accepts the language of sequences with the same V-
restriction (Proposition 3). Consider states s and q of the automata A and C such that 
the triplet (s, r, q) is a state of the subset. Due to Proposition 4, the V-restriction of the 
intersection L 

s

 (A) ∩ L (s, r, q) ∩ L 

q

 (C) where L 

s

 (A) and L 

q

 (C) are languages accepted at 
states s and q, equals to L(s, r, q). The latter implies that such subsets of triplets can serve 
as states of the automaton Pperfect. Consequently, since each triplet of the subset accepts 
the language with one and the same set of V-restrictions, then the V-restrictions of the 
sequences accepted by the triplets are either progressive or non-progressive, 
depending if the subset includes a non-progressive triplet. We then add to the 
language of Pperfect, all sequences of the language of P that do not participate in the 
composition with the context A. This is done in order for Pperfect to be equivalent to P.  
For example, the automaton B1 shown in Figure 3.3 is not perfect. The progressive 
sequence e1 and the non-progressive sequence e1i take the automaton B1 to the same 
state A. On the contrary, the automaton B2 shown in Figure 4.1 is perfect. Here we 
note that for every automaton P, there exists an equivalent perfect automaton Pperfect.  
Below we propose an algorithm to derive Pperfect. 
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Algorithm 1. Deriving the perfect automaton Pperfect of P 

Input: The automaton P = 〈R, V, δ P, r0
, FP〉, context A = 〈S, W, δ A, s 0, FA〉, and 

specification C = 〈Q, Ext, δ C, q 0, FC〉. 
Output: The deterministic perfect automaton Pperfect that is equivalent to P. 

Declare all states of A↑V  and C↑W ∪V as accepting states and derive the automaton 
Λ (A, P, C) = A↑V  ∩  P↑W  ∩ C↑W ∪V. Restrict the intersection to the alphabet V and let 
P′ = 〈R′, V, δ P′, r′

0
, FP′〉 denote the resulting automaton. The automaton Pperfect = 〈R ∪ 

R′, V, δ , r′
0
, FP′ ∪ FP〉 is obtained from P and P′ as follows. The initial state of Pperfect is 

the initial state of P′, and the transition relation δ  contains the union of the transition 
relations δ P′ and δ P of both automata P′ and P.  Moreover, for each transition (r,a,r′) 
of P, we add a transition with the label a from the subset of triplets of P′ comprising 
the triplet (s, r, q) to state r′ of P if and only if there is no transition with the label a 
from the subset. 

Theorem 1. The automaton Pperfect returned by Algorithm 1 is deterministic, 
equivalent to P and perfect (w.r.t. the given context and specification). € 

3.3.2 An Algorithm for Deriving a Largest Progressive Solution 

Given the equation A ◊Ext X ≅ C, let P be an automaton over the alphabet V. We let 
Pperfect denote the perfect automaton for P. Below, we present an algorithm that trims 
Pperfect by iteratively deleting its states that correspond to non-progressive states in 
Λ (A, Pperfect, C). If the initial state is deleted in Pperfect, then none of the reductions of P 
is a progressive solution to the A ◊Ext X ≅ C. Otherwise, the obtained submachine 
PLargest-Prog. of Pperfect is the largest progressive reduction of P.  

 
Algorithm 2. Deriving a largest progressive solution 

Input: The automaton P = 〈R, V, δ P, r0
, FP〉, context A = 〈S, W, δ A, s 0, FA〉, and 

specification C = 〈Q, Ext, δ C, q 0, FC〉. 
Output: The largest reduction PLargest-Prog. of P that is a progressive solution to the 
equation A ◊Ext X ≅ C if it exists. 
Step-1. Derive, using Algorithm 1, the perfect deterministic automaton Pperfect that is 
equivalent to the P and the automaton Λ (A, Pperfect, C). 
Step-2.If a state (s, r, q) of the automaton Λ (A, Pperfect, C) is non-progressive then:  

-Delete from the automaton Pperfect the state r and all the states that become 
unreachable from the initial state; 

-Delete from the automaton Λ (A, Pperfect, C) each state that has the second 
component equal to r and all the states that become unreachable from the initial state; 

-Repeat Step 2 of the algorithm until no more states can be deleted in the 
automaton Λ (A, Pperfect, C). If the initial state is deleted then the equation A ◊Ext X ≅ C 
has no progressive solutions that are reductions of P. Otherwise, the obtained 
submachine PLargest-Prog. of Pperfect is the largest reduction of P that is a progressive 
solution to the equation A ◊Ext X ≅ C.  
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Fig. 5. Deriving a largest progressive solution. 

If we start with the chaos machine CHAOS(V) (i.e. P = CHAOS(V)) or with the 
largest solution M (i.e. P = M) to the equation A ◊Ext X ≅ C, Algorithm 2 returns  a 
largest progressive solution to the equation if it exists. 

As an application example of Algorithm 2, we consider the context A and the 
specification C shown in Figures 3.1 and 3.2, respectively. We assume that {e

1
, e

2
, i, 

x} is the alphabet of a solution X to the equation A ◊{e
1

, e
2
, x} X ≅C. The largest solution 

M = B
1 

to this equation shown in Figure 3.3 is not progressive. Therefore, first, we 
apply Step 1 of the above algorithm to M and we derive the perfect deterministic 
automaton Mperfect shown in Figure 5.1. For the sake of simplicity, we rename the states 
of Mperfect as shown in Figure 5.1, where Ap = aA1, Bp = bA1, Cp = cA1. The automaton 
Λ (A, Mperfect, C) is shown in Figure 5.2. State cCp1 of this automaton is not 
progressive. Consequently, in Step 2 we delete from Λ (A, Mperfect, C) all the states that 
include state c, i.e. cCp1, and we obtain the automaton shown in Figure 5.3. Moreover, 
we delete state Cp from the perfect automaton Mperfect. Since the automaton in Figure 
5.3 does not have non-progressive states, the algorithm terminates and returns the 
automaton shown in Figure 4.1 as the largest progressive solution.  

3.4 Characterization of Progressive Solutions and Re-simulation Relation 

A characterization of progressive solutions to the equation A ◊Ext X ≅ C over I/O 
automata is proposed in [3]. In this section, we introduce a new Re-simulation relation 
between finite automata that allows us to describe all progressive solutions for 
parallel automata equations. That is we propose a complete characterization of all 
progressive solutions of the automata equation A ◊Ext X ≅ C.  

Our characterization is very close to that proposed in [3]. We associate with each 
state of a largest progressive solution a family of regular sets. A reduction of the 
largest progressive solution is a progressive solution if and only if it is simulated by 
the largest progressive solution and for each pair (t,r) of the simulation relation, the 
language of the reduction at state t intersects each regular set of the family associated 
with the state r of the largest progressive solution. 

We recall that if the largest solution to a given automata equation is progressive 
then it is a largest progressive solution. Moreover, we note that we may have many 
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largest progressive solutions to a given equation. Unfortunately, not each largest 
progressive solution can be used for the complete characterization of all progressive 
solutions. However, the largest progressive solution that is perfect can be used for the 
complete characterization of all progressive solutions.  

Given an arbitrary largest progressive solution ML, each progressive solution is a 
reduction of ML. However, not each reduction of ML is progressive. By definition, a 
reduction B = 〈T, V, δ B, t 0, FB〉 of ML is progressive if and only if each state of the 
automaton Λ (A, B, C) is progressive. Given a state (s, t, q) of Λ (A, B, C), let 
β∈ L 

(s,
 
t,

 
q)

 ( Λ (A, B, C) ) be a sequence such that the V-restriction α  of β (i.e. α  =β ↓V) 
takes the intersection B ∩ ML of automata ML and B to state pair (t, r). Since B is a 
reduction of the deterministic ML, for a given t there always exists such r. Now, let 
(s, r, q) be a state of the automaton Λ (A, ML, C) that is reachable from the initial state 
through the sequence β. Since ML is progressive, each state (s, r, q) of the automaton 
Λ (A, ML, C) is progressive. This means that for each external action e that can be 
executed at state q of the specification C the set of sequences Re[(s, r, q), e] is not 
empty (Proposition 7) and thus, the V–restriction Re[(s, r, q), e]↓V of Re[(s, r, q), e] is 
also not empty. Since B is a reduction of ML, the set of sequences generated at state 
(s, t, q) of Λ (A, B, C) is a subset of that generated at state (s, r, q) of Λ (A, ML, C) 
(Proposition 5). Therefore, for (s, t, q) to be progressive, at least one sequence from 
the set Re[(s, r, q), e]↓V should be generated at state t.  

Therefore, for each state (s, r, q) and for each external action e produced at state q, 
we associate the corresponding set of sequences Re[(s, r, q), e]↓V with state r of ML. We 
call the automaton ML with associated sets of sequences a regular extension of ML, 
and we denote it by Re (ML ).   

Therefore, for a reduction B of ML to be progressive, it is sufficient that for each 
pair (r, t) in the intersection ML ∩ B, the automaton B at state t generates at least one 
sequence from each set of sequences associated with r. In this case, we say that ML 
Re-simulates B. 

Unfortunately, for an arbitrary largest progressive solution that is not a perfect 
automaton, we could have a progressive solution that does not satisfy the above 
condition. This happens when for some (s, r, q) of the automaton Λ (A, ML, C) there 
does not exist a corresponding state (s, t, q) in Λ (A, B, C). However, by construction, 
we have selected un-needed (or superfluous) sequences from all the sets that relate to 
(s, r, q) and every external action e that can be produced at state (s, r, q), independent 
of whether there exists a (s, t, q). Actually, for this reason, we could have progressive 
solutions that are not Re-simulated by ML. However, the above cannot happen for a 
perfect automaton due to Theorem 1 and according to the following proposition.  
Proposition 9. Given the context A and specification C, let Mperfect=  〈R, V, δ M, r 0, FM〉 
be a deterministic perfect automaton that is equivalent to a largest progressive 
solution ML of the equation A ◊Ext X ≅ C. Let the automaton B be a reduction of Mperfect, a 
pair (t, r) be a state of the intersection B ∩  Mperfect, and states s and q be states of the 
automata A and C. If the automaton Λ (A, Mperfect, C) has a state (s, r, q) then the 
automaton Λ (A, B, C) has a state (s, t, q). � 

Consequently, in order to have a complete characterization of all progressive 
solutions over a given alphabet, we use a largest progressive solution MPerfect that is a  
deterministic perfect automaton. The automaton Mperfect has the nice property that each 
progressive solution is Re-simulated by it and vice versa. 
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By definition, if a triple (s, r, q) is not a state of the automaton Λ (A, Mperfect, C), then 
for each external action e ∈ Ext the set Re[(s, r, q), e] is empty. We denote by Re(r) the 
set of all nonempty sets Re[(s, r, q), e]↓V, for all (s, q, e)∈ S× Q × Ext.  

Given an automaton Mperfect, we let the pair 〈Mperfect, Re〉 denote the regular extension 
of the automaton Mperfect, where Re is a collection of all Re(r), where r is a state of 
Mperfect. 

An automaton B = 〈T, V, δ B, t 0, FB〉 is said to be simulated by the regular extension of 
an automaton M = 〈R, V, δ M, r 0, FM〉, if B is simulated by M with the simulation relation 
ϕ ⊆ T × R, such that for each pair (t, r)∈ϕ the prefix-closure of the language generated 
at state t of the automaton B intersects each set from Re(r), i.e. the following holds:  
Re (r)  ≠ ∅ ⇒ ∀L ∈ Re (r) (L ∩ Lt(B)  ≠ ∅). 

The simulation relation ϕ with the above property is called a regular simulation 
relation or simply a Re-simulation relation.  

Let A = 〈S, W, δ A, s 0, FA〉 be the context and C = 〈Q, Ext, δ C, q 0, Q〉 be a reduced 
deterministic specification. Due to Theorem 1, if there exists a progressive solution to 
the equation A ◊Ext X ≅ C then there exists a perfect automaton Mperfect such that 
L 

r
 (Mperfect) = ( L 

(s,
 
r,

 
q)

 ( Λ (A, Mperfect, C) ))↓V. Mperfect can be derived as proposed in Algorithm 
1. 
Theorem 2. Given a deterministic perfect largest progressive solution Mperfect to the 
equation A ◊Ext X ≅ C, a reduction B of the automaton Mperfect is a progressive solution to 
the equation if and only if B is Re-simulated by Mperfect. € 

4 Conclusions 

In this paper we address the problem of characterizing progressive solutions to a 
composed automata equation where the automata communicate by rendezvous. A 
progressive solution is of special interest, since when combined with the context it 
does not block any action of the environment that is possible according to the 
specification. Particularly, we have proposed a technique for deriving the largest 
reduction of an automaton that is a progressive solution to the equation (if it exists). 
The technique can be used in order to determine the largest progressive solution. 
However, not each reduction of the largest progressive solution is progressive and 
therefore, the problem of characterizing all progressive solutions is not trivial. In 
order to solve the problem, we have introduced a new Re-simulation relation between 
finite automata that allows us to describe all progressive solutions. The complete 
characterization of progressive solutions enables us to select an “optimal” solution, 
where an optimal solution can be defined as the one with the least number of states, 
actions and transitions, or the fastest one. Currently, we are working on techniques for 
deriving optimal progressive solutions.  
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