
V. Ma ík et al. (Eds.): DEXA 2003, LNCS 2736, pp. 803–812, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Integrating Quality of Service into Database Systems*

Haiwei Ye1, Brigitte Kerhervé 2, and Gregor v. Bochmann3

1 Département d’IRO,
Université de Montréal, CP 6128

Succ. Centre-ville,
Montréal Québec, Canada H3C 3J7
ye@iro.umontreal.ca
2 Département d'informatique,

Université du Québec à Montréal, CP 8888,
Succ. Centre-ville,

Montréal Québec, Canada H3C 3P8
Kerherve.Brigitte@uqam.ca

3 School of Information Technology & Engineering,
University of Ottawa
P.O. Box 450, Stn A,

Ottawa Ontario, Canada K1N 6N5
bochmann@site.uottawa.ca

Abstract. Quality of Service (QoS) management has attracted a lot of research
interests in the last decade, mainly in the fields of telecommunication networks
and multimedia systems. With the recent advance in e-commerce deployment, it
clearly appears that today’s web applications will require the integration of QoS
mechanisms to specify, declare and support the different service levels they can
provide. Such mechanisms should therefore be integrated in the different
components of the core technology and more specifically in database systems.
In this paper, we present an approach to push QoS inside database systems. This
approach integrates QoS requirements into distributed query processing and
considers also the dynamic properties of the system. We propose a query
optimization strategy where multiple goals may be considered with separate
cost models.

1 Introduction

To support QoS activities, mechanisms have been mainly provided for individual
components such as operating systems, transport systems, or multimedia storage
servers and integrated into QoS architectures for end-to-end QoS provision [1]. None
of these proposals takes database systems into consideration. However, database
systems are an important component of today’s distributed systems. We consider
them a major player in QoS management.

* This work was supported by a grant from the Canadian Institute for Telecommunication Research

(CITR), under the Network of Center for Excellence Program of the Canadian Government, a
collaborative research and development grant from NSERC No. CRD-226962-99, by a student
fellowship from IBM and an individual research grant from NSERC No. RGPIN138210.

804 H. Ye, B. Kerhervé, and G. v. Bochmann

In the context of a research project funded by the Canadian Institute for
Telecommunication Research (CITR), we investigate how to support different QoS
levels in distributed systems [2] and more specifically for e-commerce applications.
We address two complementary issues. On one hand, we study the management of
QoS information to support distributed QoS decision models. For that purpose, we are
currently designing and implementing an extensible QoS Information Base (QoSIB)
manager offering basic services to store, access, share, transfer, produce or analyze
QoS information [3]. On the other hand, we work on pushing QoS inside database
systems [4][5][11]. More specifically, we propose an approach to integrate user-
defined QoS requirements, in addition to the dynamic properties of the system
components involved, into a distributed query processing environment.

In this paper, we focus on the second issue of our research. We present the general
principles of our approach and we describe the query optimization strategy we
propose where multiple goals may be considered with several cost models. A
complete description of this work, together with experimental results can be found in
[6].

The rest of the paper is organized as follows. The next section introduces the QoS
concepts related to the proposed approach. Section 3 describes our QoS-based
distributed query processing strategy. Section 4 provides a short conclusion.

2 Pushing QoS inside Database Systems

Many efforts have been directed at the provision of QoS at the network level. We
believe that QoS concepts could and should be broadened from networking to the
database area. However, there has been a lack of discussion of QoS issues in database
systems. This observation opens possibilities to introduce QoS concepts in database
systems.

What are the QoS issues in database system? The quality of service provided by
the database systems in an e-commerce application is less likely perceivable by the
end user. However, the implementation of QoS for the whole system requires each
system component to be QoS responsive. In our work, different QoS requirements
and constraints specified by end users are mapped to different optimization goals for
the database system. Traditional database systems cannot be directly used for this
purpose since they are designed to provide a single optimization goal. Another
reflection of QoS requirements is the integration of dynamic system properties. The
consideration of the user’s QoS preferences is modeled into user classes. In this
section, we concentrate on concepts that are important to our work: classes of users,
multiple optimization goals, and dynamic system properties.

2.1 Classes of Users

The involvement of the user is crucial in e-commerce applications; accordingly
various user requirements and QoS should also be available from the underlying
DBMS. Defining user classes is a way of differentiating users according to their QoS
expectation in order to provide different levels of service. A user class is a
generalization of a number of users sharing common characteristics. Classification of

Integrating Quality of Service into Database Systems 805

the users may be based on different policies and criteria [7]. For example, different
users may exhibit various patterns of navigation through an e-commerce site,
therefore based on the user’s navigation behavior, we may segregate users into two
classes: buyer and browser. Another example of segregating users could be based on
priority. In this classification, we differentiate users into different classes according
to, for example, their profit brought to an e-store. Thus an e-commerce site tries to
provide higher priority users with better service than lower priority users.

2.2 Various Optimization Goals

Conventional distributed/parallel database query optimization was primarily aimed at
either minimizing the response time or system resource utilization. However, in the
context of emerging applications, such as e-commerce, this provision of a single
optimization goal is not adequate. Therefore, other possible optimization goals should
be proposed and integrated into the optimizer. Table 1 lists some optimization goals
that are useful for our study. They are grouped into different categories. Some
optimization goals are performance oriented, for example, the response time, and the
throughput of the database system. Others are money oriented, one example is the
service charge for a particular service.

Table 1. Example of optimization goals

Optimization category Optimization goal

Performance
oriented

- Minimize response time
- Maximize DB throughput

Money oriented
- Minimize the cost of a service
- Maximize the benefit of the database system

Data quality
- Multimedia vs. Plain text
- Recency of data

System oriented - Minimize resource utilization

When various optimization goals exist along multiple QoS dimensions, we should

find an optimal solution that satisfies all of them, optimal either from the user
perspective or the system perspective, or both. One way of combining various
optimization objectives is to use weighted combination (for example, a weighted sum)
of different goals. The weight assigned to each goal is explicitly specified by the user.

The satisfaction for each optimization goal or QoS metric can be captured by using
a utility function. By indicating different utility functions, the user expresses his/her
individual tastes. Usually the utility function maps the value of one QoS dimension to
a real number, which corresponds to a satisfaction level. For example, the following
formulas give the utility functions for the response time and the service charge:

ut (t) = 1 / t, u$ (x) = 1 / x

where t is the response time for a query access plan and x is the corresponding service
charge for that plan. Utility functions are used in our cost model to achieve an overall
optimization since they are used to compare the quality of the access plans. Utility
functions also provide an important link between the quality of a query plan and the
user satisfaction.

806 H. Ye, B. Kerhervé, and G. v. Bochmann

2.3 Dynamic System Properties

Two main challenges imposed by today’s e-commerce applications are diversity and
unpredictability. Diversity includes various user expectations and the heterogeneity of
the database systems, network types and the machine power. The unpredictable nature
comes from the varying network performance (especially for the Internet-based
networks) and server load at different times. To capture these dynamic properties of
the systems, we rely on the QoS monitor to offer the time-changing information. This
information is then modeled in the relevant cost models of query processing.

2.4 An Example

In order to illustrate the idea of user classes and multiple optimization goals, we give
an example. Assume we are interested in two QoS dimensions: response time and
money. Suppose that the query optimizer compares two query access plans. The
related information is given in Table 2.

Table 2. An example of related information for two query plans

 Plan a Plan b User 1 Weight User 2 Weight
Response time 0.01s 0.009s 0.8 0.2

Money $0.05 $0.10 0.2 0.8

Also assume that the utility functions are the formula defined in Section 2.2, that is ut

(t) = 1 / t and u$ (x) = 1 / x. In our approach, weighed sum of utilities is used to
achieve the overall optimization. For each user, the optimizer selects the maximum
utility values between two query access plans. For User 1, the overall utilities for Plan
a and b are 84 and 90.8, respectively. Accordingly, Plan b will be chosen for User 1
since it has higher utility. Similarly, Plan a is optimal from User 2’s perspective.

From this example, we can see that corresponding to different user’s QoS
requirements/preferences, the optimizer should be able to choose different query
access plans.

3 QoS-Based Query Processing

To support QoS in database systems, we propose to enrich query processing by
investigating how the construction and the selection of query access plans can be
enriched with QoS features. We build our framework along the issues addressed
above. More specifically, we consider QoS factors such as user requirements,
dynamic network performance and dynamic server load in the procedure of global
query processing. The main objective is to provide a flexible QoS model for
multidatabase management systems and to offer differentiated services. Due to space
limitation, in this section we present the general principles of our approach,
addressing relevant issues and sketching the general methodology used to tackle the
problem. The reader can refer to [6] for a detailed presentation of the approach and
corresponding algorithms.

Integrating Quality of Service into Database Systems 807

3.1 Query Processing and Optimization Revisited

To address the dynamically changing requirements of the user and the unpredictable
performance of the underlying systems, we propose the integration of QoS within
distributed query processing. Specifically, we are guided by two main goals when
designing the QoS-based query processor: 1) recognition of individual user
requirements, and 2) consideration of the dynamic nature of the underlying system. A
logical architecture is proposed in Figure 1, which shows the relationships between
QoS management and distributed query processing.

Fig. 1. A big picture for QoS-aware distributed query processor

We follow the conventional steps for distributed query processing: parsing,
optimizing, and scheduling. In this framework, we include the typical components
introduced in [8]. We keep the traditional factors (such as table, column, and index
statistics) considered in the query processor. More importantly, we include the QoS
factors, which are information from the QoS Information Base (QoSIB), User Profile
and System Policies. The QoS information base (QoSIB) stores information about the
service level offered by the different system components. A user profile is built to 1)
store the user’s QoS expectation for a particular service, and 2) to derive the trade-off
between QoS dimensions, which is represented by the weight assigned to each
dimension. The class of a user is used in the system policies. The system policies also
determine the constraints under which the system resources can be used for providing
services to the users. Although our focus is to push these QoS factors in the phase of
optimization, the similar treatment can be applied to other steps. As a result, the
global optimizer chooses a query access plan which will satisfy multiple optimization
objectives derived from the user’s requirements specified by the user. The dynamic
system status is captured by QoS monitoring such that the selected query access plan
takes into consideration the available system resources.

Adding QoS factors into a distributed query processing environment has several
impacts and requires to provide new optimization goals, to modify the corresponding

Rules &
Heuristics

DB Statistics

QoS
Information

Base

User
Profile

 System
 Policies

SQL

Parser &
Rewriter

Global
Optimizer

Scheduler

Query plan

Q
oS-aw

are Q
uery processor

Traditional factors QoS factors

808 H. Ye, B. Kerhervé, and G. v. Bochmann

cost models, and to propose new algorithms for the query optimization. We address
these problems in [6]. In this paper, we give a brief discussion on cost models used in
our work and general description of our approach.

3.2 Cost Models

We propose a new approach to the problem of evaluating the cost of a query plan in a
multidatabase system. Our approach relies on QoS monitoring to provide dynamic
system status and on user profiles. The novelty of our approach lies in the
consideration of user requirements, user classes as well as the way to deal with
dynamic network performance. In our work, three levels of cost models are used. The
first level is the global cost model, which is used to calculate the overall utility of a
query access plan. The second level is used to calculate the cost for each node in a
query access plan. The last level is the local cost model, which is used to estimate the
cost of an operator locally.

Global cost model. Global optimization involves evaluation of the trade-offs
between the amount of work to be done by the global level and the amount of
communication and processing done by different component databases. Similar trade-
offs exist in a distributed DBMS, but the heterogeneity and autonomy add
considerably to the complexity.

Global cost models are the essential parts for the global query optimizer.
Therefore, the information for network performance and load of database server is
more crucial for the global cost model. The global cost model is defined as follows:

 })C({
1

iii

n

i

umax ⋅∑
=

ω ,

where uj() is the utility function for cost component Ci (based on one of the QoS
dimensions i); ωi is the weighting factor assigned to the cost component Ci, where 0
≤ωi ≤ 1 and the sum of ωi equals to 1.

Plan cost model. A query access plan is represented by a binary tree. Each internal
node is an inter-site binary operation (such as join or union) and each leaf node is the
subquery executed at one database server. Since we consider several cost components,
the cost of each node is also expressed according to multiple dimensions. For
example, if we select the response time, the service charge, and the availability as our
cost components, then the cost information recorded in each node will include three
parts: time, dollar, and availability. The cost information for leaf nodes is based on the
local cost model and the QoS Information Base (e.g. availability). The cost
information for the internal node is calculated as a combination of the cost
information of its left and right child nodes. The cost formula for each QoS dimension
is different. Table 3 lists the cost functions for time, dollar, and availability. We use
join operation as our study focus. The join time for each node is determined by the
load of the server and the current TCP performance. Note that the QoS monitor
captures this information. The formula for each join is:

T join = local (site, query) + net (sitei, sitej)

where local (site, query) represents the local execution time for the query at site, net
(sitei, sitej) represents the data transfer time spent over the network.

Integrating Quality of Service into Database Systems 809

Table 3. Cost functions for each cost component

Cost Component Cost function Brief Description
Response time Join-time + max

(left.respose_time,
right.response_time)

The join time is the response
time to perform the join
between the left and the right
child.

Service Charge Join-charge +
left.charge
+ right.charge

The join charge is the money
cost to perform the join
between the left and the right
child.

Availability Left.availability *
right.availability

The probability that both
servers are available.

Local cost model. As just mentioned, the local cost information relies on the

estimation of the execution of a query at a local server, the pricing policy applied by
the local server for a service charge, and the server availability. The price and the
availability must be reported by each local database server. However, the execution
strategy, and therefore the execution time, of a query is hard to obtain since local
database systems do not report the needed statistical information. To estimate the
local database cost, we adopt the sampling method[9], where multiple regression
models are used to guess the local cost structure (in terms of time). Due to space
limitation, we will not give detailed information here. A complete discussion can be
found in[6].

3.3 System Overview

After we have obtained the user’s SQL query and QoS requirements, two major steps
are used in our approach. One is the selection of the cost model, the other one is the
global query processing.

The selection of the cost model includes the selection of cost components and the
choice of utility functions. Different optimization goals may correspond to different
cost models or query processing strategies. Our general heuristic for the selection of
the cost model is that one optimization goal usually corresponds to one cost
component. Therefore, how many cost components are included in the general cost
model is determined by the number of optimization goals. For example, in the
performance category given in Table 1, the cost factors comprise the measures of
local processing time, communication time as well as some overhead due to
parallelism. For the optimization goals related to cost (in terms of dollars), the cost
measures include information on the resource usage and the pricing scheme. For the
category of data quality, special attention should be given to query rewrite techniques
to locate the best target databases. The selection of utility functions relies on the cost
component and the application. For example, if the cost component is the image
resolution, the available utility functions are usually non-decreasing (which means the
more the better). On the other hand, if the cost components involve time or money,
the utility functions are usually decreasing (which means the less the better).

810 H. Ye, B. Kerhervé, and G. v. Bochmann

Three steps are deployed for global query processing. They are global query
decomposition, join ordering and join site selection. The main task of the global query
decomposition is to break down a global query into several subqueries so that the
tables involved in each subquery target one location. The cost model used for this step
mainly depends on the local information, depending on the optimization goal selected.
For example, if the optimization goal is the response time, the cost model could be the
response time for each subquery under various server loads. We do not consider data
transfer in this step; therefore communication cost is not involved. The QoS factor
considered is mainly the system performance information from QoS information base.

Global query decomposition generates a set of subqueries with location
information. In the following join ordering step, the optimizer tries to come up with a
good ordering of how to combine these joins between subqueries. The algorithms for
join ordering are based on the traditional algorithms [10] but enriched with QoS
features. The cost models used in this step consist of both global cost model and local
cost model. A new transformation rule, called flex-transformation, is defined for the
step of bushy tree generation as discussed above. The algorithms for global query
decomposition and third site consideration for join site selection are new. The QoS
aspects include the provision of different query execution plans for different user
classes. The construction of the global query plan also takes into consideration the
dynamic system properties, such as server load and network available throughput,
with the help of QoS monitoring. Some of this support comes from our QoS-based
cost model used in the algorithm, others are directly infused in the algorithms.

In case of data duplication, one subquery might have several potential locations,
thus the optimizer should decide at which location this subquery would be executed.
Like the join ordering problem, all the QoS metrics are taken into account. The key
issue in the site selection is to decide which site is the best (depending on how the
user defines his or her optimization goal) for each binary operator. Traditionally, the
possible site to perform the join or the union is chosen from one of the operand sites,
i.e. the site where one of its operands is located. However, there may be
circumstances when shipping the two operand tables to a third site is a better solution,
in terms of response time. We call the join site to be a third site if the selected site is
neither of the operand sites. This process may be done in a bottom-up fashion. We
propose a new algorithm where we use post order tree traversal to visit the internal
nodes of the tree[6].

3.4 Prototype Implementation

In order to validate our approach, we implemented a prototype where we concentrated
on those aspects that are representative for the QoS-based distributed query
processing we propose. For simplicity, we only integrate two QoS dimensions in the
prototype. However, the implementation is not limited to these two dimensions, the
modules implementing other dimensions can be easily plugged into our prototype.
Highlights of the implementation are given below.

1) User classes: In order to show the differentiated services in our prototype, we

have adopted the priority-based user classification and considered two user
classes, namely VIP user and normal user.

Integrating Quality of Service into Database Systems 811

2) Optimization goal. For our prototype implementation, we focus on two
optimization goals: minimize the response time and/or the service charge.
Basically, we want to demonstrate the integration of the criteria of time and
money into our prototype. Accordingly the overall optimization goal is calculated
by the following formula:

Min { ω
t
 u

t
 (response_time) + ω

$
 u

$
 (service_charge) }

where ωt and ω$ are the weights specified by the users for the response time and
service charge, respectively; ut and u$ are utility functions used for the response
time and service charge respectively. For the purpose of simplicity, we adopt the
utility functions given in the example in section 2.3.

3) Cost models. The general cost model contains two cost components: response
time and service charge. Depending on the optimization goals, three cost models
can be selected:

i. Ctime = response_time;
ii. Cdollar = service_charge;
iii. Coverall = Wtime * ut(response_time) + Wdollar * u$(service_charge)

We also evaluate the performance of our QoS-based query processing strategy

according to the framework proposed in the previous sections. The objective of our
experiment is to show that our query optimizer can adapt to workload changes (both
server load and network load) and always chooses the best plan for different user
classes. In the experiment we simulate two classes of users: VIP user and normal user.
Under different system loads, the results [6] show that the VIP user always enjoy the
fast response time while the normal user will get slower response when the system is
heavily loaded.

4 Conclusions

In this paper, we have presented a general framework for integrating QoS
requirements in a distributed query processing environment. This framework is based
on user classes, cost models, utility functions, and policy-based management. Our
approach allows offering differentiated services to different classes of users according
to their expectations in terms of QoS. We also developed a prototype to verify the
effectiveness of the idea. Our current prototype supports two QoS dimensions:
response time and service charge. In the future, we will consider other QoS
dimensions to be specified by the user, such as data quality or freshness. We will also
be interested in working on rewriting rules to transform specifications on these
dimensions into optimization goals and corresponding cost models.

References

[1] C. Aurrecoechea, A. Campbell, L Hauw, A Survey of QoS Architectures. ACM
Multimedia Journal, 6, May 1998, pp. 138–151

812 H. Ye, B. Kerhervé, and G. v. Bochmann

[2] G. v. Bochmann, B. Kerhervé, H. Lutfiyya, M. M. Salem, H. Ye, Introducing QoS to
Electronic Commerce Applications, Second International Symposium, ISEC 2001 Hong
Kong, China, April 26–28, 2001, pp 138–147

[3] K.K. Nguyen, F. Fetjah, B. Kerhervé, Quality of Service Information Base (QoSIB)
Manager for Electronic Commerce Applications, Poster presented at the CITR Annual
Conference, August 2001

[4] H. Ye, B. Kerhervé, G. v. Bochmann, QoS-aware distributed query processing, DEXA
Workshop on Query Processing in Multimedia Information Systems (QPMIDS), Florence,
Italy, 1–3 September, 1999

[5] H. Ye, B. Kerhervé, G. v. Bochmann, V. Oria, Pushing Quality of Service Information and
Requirements into Global Query Optimization, the Seventh International Database
Engineering and Applications Symposium (IDEAS 2003), Hong Kong, China, July 16–18

[6] H. Ye, Integrating Quality of Service Information and Requirements in a Distributed
Query Processing Environment, Ph.D. thesis, University of Montreal, May 2003

[7] D. A. Menasce, V. A. F. Almeida, Scaling for E-Business Technologies, Models,
Performance, and Capacity Planning, Prentice Hall Canada, 2000

[8] D. Kossmann, The state of the art in distributed query processing, ACM Computing
Surveys (CSUR), Volume 32, Issue 4, December 2000, pp 422–469

[9] Q. Zhu, Y. Sun and S. Motheramgari, Developing Cost Models with Qualitative Variables
for Dynamic Multidatabase Environment, Proceedings of IEEE Int’l Conf. On Data Eng.
(ICDE2000), San Diego, Feb 29-March 3, 2000, pp 413–424

[10] W. Du, M.-C. Shan, U. Dayal, Reducing Multidatabase Query Response Time by Tree
Balancing. SIGMOD Conference 1995, pp 293–303

[11] H. Ye, B. Kerhervé, G. v. Bochmann, Revisiting Join Site Selection in Distributed
Database Systems. International Conference on Parallel and Distributed Computing, 26th–
29th August 2003, Klagenfurt, Austria

	Introduction
	Pushing QoS inside Database Systems
	Classes of Users
	Various Optimization Goals
	Dynamic System Properties
	An Example

	QoS-Based Query Processing
	Query Processing and Optimization Revisited
	Cost Models
	System Overview
	Prototype Implementation

	Conclusions

