
H. König, M. Heiner, and A. Wolisz (Eds.): FORTE 2003, LNCS 2767, pp. 367–382, 2003.
 IFIP International Federation for Information Processing 2003

Progressive Solutions to a Parallel Automata Equation

Sergey Buffalov1, Khaled El-Fakih2, Nina Yevtushenko1, and Gregor v. Bochmann3

1 Tomsk State University, Russia
bsa@tric.tomsk.gov.ru, yevtushenko@elefot.tsu.ru

2 Department of Computer Science, American University of Sharjah, UAE
kelfakih@aus.ac.ae

3 School of Information Technology and Engineering, University of Ottawa, Canada
bochmann@site.uottawa.ca

Abstract. In this paper, we consider the problem of deriving a component X of
a system knowing the behavior of the whole system C and the other
components A. The component X is derived by solving the parallel automata
equation A ◊ X ≅ C. We present algorithms for deriving the largest progressive
solution to the equation that combined with A does not block any possible
action in C and we introduce a new simulation relation between automata in
order to characterize all progressive solutions.

1 Introduction

The equation solving problem is to describe a behavior of a component X of a system
knowing the specifications of the other components and of the whole system. This
problem may be formulated by the equation A ◊ X ≅ C over finite automata, where A
represents the specification of the known part of the system, ◊ is a parallel
composition operator, ≅ is a trace equivalence relation, and C represents the
specification of the whole system.

In 1980, a first paper [2] (see also [7]) gives a solution to the problem for the case
when the system behavior is described in terms of labeled transition systems (LTS).
This work was later extended to the cases where the behavior of the components is
described in CCS or CSP [8], by FSM [9, 14] or input/output automata [11, 6, 3].

The applications of the equation solving problem were first considered in the
context of the design of communication protocols, where the components A and C
represent two protocol entities [7]. Later it was recognized that this method could also
be useful for the design of protocol converters in communication gateways [5, 12, 6],
and for the selection of test cases for testing a module in a context [10]. Another
application area of equation solving is the design of controllers for discrete event
systems [13, 1]. Solutions to the automata equation A ◊ X ≅ C are characterized in [3,
14] as proper reductions of the largest solution. However, not each solution to the
equation is of practical use. Usually we are required to get a composed system that
does not block any action that is possible in the specification, i.e. we are interested in
what is called a progressive solution [6]. It is desirable to determine the largest
progressive solution [6, 14] to the equation (if it exists) that contains all progressive

368 Sergey Buffalov et al.

solutions. In this case, a progressive solution is a reduction of the largest progressive
solution. That is, the set of traces of a progressive solution is a subset of that of the
largest progressive solution. The largest progressive solution can be viewed as a
reservoir of all possible solutions of our interest. However, not each reduction of the
largest progressive solution possesses the property. For this reason, in order to
determine an optimal solution we need to completely characterize all the reductions of
the largest progressive solution that are progressive. The problem has been studied in
[3] for Input/Output automata.

In this paper, we generalize the results given in [6]. Given a solution to the
automata equation, we suggest a procedure that derives its largest progressive
reduction. First, we split the states of the given solution and obtain an equivalent
perfect automaton. This automaton has a nice property: If a given sequence cannot be
in a progressive solution, then this sequence takes the perfect automaton from its
initial state to a state that is only reachable through non-progressive sequences.
Consequently, we delete from the perfect automaton all states that are only reachable
through non-progressive sequences and we obtain the largest progressive reduction of
a given solution. Moreover, in this paper, we consider automata with both accepting
and non-accepting states and we establish necessary and sufficient conditions for a
solution to be progressive. For this purpose, for each state of a perfect automaton, we
associate an appropriate collection of regular sets of actions. A solution is progressive
if and only if there exists a simulation relation between the solution and the perfect
automaton such that for each state pair of the simulation relation, the language
generated at the state of the solution intersects each set of the collection associated
with the state of the perfect automaton. In Section 3 we present the details of the
above described work, while in Section 2 we include all related definitions. In Section
4 we conclude the paper.

2 Finite State Automata Relations, Operators, and Composition

An alphabet V is a finite nonempty set of symbols. As usual, we let V
* denote the set

of all finite sequences of symbols of V including the empty sequence ε. A language
over the alphabet V is a subset of V

*. Given a sequence α ∈V
* and an alphabet W, a W-

restriction of α, written α ↓W, is obtained by deleting from α all symbols that belong to
the set V \ W. If α has no letters from alphabet W then the W-restriction α ↓W is the
empty word. In the paper, we consider only regular languages, i.e. languages that are
represented by finite state automata [4].

A finite state automaton, often called an automaton throughout the paper, is a
quintuple P = 〈S, V, δ P, s0, FP〉, where S is a finite nonempty set of states with the initial
state s0 and a subset FP of final (or accepting) states, V is an alphabet of actions, and
δ P ⊆ S ×V × S is a transition relation. We say that there is a transition from a state s to a
state s ' labeled with an action v, if and only if the triple (s, v, s ') is in the transition
relation δP.

The automaton P is called deterministic, if for each state s ∈ S and any action v∈V
there exists at most one state s ', such that (s, v, s ')∈δ P. If P is not deterministic, then it
is called nondeterministic.

Progressive Solutions to a Parallel Automata Equation 369

As usual, the transition relation δP of the automaton P can be extended to sequences
over the alphabet V. The extended relation is also denoted by δP and is a subset of
S × V *

 × S. By definition, for each state s∈S of the automaton P the triple (s, ε, s) is in
the relation δP. Given a triple (s, α, s ')∈δ P and an action v∈V, the triple (s, α v, s '')
belongs to δ P, if and only if (s ', v, s '')∈δ P.

Given a state s of the automaton P, the set Ls(P) = {α ∈V
*

 | (s 0, α, s)∈δ P} is called the
language accepted at the state s and the set Ls(P) = {α ∈V

*
 | ∃ s '∈FP ((s, α, s ')∈δ P)} is

called the language, generated at the state s. The language, generated by the
automaton P at the initial state, is called the language generated or accepted by the
automaton P and is denoted by L(P), for short. The language L(P) is the union of all
languages accepted at final states of P. By definition, the language L(P) has the empty
sequence, if and only if the initial state of P is final. It is worth to note that different
automata can accept the same language. When we are interested only in the language
of a given automaton we can use a reduced form of the automaton that does not have
superfluous states at which the empty language is generated. In this paper, we call an
automaton reduced if the language generated at each state is not empty1

The automaton 〈{s 0}, V, δ, s 0, {s0}〉, where δ = S×V×S, is called chaos and is
denoted by CHAOS(V). By definition, the chaos automaton CHAOS(V) accepts the
language V

*.
A state s of an automaton is said to be reachable, if there exists a sequence that

takes the automaton from the initial state to s, i.e. the state s accepts a nonempty
language. The automaton is called connected, if each state is reachable. Any state that
is not reachable, can be deleted from the automaton without affecting the language of
the automaton. By this reason, we further consider only connected automata.

Here, we recall some relations between finite automata defined over the same
alphabet. Let P = 〈R, V, δ P, r 0, FP〉 and B = 〈T, V, δ B, t 0, FB 〉 be automata.

A relation ϕ ⊆ T × R, is called a simulation relation [1], if for each pair (t, r)∈ϕ the
following holds:

1. t ∈ FB ⇒ r ∈ FP.
2. For each (t, v, t ')∈δ B there exists r'∈R such that (r, v, r ')∈δ P and (t ', r')∈ϕ.
The automaton P simulates the automaton B or the automaton B is said to be

simulated by the automaton P, written P ⊇ϕ B, if there exists a simulation relation ϕ,
such that the pair (t0, r0) of the initial states is in the relation ϕ.

The state t of the automaton B is called a reduction of the state r of automaton P,
written t ≤ r, if the language of R generated at state t is a subset of that generated by
the P at state r. Automaton R is called a reduction of the automaton P, written R ≤ P,
if the language of R is a subset of that of P, i.e. L(R) ⊆ L(P). An automaton accepting
the empty language is a reduction of any automaton over the same alphabet.

The simulation relation refines the reduction relation [1], i.e. if P ⊇ϕ B then B ≤ P.
The converse is not always true. However, a deterministic automaton simulates any of
its reductions, i.e. the following statement holds.
Proposition 1. [1]. Given a deterministic automaton P, let B be an automaton over the
same alphabet. Then B is a reduction of P, if and only if P simulates B. �

1 A reduced automaton may have equivalent states, i.e. states where equal languages are

generated.

370 Sergey Buffalov et al.

Automata P and B are called trace equivalent or simply equivalent, written R ≅ B, if
they accept the same language, i.e. B is a reduction of P and vice versa.

Let P = 〈R, V, δ P, r 0, FP〉 and R = 〈Q, W, δ R, q 0, FR 〉 be two automata. We further
describe some operations over finite state automata that will be used throughout the
paper.

Deterministic representation. Given the automaton P, there exists an equivalent
deterministic automaton obtained from P by applying the algorithm of subset
construction [4]. We denote this automaton by DFA (P) and call it the deterministic
representation of P. Note that a state of DFA (P) is a subset of states of P and accepts
the intersection of their languages. Due to the construction, the following statement
holds.

Prefix closure. Given the automaton P, the automaton <P > is obtained from P by
declaring all states of P as accepting states. The language of the automaton < P > is
the prefix closure of that of P, i.e. the language of < P > comprises each prefix of
each sequence of the language L(P).

Intersection. If alphabets V and W intersect then the intersection P ∩ R of automata
P and R is the largest connected sub-machine of the automaton
 〈S × Q, V∩ W, δ, (s0, q0), FP × FR〉. Given an action a∈V∩ W and a state (s, q), there is a
transition at the state (s, q) labeled with a, if and only if there are transitions at states s
and q labeled with a, i.e. δ = {((s, q), a, (s', q')) | (s, a, s ')∈δP ∧ (q, a, q ')∈δR }. The
automaton P ∩ R accepts the intersection of languages L(P) and L(R). If V and W are
disjoint then intersection of P and R is not defined, since the alphabet of an automaton
can not be empty.
Proposition 2. Given an automaton P, let B = 〈T, V, δ B, t 0, FB 〉 be a reduced reduction
of P and t be a state of B. There exists a state r of P such that the pair (t,r) is a state of
the intersection of B ∩ P. Moreover, if P is deterministic, then for each state (t,r) of
the intersection B ∩ P state t is a reduction of r. �

Restriction. Given an alphabet U, the U-restriction of P is the deterministic form
P↓U of the automaton 〈S, U, δ, s 0, FP〉, where δ = {(s, u, s ') | ∃ α∈V

* ∃ (s, α, s ')∈δ P
(α ↓U = u)}. The automaton P↓U accepts the language L(P)↓U = {α ∈U

*
 | ∃β ∈L(P)

(α = β ↓U)} called the U-restriction of the language L(P). The restriction of the
language is empty if and only if the language is empty. Due to the definition of the
restriction, the following statement can be established.
Proposition 3. Given the U-restriction P↓U of the automaton P and state p = {s1, ..., sk}
of the P↓U, let Lp be the language accepted at state p. The set p is the set of all states of
P that accept the language over the alphabet V with the U-restriction Lp. �

Expansion. Given an alphabet U, the U-expansion of P is the automaton
P↑U = 〈S, V ∪U, δ, s 0, FP〉, where δ = δ P ∪{(s, u, s) | s ∈ S ∧ u ∈ U \ V }. The automaton
P↑U is obtained from P by adding at each state a loop transition labeled with each
action of the alphabet U \ V. If U is a subset of V then the automaton P↑U coincides
with the automaton P. Automaton P↑U accepts the language L(P)↑U =
{α ∈(V ∪ U)*

 | ∃ β ∈L(P) (α ↓V = β)} called the U-expansion of the language L(P). The
U-expansion of the language is empty if and only if the language is empty.

Progressive Solutions to a Parallel Automata Equation 371

B

A

U Int

Ext

Ext1

Ext2

C

X

A

U Int

Ext

Ext1

Ext2

 Fig. 1. Automata composition Fig. 2. Equation solving paradigm

Consider a system of two interacting automata A = 〈T, W, δ A, t

0
, FA〉 and

B = 〈S, V, δ B, s
0
, FB〉 shown in Figure 1. We assume A and B execute each action of the

set V∩W together when both of them are ready to execute the action. Moreover,
automata A and B share actions from the sets Ext1 = W \ V and Ext2 = V \ W,
respectively, with an environment and execute these actions independently from each
other, but not simultaneously. Moreover, we suppose that the subset U ⊆ V∩ W of
actions shared by the automata can be observed externally. Thus, actions of the set
Ext = Ext1 ∪ Ext2 ∪ U are called external, while actions from the alphabet Int =
(V ∩ W) \ U are called internal. For an external observer, the automata interaction is
described by the sequence of external actions. However, two consecutive external
actions can be separated by a sequence of internal actions.

Given the set Ext of external actions, the composition of automata A and B is the
automaton A ◊Ext B ≅ (B↑W ∩ A↑V)↓Ext. The composition accepts the language
(L(A)↑W ∩L(B)↑V)↓Ext. By definition, if a component automaton accepts the empty
language, then the composition accepts the empty language as well.

3 Solving Automata Equations

Let A = 〈S, W, δ A, s0
, FA〉 and C = 〈Q, Ext, δ C, q0

, FC〉 be two deterministic reduced
automata. A notation A ◊Ext X ≅ C is called an equation w.r.t. a free variable X, which is
considered to be an automaton with a given alphabet V ⊆ W ∪ Ext. One may think of a
composition A ◊Ext X as a network possessing the desired external behavior C as it is
shown in Figure 2. The automaton A is usually called a context, and the automaton C
is usually called a specification. Accepting states of the specification can be viewed as
finishing an appropriate task [13].

An automaton B over the alphabet V is called a solution to the equation A ◊Ext X ≅ C,
if A ◊Ext B ≅ C. Since the set of classes of equivalent automata is ordered by the
reduction relation, we can introduce the largest solution that includes all solutions to
the equation A ◊Ext X ≅ C as its reductions, i.e. each solution to the equation is a
reduction of the largest solution.

Not each solution to the equation is known to be of practical use. A practical
solution is required to be progressive. A solution is called progressive if, when
combined with the context, it will not block the occurrence of an external event if the
latter is possible in the specification. If an equation has a progressive solution we will
be interested in characterizing all such solutions in order to be able to select an

372 Sergey Buffalov et al.

optimal one according to some criteria. In general, the equation may have an infinite
number of progressive solutions. Thus, the problem of characterizing all of them
appears to be not trivial. In this paper, we further show that if the equation has a
progressive solution then it has a largest progressive solution. The set of traces of a
progressive solution is a subset of that of the largest progressive solution. Thus, the
largest progressive solution can be viewed as a general solution to the equation. Any
progressive solution is a reduction of the largest. However, the converse is not true.
Therefore, to completely characterize progressive solutions we first want to find the
largest progressive solution to the equation A ◊Ext X ≅ C and then describe all its
reductions that are progressive. We note that when the unknown component has no
external actions a technique for the derivation of the largest progressive solution is
proposed in [6].

1. Context A

2. Specification C

3. Automaton B1

Fig. 3. The example of equation solving

1. Automaton B2

2. Automaton Λ(A, B1,C)

3.AutomatonΛ(A, B2,C)

Fig. 4. Progressive and non-progressive solutions

As an example of equation solving (see Figure 3), we consider the context A
defined over the alphabet W = {e

1
, e

2
, i}, and the specification C defined over the

alphabet Ext = {e
1
,e

2
, x} of external actions. Moreover, consider the automaton B1

defined over the alphabet V = {e
1
, e

2
, i, x} and shown in Figure 3.3. The behavior of

the whole system A ◊{e
1
, e

2
, x} B

1
 is equivalent to the given specification. Thus, B1 is a

solution to the equation A ◊Ext X ≅ C.

3.1 A Progressive Solution

In this subsection, we introduce the notion of a progressive solution to the equation
A ◊Ext X ≅ C. Then, we give a detailed overview of the method how to derive a largest

e
1 , e

2 , i e 1, e
2

i

e 1

c

a

b

e1, e2, x

1

e1, e2, x, i

A

e
1 , e

2 , i e 1, e
2

A

B

x

x

e
1 , e

2 , i e 1, e
2

i

e 1

c A 1

a A 1

b A 1

x

x
x

e
1 , e

2 , i e 1, e
2

a A 1

b B 1

x

x

Progressive Solutions to a Parallel Automata Equation 373

progressive solution if it exists. Afterwards, we present the consecutive steps of this
method along with application examples.

Let A = 〈S, W, δ A, s
0
, FA〉 be a deterministic context, C = 〈Q, Ext, δ C, q

0
, Q〉 be a

deterministic specification.
Given an automaton P = 〈R, V, δ P, r

0
, FP〉 over alphabet V, a state (s, r, q) of the

automaton A↑V ∩ P↑W ∩ C↑W∪V is called progressive, if the Ext-restriction of the
language generated at the (s, r, q) coincides with the language generated by the
specification C at state q, i.e. L(s, r, q)(A↑V ∩ P↑W ∩ C↑W ∪V)↓Ext = Lq(C). Otherwise, the
state (s, r, q) is called non-progressive.

A solution B to the equation A ◊Ext X ≅ C is called progressive, if each state in
A↑V ∩ B↑W ∩ C↑W ∪V is progressive. By definition, if B is a progressive solution then B
combined with the context does not block an external event that is possible in the
specification.

Hereafter, for simplicity of presentation, we let the automaton Λ (A, P, C) denote the
automaton A↑V ∩ P↑W ∩ C↑W∪V. A state of Λ (A, P, C) is a triple (s, r, q), where s is a
state of the automaton A, r is a state of the automaton P, and q is a state of the
automaton C.

We note that the equation A ◊Ext X ≅ C can have both progressive and non-
progressive solutions. For example, consider the context A shown in Figure 3.1 and
the specification C shown in Figure 3.2. The solution B

1
 shown in Figure 3.3 is not

progressive, since the automaton Λ(A, B
1
, C), shown in Figure 4.2, has a non-

progressive state c1A. On the other hand, another solution B
2
, shown in Figure 4.1, is

progressive, since all the states of the automaton Λ (A, B
2
, C), shown in Figure 4.3, are

progressive.
Since a progressive solution is defined through properties of the automaton Λ (A,

P, C), we establish some properties of the states of the automaton and of the states of
its V-restriction to the alphabet V of a solution. By definition of the expansion
operator, we establish conditions for a triplet (s, r, q) to be reachable from the initial
state of the intersection A↑V ∩ B↑W ∩ C↑W∪V.
Proposition 4. Let (s, r, q) be a triplet, where s is a state of the automaton A, r is a
state of the automaton P, and q is a state of the automaton C. The triplet is a state of
the intersection A↑V ∩ B↑W ∩ C↑W∪V if and only if the there exists a sequence β over the
alphabet W∪V such that the W-restriction of β takes the context A from the initial
state to state q, the V-restriction of β takes the automaton P from the initial state to
state r, and the Ext-restriction of β takes the specification C from the initial state to
state q. �
Proposition 5. Given a deterministic automaton P over the alphabet V, let B be a
reduction of P and (t,r) be a state of the intersection B∩ P. Given states s and q of A
and C, if the triplet (s,t,q) is a state of the intersection A↑V ∩ B↑W ∩ C↑W∪V , then the
triplet (s,r,q) is a state of the intersection A↑V ∩ P↑W∩ C↑W∪V. Moreover, the language
generated at state (s,t,q) of the A↑V ∩ B↑W ∩ C↑W∪V is a subset of that generated at state
(s,r,q) of the automaton A↑V ∩ P↑W ∩ C↑W∪V. �

Consider now the state p = {(s1, r1, q1), ..., (sk, rk, qk)} of the V-restriction of the
automaton A↑V ∩ P↑W∩ C↑W∪V and let Lp be the language accepted at state p. Due to
Proposition 3, the set p is the set of all states of the intersection that accept the
language with the V-restriction Lp. Therefore, each state r1, ..., rk accepts the language

374 Sergey Buffalov et al.

Lp in the automaton P (Proposition 4). Since P is deterministic, there exists only one
state accepting the language, i.e. the following statement holds. �
Proposition 6. Given the V-restriction of the automaton A↑V ∩ P↑W∩ C↑W∪V, let p =
{(s1, r1, q1), ..., (sk, rk, qk)} be a state of the V-restriction. If P is deterministic then r1 = ...
= rk. �

Given a solution M to the equation A ◊Ext X ≅ C, we now establish necessary and
sufficient conditions for a state the of the automaton Λ (A, M, C) to be progressive

Given an automaton A = 〈S, W, δ A, s 0, FA〉 representing the context and an automaton
C = 〈Q, Ext, δ C, q 0, Q〉 representing the specification, consider the automaton
M = 〈R, V, δ M, r

0
, FM〉. Let (s, r, q) be a state of the automaton Λ (A, M, C) and e ∈ Ext be

an external action such that there is a transition from state q with the action e. If the
action e takes the automaton C from the state q to a non-final state then we define the
set Re[(s, r, q), e] to be the set of sequences β ∈(W ∪V)* such that β is a prefix of a
sequence in the language generated at state (s, r, q) and β ↓Ext = e. If the action e takes
the automaton C from the state q to a final state then the set Re[(s, r, q), e] is defined to
be the set of sequences β ∈(W ∪V)* such that β is in the language of the automaton
Λ (A, M, C) generated at state (s, r, q) and β ↓Ext = e.

Formally, if the action e takes the automaton C from the state q to a non-final state
then Re[(s, r, q), e] = {β | β ↓Ext = e & β ∈ < L(s, r, q)(Λ (A, P, C))>}. If the action e takes
the automaton C from the state q to a final state then Re[(s, r, q), e] = {β | β ↓Ext = e & β
∈ L(s, r, q)(Λ (A, P, C))}.

Based on the construction of the sets Re[(s, r, q), e], we can show, by induction, that
each state of the automaton Λ (A, M, C) is progressive if and only if for each state
(s, r, q) of the automaton and each external action e for which there is a transition
from state q with the action e, the set Re[(s, r, q), e] is not empty. The above result is
stated in the following proposition.
Proposition 7. Given a solution M to the equation A ◊Ext X ≅ C, each state of the
automaton Λ (A, M, C) is progressive if and only if for each state (s, r, q) of the
automaton and each external action e for which there is a transition from state q with
the action e, the set Re[(s, r, q), e] is not empty. �

Here we note that since the restriction and prefix closure of a regular language are
regular, each set Re[(s, r, q), e] is a regular set and thus, can be represented as an
automaton.

3.2 An Overview of the Method for Solving the Problem

For automata that accept prefix-closed languages, and for a composition topology
where the alphabet of a solution is a subset of that of the context, i.e. V ⊆ W, it is
shown in [6] that the equation A ◊Ext X ≅ C has a progressive solution, if and only if a
largest progressive solution to the equation exists. In Section 3.5 we generalize the
result for the more general composition topology shown in Figure 1. Moreover, we
propose an algorithm that returns the largest progressive reduction of an automaton
over the alphabet V (if exists). As a corollary, we obtain a largest progressive solution
if we start from the chaos automaton CHAOS(V) or the largest solution to the equation.
The obtained largest progressive solution has a nice property that it includes all

Progressive Solutions to a Parallel Automata Equation 375

progressive solutions, and thus can be used later for the characterization of these
solutions. We also note that each automaton P over the alphabet V can be considered
as an automaton over a bigger alphabet V′⊇V with the same set of transitions and final
states. For this reason, if the equation A ◊Ext X ≅ C has no progressive solution over the
alphabet W ∪ Ext then the equation has no progressive solution over any alphabet V ⊂
W ∪ Ext. Therefore, without any loss of generality we only consider the largest
progressive solution over the alphabet V = W ∪ Ext.

The problem of characterizing all progressive reductions of a largest progressive
solution is not trivial, since the number of these reductions is infinite and, moreover,
not each reduction of a largest progressive solution is progressive. We solve the
problem by introducing the notion of a perfect automaton, the operation of a regular
extension, and regular simulation relation. The idea behind the approach is described
in details in Section 3.4.

3.3 Largest Progressive Solutions

Given two progressive solutions to the equation A ◊Ext X ≅ C, their union is also a
progressive solution. In other words, the set of all progressive solutions ordered by the
reduction relation is a semilattice. In general, the semilattice of all progressive
solutions can be infinite, and thus the problem of determining if it has a largest
element, i.e. if the equation A ◊Ext X ≅ C has a largest progressive solution, is not
trivial.

It is known [6] [14] that a solvable equation has a largest solution, i.e. there exists
an automaton M, such that any solution to the equation is a reduction of M. Therefore,
before we determine a largest progressive solution, we could check if the equation is
solvable at all. Given a context A = 〈S, W, δ A, s 0, FA〉 and a specification
C = 〈Q, Ext, δ C, q 0, Q〉 where each state is final, in [7] it is shown that the equation

A ◊Ext X ≅ C is solvable if and only if the automaton A◊C\A◊C 2 is a solution to the

equation. The automaton A◊C\A◊C is not the largest solution to the equation since the
language of this automaton does not comprise traces that do not participate in the
composition with the given context. The largest solution to an arbitrary automata

equation is the automaton M ≅ ExtA C◊ [YVPBS99] if the composition A ◊Ext M is
equivalent to C. If the composition is not equivalent to C, then the equation has no
solution. The automaton B1 shown in Figure 3.3 is the chaos machine over alphabet
{e

1
, e

2
, i, x} and therefore, B1 is the largest solution to the equation A ◊Ext X ≅ C, where

A and C are shown in Figures 3.1 and 3.2, respectively.
If the largest solution M = 〈R, V, δ M, r

0
, FM〉 to the equation A ◊Ext X ≅ C exists and is

progressive, then it is a largest progressive solution. Otherwise, in order to obtain a
largest progressive solution or to show that it does not exist, we first build a so-called
perfect automaton Mperfect and then we use this automaton to get the largest reduction
that is a progressive solution to the equation. The perfect automaton can also be used
for the complete characterization of all progressive solutions of a given automata

2 C denotes the automaton that accepts the complement of the language of C.

376 Sergey Buffalov et al.

equation. In the following two subsections we give the ideas and the details of
building a perfect automaton and its largest progressive reduction.

Let P = 〈R, V, δ P, r0, FP 〉 be an automaton over the alphabet V. Given a non-
progressive state (s, r, q) of the automaton Λ(A, P, C), let β be a sequence that takes
this automaton from its initial state to the state (s, r, q). We call the corresponding
sequence α ∈ Lr(P), where α is the V-restriction of β (i.e. α = β ↓V), a non-progressive
sequence. In other words, if a sequence α ∈ Lr(P) is non-progressive then there is no
progressive solution with this sequence. Otherwise, the sequence α is called
progressive. That is for a progressive sequence α, each sequence β with the V-
restriction α must take the automaton Λ(A, P, C) from the initial state to a progressive
state.

In order to derive the largest reduction of P that is a progressive solution (if it
exists) we have to eliminate all non-progressive sequences from the language of the
P. However, in general, the number of non-progressive sequences is infinite. On the
other hand, we cannot delete states from the automaton P, since a state of the
automaton P can accept both progressive and non-progressive sequences. As an
example, consider the context A shown in Figure 3.1, the specification C shown in
Figure 3.2, and the largest solution B1 shown in Figure 3.3. The initial state A of B1
accepts a non-progressive sequence ii. However, if we delete this state, this implies
that there is no progressive solution. Nevertheless, the solution B2 (Figure 4.1) is
progressive. i.e. there exists a progressive solution. Consequently, we refine the
automaton P and obtain the equivalent automaton Pperfect such that the largest reduction
is the largest sub-machine of Pperfect that does not have non-progressive states. The
number of sub-machines of an automaton is finite and the largest sub-machine
without non-progressive states can be obtained by iterative deleting non-progressive
states. Therefore, we refine P by splitting its states in order to obtain an equivalent
automaton Pperfect such that each state of Pperfect accepts either progressive or non-
progressive sequences. The obtained automaton Pperfect is called perfect (w.r.t. the given
context and specification). Each sub-machine obtained from Pperfect by deleting from
Pperfect one of its non-progressive states, with its incoming and outgoing transitions, is
perfect too. Thus, we (iteratively) delete from Pperfect all states that accept non-
progressive sequences. If the initial state of Pperfect is deleted, then we conclude that
there is no progressive solution to the given equation that is a reduction of the P.
Otherwise, the obtained automaton is the largest reduction of P that is a progressive
solution. A largest progressive solution can be obtained when the initial automaton P
is the largest solution to the equation or it is the chaos automaton over alphabet V, i.e.
CHAOS(V), that generates the language V*. Any automaton over alphabet V is a
reduction of CHAOS(V).

3.3.1 Perfect Automata

In this subsection, we first discuss the idea of constructing a perfect automaton.
Afterwards, we present an algorithm for building such an automaton.

The problem we face with an automaton P over alphabet V that in particular can be
seen as a largest solution to the equation, is the following. Given a state r of P, there
could exist sequences β1 and β2 in the language of Λ(A, P, C) with the V-restrictions α1
and α2 such that the sequence β1 takes the automaton Λ(A, P, C) from the initial state

Progressive Solutions to a Parallel Automata Equation 377

to the triplet (s1, r, q1) that is progressive, while the β2 takes the automaton from the
initial state to the triplet (s2, r, q2) that is non-progressive. Therefore, sequences α1 and
α2 accepted at the state r of the automaton P possess different features: sequence α1 is
progressive while α2 is a non-progressive sequence. Our objective is to delete the state
r from P because it is reachable through the non-progressive sequence α2. However,
when deriving the largest progressive reduction of the P we cannot delete r, since it is
also reachable through the sequence α1 that can be executed by a progressive solution.
Consequently, for such two sequences, we would like to split r into several states and
obtain a perfect automaton Pperfect such that these sequences take Pperfect to two different
states. As a result, we will not have any triplet in Λ(A, Pperfect, C) that is reachable by
two sequences such that the V-restriction of these sequences are equal to α1 and α2.
Therefore, each state r′ of Pperfect will only be reachable through either progressive or
non-progressive sequences. This allows us later to delete state r′ if it accepts non-
progressive sequences without losing a progressive solution that is a reduction of the
automaton P. Formally, given the context A and the specification C, an automaton
P = 〈R, V, δ P, r0, FP〉 is called perfect (w.r.t. the given context and specification), if for
any state (s, r, q) of the automaton Λ (A, P, C) the V-restriction of the language
accepted at the state (s, r, q) coincides with the language accepted at the state r of the
automaton P, i.e. L

r

 (P) = L

(s, r, q)

 (Λ (A, P, C))↓V. We further let Pperfect denote the
perfect automaton obtained from P.
Proposition 8. Given a perfect automaton Pperfect (w.r.t. a given context A and
specification C), each state of Pperfect accepts either non-progressive or progressive
sequences. Moreover, each sub-machine, Sub(Pperfect), obtained from Pperfect by deleting
from Pperfect one of its non-progressive states with its incoming and outgoing
transitions, is also perfect. �

Given an automaton P over the alphabet V, the idea of constructing a perfect
automaton Pperfect that is equivalent to P is as follows. For each sequence α in the
language of the automaton P, we determine the subset of all triplets in Λ (A, P, C)
reachable through sequences with the V-restriction equal to α. In general, for many
sequences in the language of P, we will have the same subset of triplets in Λ (A,
P, C). Each triplet of a subset accepts the language of sequences with the same V-
restriction (Proposition 3). Consider states s and q of the automata A and C such that
the triplet (s, r, q) is a state of the subset. Due to Proposition 4, the V-restriction of the
intersection L

s

 (A) ∩ L (s, r, q) ∩ L

q

 (C) where L

s

 (A) and L

q

 (C) are languages accepted at
states s and q, equals to L(s, r, q). The latter implies that such subsets of triplets can serve
as states of the automaton Pperfect. Consequently, since each triplet of the subset accepts
the language with one and the same set of V-restrictions, then the V-restrictions of the
sequences accepted by the triplets are either progressive or non-progressive,
depending if the subset includes a non-progressive triplet. We then add to the
language of Pperfect, all sequences of the language of P that do not participate in the
composition with the context A. This is done in order for Pperfect to be equivalent to P.
For example, the automaton B1 shown in Figure 3.3 is not perfect. The progressive
sequence e1 and the non-progressive sequence e1i take the automaton B1 to the same
state A. On the contrary, the automaton B2 shown in Figure 4.1 is perfect. Here we
note that for every automaton P, there exists an equivalent perfect automaton Pperfect.
Below we propose an algorithm to derive Pperfect.

378 Sergey Buffalov et al.

Algorithm 1. Deriving the perfect automaton Pperfect of P

Input: The automaton P = 〈R, V, δ P, r0
, FP〉, context A = 〈S, W, δ A, s 0, FA〉, and

specification C = 〈Q, Ext, δ C, q 0, FC〉.
Output: The deterministic perfect automaton Pperfect that is equivalent to P.

Declare all states of A↑V and C↑W ∪V as accepting states and derive the automaton
Λ (A, P, C) = A↑V ∩ P↑W ∩ C↑W ∪V. Restrict the intersection to the alphabet V and let
P′ = 〈R′, V, δ P′, r′

0
, FP′〉 denote the resulting automaton. The automaton Pperfect = 〈R ∪

R′, V, δ , r′
0
, FP′ ∪ FP〉 is obtained from P and P′ as follows. The initial state of Pperfect is

the initial state of P′, and the transition relation δ contains the union of the transition
relations δ P′ and δ P of both automata P′ and P. Moreover, for each transition (r,a,r′)
of P, we add a transition with the label a from the subset of triplets of P′ comprising
the triplet (s, r, q) to state r′ of P if and only if there is no transition with the label a
from the subset.

Theorem 1. The automaton Pperfect returned by Algorithm 1 is deterministic,
equivalent to P and perfect (w.r.t. the given context and specification). €

3.3.2 An Algorithm for Deriving a Largest Progressive Solution

Given the equation A ◊Ext X ≅ C, let P be an automaton over the alphabet V. We let
Pperfect denote the perfect automaton for P. Below, we present an algorithm that trims
Pperfect by iteratively deleting its states that correspond to non-progressive states in
Λ (A, Pperfect, C). If the initial state is deleted in Pperfect, then none of the reductions of P
is a progressive solution to the A ◊Ext X ≅ C. Otherwise, the obtained submachine
PLargest-Prog. of Pperfect is the largest progressive reduction of P.

Algorithm 2. Deriving a largest progressive solution

Input: The automaton P = 〈R, V, δ P, r0
, FP〉, context A = 〈S, W, δ A, s 0, FA〉, and

specification C = 〈Q, Ext, δ C, q 0, FC〉.
Output: The largest reduction PLargest-Prog. of P that is a progressive solution to the
equation A ◊Ext X ≅ C if it exists.
Step-1. Derive, using Algorithm 1, the perfect deterministic automaton Pperfect that is
equivalent to the P and the automaton Λ (A, Pperfect, C).
Step-2.If a state (s, r, q) of the automaton Λ (A, Pperfect, C) is non-progressive then:

-Delete from the automaton Pperfect the state r and all the states that become
unreachable from the initial state;

-Delete from the automaton Λ (A, Pperfect, C) each state that has the second
component equal to r and all the states that become unreachable from the initial state;

-Repeat Step 2 of the algorithm until no more states can be deleted in the
automaton Λ (A, Pperfect, C). If the initial state is deleted then the equation A ◊Ext X ≅ C
has no progressive solutions that are reductions of P. Otherwise, the obtained
submachine PLargest-Prog. of Pperfect is the largest reduction of P that is a progressive
solution to the equation A ◊Ext X ≅ C.

Progressive Solutions to a Parallel Automata Equation 379

1. The perfect automaton for B1

2. Automaton Λ(A,Mperfect,C)

3.Automaton
Λ(A,Mperfect,C)

Fig. 5. Deriving a largest progressive solution.

If we start with the chaos machine CHAOS(V) (i.e. P = CHAOS(V)) or with the
largest solution M (i.e. P = M) to the equation A ◊Ext X ≅ C, Algorithm 2 returns a
largest progressive solution to the equation if it exists.

As an application example of Algorithm 2, we consider the context A and the
specification C shown in Figures 3.1 and 3.2, respectively. We assume that {e

1
, e

2
, i,

x} is the alphabet of a solution X to the equation A ◊{e
1

, e
2
, x} X ≅C. The largest solution

M = B
1

to this equation shown in Figure 3.3 is not progressive. Therefore, first, we
apply Step 1 of the above algorithm to M and we derive the perfect deterministic
automaton Mperfect shown in Figure 5.1. For the sake of simplicity, we rename the states
of Mperfect as shown in Figure 5.1, where Ap = aA1, Bp = bA1, Cp = cA1. The automaton
Λ (A, Mperfect, C) is shown in Figure 5.2. State cCp1 of this automaton is not
progressive. Consequently, in Step 2 we delete from Λ (A, Mperfect, C) all the states that
include state c, i.e. cCp1, and we obtain the automaton shown in Figure 5.3. Moreover,
we delete state Cp from the perfect automaton Mperfect. Since the automaton in Figure
5.3 does not have non-progressive states, the algorithm terminates and returns the
automaton shown in Figure 4.1 as the largest progressive solution.

3.4 Characterization of Progressive Solutions and Re-simulation Relation

A characterization of progressive solutions to the equation A ◊Ext X ≅ C over I/O
automata is proposed in [3]. In this section, we introduce a new Re-simulation relation
between finite automata that allows us to describe all progressive solutions for
parallel automata equations. That is we propose a complete characterization of all
progressive solutions of the automata equation A ◊Ext X ≅ C.

Our characterization is very close to that proposed in [3]. We associate with each
state of a largest progressive solution a family of regular sets. A reduction of the
largest progressive solution is a progressive solution if and only if it is simulated by
the largest progressive solution and for each pair (t,r) of the simulation relation, the
language of the reduction at state t intersects each regular set of the family associated
with the state r of the largest progressive solution.

We recall that if the largest solution to a given automata equation is progressive
then it is a largest progressive solution. Moreover, we note that we may have many

e
1 , e

2 , i e 1,
 e

2

i

e1

cCp1

aAp1

bBp1

x

x
x

e
1 , e

2 , i e 1, e
2

aAp1

bBp1

x

x

e
1 , e

2 , i e 1, e
2

i

e 1

c A 1
(C p)

a A 1
(A p)

b A 1
(B p)

x

xx

A e 1
, e 2

e
2 , i

e 1 , e 2 , x , i

380 Sergey Buffalov et al.

largest progressive solutions to a given equation. Unfortunately, not each largest
progressive solution can be used for the complete characterization of all progressive
solutions. However, the largest progressive solution that is perfect can be used for the
complete characterization of all progressive solutions.

Given an arbitrary largest progressive solution ML, each progressive solution is a
reduction of ML. However, not each reduction of ML is progressive. By definition, a
reduction B = 〈T, V, δ B, t 0, FB〉 of ML is progressive if and only if each state of the
automaton Λ (A, B, C) is progressive. Given a state (s, t, q) of Λ (A, B, C), let
β∈ L

(s,

t,

q)

 (Λ (A, B, C)) be a sequence such that the V-restriction α of β (i.e. α =β ↓V)
takes the intersection B ∩ ML of automata ML and B to state pair (t, r). Since B is a
reduction of the deterministic ML, for a given t there always exists such r. Now, let
(s, r, q) be a state of the automaton Λ (A, ML, C) that is reachable from the initial state
through the sequence β. Since ML is progressive, each state (s, r, q) of the automaton
Λ (A, ML, C) is progressive. This means that for each external action e that can be
executed at state q of the specification C the set of sequences Re[(s, r, q), e] is not
empty (Proposition 7) and thus, the V–restriction Re[(s, r, q), e]↓V of Re[(s, r, q), e] is
also not empty. Since B is a reduction of ML, the set of sequences generated at state
(s, t, q) of Λ (A, B, C) is a subset of that generated at state (s, r, q) of Λ (A, ML, C)
(Proposition 5). Therefore, for (s, t, q) to be progressive, at least one sequence from
the set Re[(s, r, q), e]↓V should be generated at state t.

Therefore, for each state (s, r, q) and for each external action e produced at state q,
we associate the corresponding set of sequences Re[(s, r, q), e]↓V with state r of ML. We
call the automaton ML with associated sets of sequences a regular extension of ML,
and we denote it by Re (ML).

Therefore, for a reduction B of ML to be progressive, it is sufficient that for each
pair (r, t) in the intersection ML ∩ B, the automaton B at state t generates at least one
sequence from each set of sequences associated with r. In this case, we say that ML
Re-simulates B.

Unfortunately, for an arbitrary largest progressive solution that is not a perfect
automaton, we could have a progressive solution that does not satisfy the above
condition. This happens when for some (s, r, q) of the automaton Λ (A, ML, C) there
does not exist a corresponding state (s, t, q) in Λ (A, B, C). However, by construction,
we have selected un-needed (or superfluous) sequences from all the sets that relate to
(s, r, q) and every external action e that can be produced at state (s, r, q), independent
of whether there exists a (s, t, q). Actually, for this reason, we could have progressive
solutions that are not Re-simulated by ML. However, the above cannot happen for a
perfect automaton due to Theorem 1 and according to the following proposition.
Proposition 9. Given the context A and specification C, let Mperfect= 〈R, V, δ M, r 0, FM〉
be a deterministic perfect automaton that is equivalent to a largest progressive
solution ML of the equation A ◊Ext X ≅ C. Let the automaton B be a reduction of Mperfect, a
pair (t, r) be a state of the intersection B ∩ Mperfect, and states s and q be states of the
automata A and C. If the automaton Λ (A, Mperfect, C) has a state (s, r, q) then the
automaton Λ (A, B, C) has a state (s, t, q). �

Consequently, in order to have a complete characterization of all progressive
solutions over a given alphabet, we use a largest progressive solution MPerfect that is a
deterministic perfect automaton. The automaton Mperfect has the nice property that each
progressive solution is Re-simulated by it and vice versa.

Progressive Solutions to a Parallel Automata Equation 381

By definition, if a triple (s, r, q) is not a state of the automaton Λ (A, Mperfect, C), then
for each external action e ∈ Ext the set Re[(s, r, q), e] is empty. We denote by Re(r) the
set of all nonempty sets Re[(s, r, q), e]↓V, for all (s, q, e)∈ S× Q × Ext.

Given an automaton Mperfect, we let the pair 〈Mperfect, Re〉 denote the regular extension
of the automaton Mperfect, where Re is a collection of all Re(r), where r is a state of
Mperfect.

An automaton B = 〈T, V, δ B, t 0, FB〉 is said to be simulated by the regular extension of
an automaton M = 〈R, V, δ M, r 0, FM〉, if B is simulated by M with the simulation relation
ϕ ⊆ T × R, such that for each pair (t, r)∈ϕ the prefix-closure of the language generated
at state t of the automaton B intersects each set from Re(r), i.e. the following holds:
Re (r) ≠ ∅ ⇒ ∀L ∈ Re (r) (L ∩ Lt(B) ≠ ∅).

The simulation relation ϕ with the above property is called a regular simulation
relation or simply a Re-simulation relation.

Let A = 〈S, W, δ A, s 0, FA〉 be the context and C = 〈Q, Ext, δ C, q 0, Q〉 be a reduced
deterministic specification. Due to Theorem 1, if there exists a progressive solution to
the equation A ◊Ext X ≅ C then there exists a perfect automaton Mperfect such that
L

r
 (Mperfect) = (L

(s,

r,

q)

 (Λ (A, Mperfect, C)))↓V. Mperfect can be derived as proposed in Algorithm
1.
Theorem 2. Given a deterministic perfect largest progressive solution Mperfect to the
equation A ◊Ext X ≅ C, a reduction B of the automaton Mperfect is a progressive solution to
the equation if and only if B is Re-simulated by Mperfect. €

4 Conclusions

In this paper we address the problem of characterizing progressive solutions to a
composed automata equation where the automata communicate by rendezvous. A
progressive solution is of special interest, since when combined with the context it
does not block any action of the environment that is possible according to the
specification. Particularly, we have proposed a technique for deriving the largest
reduction of an automaton that is a progressive solution to the equation (if it exists).
The technique can be used in order to determine the largest progressive solution.
However, not each reduction of the largest progressive solution is progressive and
therefore, the problem of characterizing all progressive solutions is not trivial. In
order to solve the problem, we have introduced a new Re-simulation relation between
finite automata that allows us to describe all progressive solutions. The complete
characterization of progressive solutions enables us to select an “optimal” solution,
where an optimal solution can be defined as the one with the least number of states,
actions and transitions, or the fastest one. Currently, we are working on techniques for
deriving optimal progressive solutions.

382 Sergey Buffalov et al.

Acknowledgments

The first and the third authors acknowledge the partial support of the program
“Russian Universities”. The second author acknowledges the partial support of the
American University of Sharjah.

References

[1] Barrett G., Lafortune S.: Bisimulation: The Supervisory Control Problem, and Strong
Model Matching for Finite State Machines. Discrete Event Dynamic Systems: Theory
and Application. 8(4):377-429 (1998).

[2] Bochmann G. v., Merlin, P.: On the Construction of Communication Protocols. ICCC,
1980, 371-378, reprinted in "Communication Protocol Modeling", edited by C.
Sunshine, Artech House Publ. (1981).

[3] Drissi J., Bochmann G. v.: Submodule Construction for Systems of I/O Automata.
ftp://beethoven.site.uottawa.ca/Publications/Dris99b.pdf

[4] Hopcroft J. E., Ullman J. D. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979).

[5] Kelekar, S.G.H: Synthesis of Protocols and Protocol Converters Using the Submodule
Construction Approach. Proc. PSTV, XIII, A. Danthine et al (Eds) (1994).

[6] Kumar R., Nelvagal S., Marcus S. I.: A Discrete Event Systems Approach for Protocol
Conversion. Discrete Event Dynamical Systems: Theory and Applications. 7(3):295-
315 (1997).

[7] Merlin P., Bochmann G. v.: On the Construction of Submodule Specifications and
Communication Protocols. ACM Trans. On Programming Languages and Systems.
5(1):1-25 (1983).

[8] Parrow, J.: Submodule Construction as Equation Solving in CCS. Theoretical Computer
Science. Vol. 68 (1989).

[9] Petrenko, A., Yevtushenko, N.: Solving Asynchronous Equations. In Proc. of IFIP
FORTE/PSTV’98 Conf., Paris, Chapman-Hall (1998).

[10] Petrenko, A., Yevtushenko, N., Bochmann, G. v., Dssouli, R.: Testing in Context:
Framework and Test Derivation. Computer Communications Journal, Special issue on
Protocol engineering. Vol. 19, 1236-1249 (1996).

[11] Qin, H., Lewis, P.: Factorisation of Finite State machines Under Strong and
Observational Equivalences. Journal of Formal Aspects of Computing, Vol. 3, 284-307
(1991).

[12] Tao, Z., Bochmann, G.v., Dssouli, R.: A Formal Method for Synthesizing Optimized
Protocol Converters and its Application to Mobile Data Networks. Mobile Networks &
Applications. 2(3):259-69 (1997).

[13] Wonham W. M., Ramadge P. J.: On the Supremal Controllable Sublanguage of a Given
Language. SIAM J. Control. Optim. 25(3):637-659 (1987).

[14] Yevtushenko, N., Villa, T., Brayton, R.K., Petrenko, A., Sangiovanni-Vincentelli, A.:
Solving a Parallel Language Equation. Proc. of the ICCAD’01, USA, (2001).

	1 Introduction
	2 Finite State Automata Relations, Operators, and Composition
	3 Solving Automata Equations
	3.1 A Progressive Solution
	3.2 An Overview of the Method for Solving the Problem
	3.3 Largest Progressive Solutions
	3.4 Characterization of Progressive Solutions and Re-simulation Relation

	4 Conclusions
	Acknowledgments
	References

