
Fault Diagnosis in Extended Finite State Machines 

Khaled El-Fakih1, Svetlana Prokopenko2, Nina Yevtushenko2, and Gregor v. Bochmann3 

1Department of Computer Science, American University of Sharjah, UAE, kelfakih@aus.ac.ae 
2Tomsk State University, Russia, {prokopenko, yevtushenko}@elefot.tsu.ru 

3School of Information Technology and Engineering, University of Ottawa, Canada, bochmann@site.uottawa.ca  

Abstract.  In this paper, we propose a method for the derivation of an adaptive diagnostic test suite 
when the system specification and implementation are given in the form of an extended finite state 
machine. The method enables us to decide if it is possible to identify the faulty transitions in the system 
when faults have been detected in a system implementation. If this is possible, the method also returns 
test cases for locating the faulty transitions. An example is used to demonstrate the steps of the method.   

1 Introduction 

The purpose of diagnostic testing is to locate the differences between a specification and its 
implementation, when the implementation is found to be faulty. In the software domain where a system is 
represented as an FSM, some work has already been done on diagnostic testing [2][4]. However, no work 
has been reported for systems represented as Extended FSMs.  

In [1] we considered the problem of the derivation of an adaptive diagnostic test suite for a system of 
two communicating FSMs. It is known that we can not always locate the difference between the system 
specification and its implementation, due to the fact that different faults can result in the same behavior of a 
system/implementation under test (SUT). In [1], we presented a method that enables us to decide if it is 
possible to locate a faulty component machine, and if this is possible then tests for locating the fault(s) are 
derived. In this paper, we use a similar approach to the diagnostic testing of a single Extended FSM 
(EFSM). We assume that either predicate, transfer or assignment faults may occur in an EFSM 
implementation. Moreover, none of these faults increases the number of states in the implementation of the 
system. Similar to [1], we present a method for the derivation of an adaptive diagnostic test suite that 
enables us to decide whether it is possible to identify the faulty transitions in the given system, and if this is 
possible then tests for locating the faulty transitions are derived. We assume that the specification domain 
of each variable is finite and therefore, an EFSM can be represented as a classical FSM. We use a non-
deterministic FSM, called Fault Function (FF) [6], for the compact representation of transfer, predicate and 
assignment faulty transitions. The fault domain is the union of sub-machines of three FFs, FF-predicate, 
FF-transfer and FF-assignment. In this paper, we present a new method how a FF can be reduced by 
deleting sub-machines that do not agree with the observed Input/Output behavior of an SUT. We also 
describe two strategies for the derivation of diagnostic tests that differentiate between different 
implementations without the explicit enumeration of sub-machines of the FFs. In order to reduce the 
number of superfluous or infeasible sub-machines of FFs that do not correspond to possible 
implementations we study how a faulty transition of an EFSM affects transitions of the corresponding 
FSM. 

This paper is organized as follows. Section 2 includes necessary preliminaries needed for understanding 
the diagnostic problem introduced in Section 3 and solved in subsequent sections. Section 6 concludes the 
paper and includes some insights for future work. 

2 Preliminaries 

A non-deterministic finite state machine (FSM) is an initialized non-deterministic complete machine that 
can be formally defined as follows [7]. A non-deterministic finite state machine A is a 5-tuple 〈S, I, O, h, 
s0〉, where S is a finite nonempty set of states with s0 as the initial state; I and O are finite nonempty sets of 



inputs and outputs, and h: S×I → 2S×O\∅ is a behavior function where 2S×O is the set of all subsets of the set 
S×O. The behavior function defines the possible transitions of the machine. Given present state si and input 
symbol i, each pair (sj,o)∈h(si,i) represents a possible transition to the next state sj with the output o. This 

is also written as a transition of the form si 
i/o⎯ →⎯ sj. If for each pair si ∈ S×I it holds that |h(s,i)| =1 then 

FSM A is said to be deterministic. In the deterministic FSM A instead of behavior function h we use two 
functions, transition function δ: S×I →S and output function λ: S×I →O. FSM B = (S´,I,O,g,s 0), S´⊆S, is a 
sub-machine of A if for each pair si∈S´×I, it holds that g(s,i) ⊆ h(s,i).  
Sometimes a behavior of an FSM is not defined for some pairs si∈S×I. In this case, the transition is said to 
be undefined at state s under input i. An FSM where some transitions are undefined is called partial. If a 
partial FSM has a complete submachine, i.e. a submachine where each transition is defined, then the FSM 
has the largest complete submachine [3]. The latter can be obtained by iteratively deleting states where at 
least one transition is undefined. If the initial state has an undefined transition then the FSM has no 
complete submachine. Otherwise, the procedure is terminated when no state can be deleted.  
As usual, function h can be extended to the set I* of finite input sequences. Given state s∈S and input 
sequence α=i1i2...ik∈I*, output sequence o1o2...ok∈h(s,α) if there exist states s1=s, s2, ... , sk, sk+1 such that 
(sj+1,oj)∈h(sj,ij), j = 1,…,k. Input/Output sequence i1o1i2o2...ikok is called a trace of A if o1o2...ok∈h(s,i1i2...ik). 
We let the set ho(s,α) = {γ| ∃s´∈ S [(s´, γ) ∈h(s, α)]} denote the output projection of h, while denoting 
hs(s,α) = {s´| ∃γ ∈ Y* [(s´, γ)∈h(s, α)]} the state projection of h. If for each prefix β of α the set hs(s, β) is a 
unique state then we say that the state hs(s,α) is deterministically reachable from the initial state via the 
sequence α. 

Given state s of FSM A= (S,I,O,h,s 0) and state t of FSM B = (T,I,O,g,t 0), states s and t are equivalent, 
written s ≅ t, if for each input sequence i1i2...ik∈I*, it holds that ho(s,i1i2...ik) = go(t,i1i2...ik). If states s and t 

are not equivalent then they are distinguishable, written s ≠ t. A sequence α∈I* such that h(s, α) ≠ g(t, α) is 
said to distinguish states s and t. States s1 and s2 of FSM A are said to be separable [7] if there exists an 
input sequence α such that the sets ho(s1,α) and ho(s2,α) are disjoint. Sequence α is called a separating 
sequence for the states s1 and s2. 

FSMs A = (S,I,O,h,s 0) and B = (T,I,O,g,t 0) are equivalent, written A ≅ B, if their sets of traces coincide. 
A sequence α that distinguishes the initial states of non-equivalent FSMs A and B is said to distinguish 
FSMs A and B.  

Given a deterministic FSM A = (S, I, O, δ, λ, s0), a non-deterministic FSM FF defined over the same 
input and output alphabets is called a Fault Function (FF) for A if it includes A as a sub-machine. Fault 
functions were introduced in [6] to represent in a compact way all implementations of a given FSM with a 
given type of error. In this case, the set of all deterministic sub-machines of FF is considered as a fault 
domain of A.  

A sequence s0 
1 1/i o⎯⎯⎯→ s1, …, sk-1 

/k ki o⎯⎯⎯→ sk of consecutive transitions is called a path of FSM A. 
The path is said to be deterministic if it has no transitions with different next states and/or outputs for the 
same state-input combination. In other words, for any j,p < k it holds: if sj = sp and ij+1 = ip+1 then oj+1 = op+1 
and sj+1 = sp+1. In this paper, we are interested in deterministic sub-machines of a given FSM. Since a path 
of a deterministic sub-machine is always deterministic we consider only deterministic paths of a given 
FSM. Moreover, a deterministic sub-machine has a family of deterministic paths if and only if these paths 
are deterministically compatible, i.e. for any two paths of the family there are no transitions with different 
next states and/or outputs for the same state-input combination.  
Given two FSMs A = 〈S, I, O, h, s0〉 and B = 〈T, I, O, g, t0〉, the intersection A∩B is the largest initially 
connected sub-machine of FSM 〈S×T, I, O, H, s0t0〉 where for each pair (st, i), st∈S×T, i∈I,  
H(st, i) = {(s´t´,o)| (s´,o) ∈ h(s, i), (t´,o) ∈ g(s, i)}. 
The function H(st, i) is undefined if there is no o∈O such that (s´,o) ∈ h(s, i) and (t´,o) ∈ g(s, i) for 
appropriate s´∈S and t´∈T. The intersection represents the set of common output responses of FSMs A and 
B to each input sequence and generally, the intersection is a partial FSM. It is known [8] that if the 
intersection has no complete submachine then any two deterministic sub-machines of A and B are non-
equivalent. Moreover, in this case, there exists a set of input sequences, a so-called distinguishing set [3], 
such that any two sub-machines of A and B have different sets of output responses to sequences of this set. 
In [3] an algorithm is given for determining the distinguishing set. 



2.1 The EFSM Model 

The EFSM model extends the FSM model with input and output parameters, context variables, operations 
and predicates defined over context variables and input parameters.  
Formally [5], an extended finite state machine M is a pair (S,T) of a set of states S and a set of transitions T 
between states from S, such that each transition t∈T is a tuple (s,x,P,op,y,up,s´), where: 
s,s´∈S are the initial and final states of a transition; 
x∈X is an input, where X is the set of inputs, and Dinp-x is the set of possible input vectors, associated with 
the input x, i.e. each component of an input vector corresponds to an input parameter associated with x; 
y∈Y is output, where Y is the set of outputs, and Dout-y is the set of  possible output vectors, associated with 
the output y, i.e. each component of an output vector corresponds to an output parameter associated with y; 
P, op, and up are functions, defined over input parameters, and context variables, namely: 
P: Dinp-x × DV → {True, False} is a predicate, where DV is a set of context vectors v;  
op: Dinp-x × DV → Dout-y is an output parameter function; 
up: Dinp-x × DV → DV is a context update function. 

As in [5], we use the following definitions: 
Given an input x and an input vector from Dinp-x, the pair of input x and vector from Dinp-x, is called a 

parameterized input. A sequence of parameterized inputs is called a parameterized input sequence. A 
context vector v ∈ DV is called a context of M. A configuration of M is a pair of a state s and a context 
vector v. Given a parameterized input sequence of an EFSM we can calculate the corresponding 
parameterized output sequence by simulating the behavior of the EFSM under the input sequence starting 
from the initial state and initial values of the context variables. 
 
 

 
 
 
 

 

Fig. 1. The EFSM EM1 

Consider the EFSM in Fig 1. It has two states, two non-parameterized inputs a and b and a context 
variable w. The value of the variable w is an output of the machine. When an input a is applied to the 
machine at the state s0 and w is equal to 2, the predicate of the transition t3 is valid. The machine moves to 
state s1, updates w according to action w:=0 and produces output 0. 

Definition [5]: An EFSM is said to be: 
• Consistent if for each transition t with input x, every element in Dinp-x × DV evaluates exactly one 

predicate to true among all predicates guarding the different transitions with the same start state and 
input x; in other words, the predicates are mutually exclusive and their disjunction evaluates to true.  

• Completely specified if for each pair (s, x)∈S×X, there exists one transition leaving state s with input 
x. 
In this paper, we consider a class of specification and implementation EFSMs that are consistent and 

completely specified. A behavior of such EFSM is defined under each parameterized input sequence. 
Moreover, for each parameterized input sequence there exists a single parameterized output sequence that 
is produced by the EFSM for the given input sequence. Two EFSMs are said to be equivalent if their 
parameterized output responses to each parameterized input sequence coincide. 

2.2 Unfolding a Given EFSM to an Equivalent FSM and a Fault Model for EFSMs 

 
When the specification domain of each context variable and input parameter is finite an EFSM can be 
unfolded to an equivalent FSM by simulating its behavior with respect to all possible values of context 

s 0 s 1

t3 :  a ,w = 2 /w := 0 ,  w

t4 :  b ,w < 2 /w

t1 :  b  /  w

t5 :  a ,w < 1 /w := w + 2 ,w

t6 :  a ,w > = 1 /w := 1 ,w

t7 :  b ,w = 2 /w := 0 ,w
t2 :  a ,w < 2 /w := w + 1 ,w



variables and input vectors. The equivalence relation means the set of traces of the FSM coincides with the 
set of parameterized traces of the EFSM. Given a state s of EFSM A, a context vector v, an input x and 
vector ρ of input parameters, we derive the transition from configuration sv under input xρ in the 
corresponding FSM. We first determine the outgoing transition (s,x,P,op,y,up,s´) from state s where the 
predicate P is true for input vector ρ and context vector v, update the context vector to the vector v´ 
according to the assignment up of this transition, determine the parameterized output yω and add the 
transition (sv,xρ,yω,s´v´) to the set of transitions of the FSM. The obtained FSM has the same number of 
states as the number of different configurations (s,v) of the EFSM that are reachable from the initial state. It 
is known that the simulation can lead to a state explosion problem. 

As an example, consider the EFSM EM1 presented in Fig. 1. At state s0 two inputs can be applied to the 
machine; these inputs a and b are not parameterized. The variable w is a context variable and its domain is 
equal to {0,1,2}. When a is applied to the machine and the value of context variable w is equal to 0, the 
machine updates w according to an assignment w:=w+1 and moves from the initial configuration (s0,0) to 
the configuration (s0,1) and produces the output w=1, because in our example, an output coincides with the 
value of the  context variable w. So, the corresponding FSM has a transition labeled with a/1 from the state 
(s0,0) to the state (s0,1). The FSM M1 that corresponds to the EM1 of Fig. 1 is shown in a tabular form in 
Fig. 2. 
 

 (s0;0) (s0;1) (s0;2) (s1;0) (s1;2) (s1;1) 
a (s0;1)/1 (s0;2)/2 (s1;0)/0 (s1;2)/2 (s0;1)/1 (s0;1)/1 
b (s0;0)/0 (s0;1)/1 (s0;2)/2 (s1;0)/0 (s0;0)/0 (s0;0)/0 

Fig. 2. The FSM M1 that corresponds to the EFSM EM1 of Fig. 1  

In our example, a reference behavior at the state (s1,1) is presented in Fig. 2. However, by direct 
inspection, one can see that this configuration is not reachable from the initial state. We include the 
configuration in the description, since it becomes reachable if a fault occurs in the EFSM. 

It is known that if an EFSM is consistent and completely specified, the corresponding FSM is complete 
and deterministic. Two EFSMs are equivalent iff their corresponding FSMs are equivalent.  

In this paper, we consider a fault model based on transfer, predicate, and assignment faults of a 
consistent and completely specified EFSM. Consider a transition t=(s,x,P,op,y,up,s´) of an implementation 
EFSM EM. Transition t has a transfer fault if its final state is different from that specified by the reference 
EFSM, i.e. an implementation machine has a transition (s,x,P,op,y,up,s´´) instead of t. Moreover, t has a 
predicate fault, if the predicate of the transition in the implementation EFSM is different from P, i.e. an 
implementation EFSM has the transition (s,x,Q,op,y,up,s´) instead of t, where Q  ≠ P, i.e. Q  and P return 
different results for some value(s) of input and context vectors. Transition t has an assignment fault if it has 
an action other than that specified by the reference EFSM. That is after the execution of the wrong 
transition, the context and/or output vector will have a value different than expected by the reference 
assignment statement. We note that an implementation with a predicate fault is in general not consistent, 
unless certain assumptions can be made about the implementation, as explained in subsequent sections. 

3 Fault Diagnosis for EFSMs  

Let EM-RS be an EFSM representing the specification of the given system while EM´ is its implementation. 
We denote M-RS the corresponding FSM. Both specification and implementation EFSMs are complete and 
consistent. We also assume that the implementation belongs to the finite set of machines Eℜ = {EM0=EM-
RS, EM1..., EMк}. If the implementation at hand (SUT) say EM´ does not pass a given test suite TS, then 
our objective is to recognize EM´ (or identify the set of faulty implementations that are equivalent to EM´). 

In order to solve the given problem, we work at the FSM level, rather than at the EFSM level. That is, 
we unfold the given EFSM specification EM-RS and obtain an FSM M-RS. Due to our assumptions, the 
implementation at hand is a deterministic complete FSM of the finite set ℜ = {M0=M-RS, M1..., Mк}, where 
each FSM M of ℜ  corresponds to an EFSM EM of Eℜ.  The set ℜ is further called the fault domain of RS. 
A set of input sequences is called a diagnostic test suite DiagTS  w.r.t. the given fault domain ℜ if for each 
two non-equivalent machines of ℜ, there exists a sequence that distinguishes them. The set DiagTS can be 



considered as a distinguishing set of the fault domain ℜ. When the test cases of DiagTS are applied to the 
SUT, we can always identify the SUT up to the subset of equivalent machines. The problem is that the 
number of machines in the fault domain and correspondingly the size of the DiagTS are usually huge. 
However, to identify a machine of the set ℜ, it is enough to use its identifier that is a subset of a 
distinguishing set, i.e. usually is much shorter. Moreover, since we do not know the implementation at hand 
we have to derive the identifier only on-the-fly, i.e. by the use of an adaptive experiment with the SUT. In 
this case, the set of diagnostic test cases is not given a priori but is incrementally derived throughout the 
experiment.  

In this paper we use non-deterministic FSMs, called Fault Functions (FFs), for the compact 
representation of the fault domain. A detailed description of these FFs is given in the following subsections. 
Let M-RS = (S, I, O, δ, λ, s0) be a complete deterministic specification FSM of a given EFSM and FF is a 
fault function of M-RS. As a consequence of the compact representation, a FF is known to contain 
infeasible sub-machines that do not correspond to possible faulty implementations. In order to reduce the 
number of infeasible sub-machines we define three FFs for different types of the considered faults instead 
of a unique FF. Moreover, since a single fault of a given EFSM usually implies multiple faults in the 
corresponding FSM, for each fault of the EFSM, we determine the set of corresponding transitions of the 
FSM affected by the fault and we obtain a corresponding partition of input-state combinations of FF. The 
partition is also used to reduce the number of infeasible sub-machines. We denote FF-Transfer, FF-
Predicate, and FF-Assignment these three FFs that we consider for the compact representation of transfer, 
predicate, and assignment faults. The fault domain is the union of all the deterministic feasible sub-
machines of these FFs.  

3.1 An Overview of the Diagnostic Approach 

Let RS be the specification FSM obtained by unfolding the given EFSM, while TS is a conformance test 
suite. If the SUT of the given system produces unexpected output responses to the test suite TS, then the 
SUT is not equivalent to RS, i.e. the SUT is a faulty implementation. Our objective is to determine what 
machine of the fault domain is equivalent to the SUT.  

First we derive the three FFs of the specification system, FF-Predicate, FF-Transfer, and FF-
Assignment. Here we notice that we use the unfolding procedure only once. The FFs are derived explicitly 
from the obtained specification FSM based on the types of faults. The set of all deterministic sub-machines 
of a FF includes each implementation FSM that corresponds to the specification EFSM with predicate, 
transfer, or assignment faults.  

Since our implementation system is deterministic we do not take into account non-deterministic paths of 
FFs. Similar to [1], we first remove from a FF a behavior that does not agree with the observed outputs to 
the applied test suite TS. In Section 4, we describe a novel algorithm that removes from a non-deterministic 
FSM those sub-machines whose output responses to the test suite do not agree with those obtained by 
applying the test suite TS to the SUT. 

Our diagnostic algorithm works under the assumption that the SUT has either predicate, transfer or 
assignment faults. If the SUT is equivalent to a deterministic sub-machine of a single FF, then there exist 
corresponding predicate, transfer, or assignment faults, and we try to locate them. However, if the SUT is 
equivalent to the deterministic sub-machine of two different FFs, or two sub-machines of the same FF, then 
the faulty machine cannot be uniquely identified. This is due to the fact that there are different possible 
faults that cause the same observable behavior of the SUT. However, in this case, if needed, we can 
determine the subset of these possible faults. If none of the above cases occurs, we conclude that the 
implementation has faults that are not captured by the considered fault model.  

In order to draw one of the above conclusions, we should have test cases such that by observing the 
output responses of the SUT to these test cases, we can distinguish the SUT from other sub-machines of the 
FFs. If the FFs after deleting sub-machines with the output responses which do not agree with those 
observed with the conformance test suite, have no equivalent deterministic sub-machines then there exists a 
distinguishing set of input sequences such that, given the set of output responses to these input sequences, 
we always can determine a single FF such that the machine under test is a sub-machine of the FF. 
Otherwise, we generate for the two FFs a set of sequences that distinguish some deterministic sub-
machines of these FFs, then we apply these sequences to the SUT and we reduce the FFs based on the 
observed behavior of the SUT. We repeat the latter process as much as possible. Afterwards, we try to 



further reduce the remaining FFs, by repeating a process similar to the above, but for each FF alone. Here 
we note that a single fault in an EFSM can imply several faulty transitions in the corresponding FSM. To 
derive the FFs we consider each transition of the specification EFSM, insert a corresponding fault and 
determine the transitions of the corresponding FSM affected by the fault. 

A submachine of the FF-Transfer (FF-Predicate or FF-Assignment) is said to be feasible if it 
corresponds to an EFSM that can be obtained from the specification EFSM through transfer (predicate or 
assignment) faults. In this paper, we define appropriate properties that restrict the fault domain of each FF, 
and thus can be used to reduce the number of the infeasible sub-machines. For this purpose, for each 
possible single transfer (assignment or predicate) fault in the EFSM, we determine the cluster of its 
corresponding faults in the FSM. The clusters obtained, for a particular FF, form a partition of its 
transitions. 

3.2 FF-Transfer, FF-Predicate, and FF-Assignment and Their Properties 

A transition of an implementation EFSM EM has a transfer fault if its final state is different from that 
specified by the reference EFSM. Consider a transition t=(s,x,P,op,y,up,s´) of EM under input x from state s 
to the tail state s´. When a transfer fault occurs we have a wrong ending state s´´. Therefore, for each 
configuration sv of EM and parameterized input xρ such that the predicate of the transition t is true for the 
pair ρv, i.e. P(ρ,v)=true, and there is a transition (sv,xρ,yω,s´v´) in the FSM corresponding to EM, the FF-
transfer contains the transition (sv,xρ,yω ,s´´v´) for each state s´´ of the EM. 
The set of pairs (sv,xρ) such that the predicate Pt of the transition t from the state s under input x is true for 
the pair ρv is denoted Dom(Pt) and called “domain of Pt”. Since an EFSM is consistent, the set of domains 
Dom(Pt) over all transitions of the EM is a partition of the set of all pairs “state-input” of the corresponding 
FSM.  

As an example, consider transition t2 of EM1 in Fig. 1. Under the input a, the predicate of t2 is true for 
the configurations (s0,0) and (s0,1), thus the pairs (s00,a) and (s01,a) form a Dom(P2) of the partition. For 
configuration (s0,0), there is the transition (s00,a,1,s01) to the configuration (s0,1). Therefore, we add 
transition (s00,a,1,s11) to FF-Transfer. Moreover, from configuration (s0,1), there is transition (s01,a,2,s02) 
to the configuration (s0,2). Therefore, we add transition (s01,a,2,s12) to FF-transfer. Due to our restrictions, 
from configurations (s0,0) and (s0,1) and under the input a, in any feasible submachine there can only be 
transitions to either (s0,1) and (s0,2) or to (s1,1) and (s1,2). We consider each transition of the EM1 in Fig. 1 
and obtain the FF-Transfer shown in Fig. 3. 
 

 (s0;0) (s0;1) (s0;2) (s1;0) (s1;2) (s1;1) Domains 
a (s0;1)/1 

(s1;1)/1 
(s0;2)/2 
(s1;2)/2 

(s1;0)/0 
 
 

(s0;0)/0 

(s1;2)/2 
 

(s0;2)/2 

(s0;1)/1 
 
 
 

(s1;1)/1 

(s0;1)/1 
 
 
 

(s1;1)/1 

 
{(s00a), (s01a)} 
{(s10a)} 
{(s02a)} 
{(s12a), (s11a)} 

b (s0;0)/0 
(s1;0)/0 

(s0;1)/1 
(s1;1)/1 

(s0;2)/2 
(s1;2)/2 

(s1;0)/0 
 

(s0;0)/0 

(s0;0)/0 
 
 

(s1;0)/0 

(s1;1)/1 
 

(s0;1)/1 

 
{(s00b),(s01b),(s02b)} 
{(s10b), (s11b) } 
{(s12b)} 

Fig. 3. The FF-Transfer that corresponds to transfer faults of EM1 of Fig. 1. 

Proposition 1. A submachine of FF-transfer is feasible only if for each two transitions of the same 
predicate domain the state parts of the next configurations coincide. 

 
Transition t = (s,x,P,op,y,up,s´) of a specification EFSM EM has a predicate fault, if the predicate of the 

transition of an implementation EFSM is different from P, i.e. an implementation EFSM has the transition 
(s,x,Q,op,y,up,s´) instead of t. Since an implementation EFSM EM is consistent, the subset of Dinp-x×DV that 
evaluates the faulty predicate Q to true has to be a subset of that of the reference predicate, i.e. Dom(Q) ⊆ 
Dom(P). As usual, in order to keep an implementation EFSM complete, we use the completeness 
assumption. For any item of the set Dinp-x×DV where P is true while Q is false, the implementation EFSM 



has a loop at the state s with the identity update function upid and the Null output (written as ‘-‘) that has no 
parameters. In other words, the implementation EFSM remains at the current state s and does not execute 
the specified action up; therefore, the context vector is not changed. Moreover, the implementation EFSM 
produces the Null output, i.e it does not produce any output.  

Thus, if the predicate fault occurs for the transition t = (s,x,P,op,y,up,s´) of a specification EFSM EM 
where the predicate P is changed to predicate Q, then a corresponding implementation EFSM has 
transitions (s,x,Q,op,y,up,s´) and (s,x,R,-,upid,s) where the predicate R is true for each item of the set       
Dinp-x×DV where P is true while Q is false,. Therefore, the FSM corresponding to the faulty implementation 
has transitions (sv,xρ,-,sv) for each pair (sv,xρ)∈ Dom(R)=Dom(P)\Dom(Q). 

Thus, when deriving FF-Predicate, for each transition (sv,xρ,yω,s´v´) of the FSM obtained from the 
transition t = (s,x,P,op,y,up,s´) of the specification EFSM we add the transition (sv,xρ,-,sv) for each 
(sv,xρ)∈Dom(P). 

As an example, consider transition t2 of EM1 in Fig. 1. Under the input a, the predicate of t2 is true for 
the configurations (s0,0) and (s0,1). For configuration (s0,0), there is transition (s00,a,1,s01). Therefore, we 
add transition (s00,a,-,s00) to FF-Predicate. For configuration (s0,1), there is transition (s01,a,2,s02). 
Therefore, we add transition (s01,a,-,s01). We consider each transition of EM1 in Fig. 1 and obtain           
FF-Predicate shown in Fig. 4.  

 
 (s0;0) (s0;1) (s0;2) (s1;0) (s1;2) (s1;1) 

a (s0;1)/1 (s0;2)/2 (s1;0)/0 (s1;2)/2 (s0;1)/1 (s0;1)/1 
 (s0;0)/- (s0;1)/ - (s0;2)/ - (s1;0)/ - (s1;2)/ - (s1;1)/ - 

b (s0;0)/0 (s0;1)/1 (s0;2)/2 (s1;0)/0 
 (s1;0)/- 

(s0;0)/0 
 (s1;2)/ - 

(s1;1)/1 
 (s1;1)/ - 

Fig. 4. The FF-Predicate that corresponds to the predicate faults of EM1 of Fig. 1. 

A transition of an implementation EFSM EM has an assignment fault if it has an action other than that 
specified by the transition. Consider a transition t = (s,x,P,op,y,up,s´) of the specification EFSM EM. If t 
has an assignment fault, then after the execution of t, the context vector can be any vector of the set DV 
except that specified by t. Thus, the corresponding FSM has a transition (sv,xρ,yω´,s´v´) for each pair (sv, 
xρ) ∈ Dom(P) and each v´∈ DV and ω' ∈ Dout-y

1 . 
Thus, when deriving the FF-Assignment, for each transition (sv,xρ,yω´,s´v´) of the FSM corresponding 

to the specification EFSM we include into FF-Assignment a transition (sv,xρ,yω´,sv´) for each possible 
context vector v´ and each possible output vector ω´.Similar to the FF-transfer, the set of domains Dom(Pt) 
over all transitions of the EM is a partition of the set of all pairs “state-input” of the corresponding FSM.  

As an example, consider transition t2 of EM1 in Fig 1. Under the input a, the predicate of t2 is true for the 
configurations (s0,0) and (s0,1). For configuration (s0,0), w=up(0)= 1 and other possible values of w are 0 
and 2. Thus, we add transitions (s00,a,0,s00) and (s00,a,2,s02) to FF-assignment. Moreover, for (s0,1), w 
=up(1)=2 and other possible values of w are 0 and 1. Thus, we add transitions (s01,a,0,s00) and (s01,a,1,s01). 
Domain Dom(P2) comprises the pairs (s00,a) and (s01,a). We consider each transition of EM1 of Fig. 1 and 
obtain FF-Assignment shown as in Fig. 5 below. 

 
 (s0;0) (s0;1) (s0;2) (s1;0) (s1;2) (s1;1) 

a (s0;1)/1 
(s0;0)/0 
(s0;2)/2 

(s0;2)/2 
(s0;1)/1 
(s0;0)/0 

(s1;0)/0 
(s1;1)/1 
(s1;2)/2 

(s1;2)/2 
(s1;0)/0 
(s1;1)/1 

(s0;1)/1 
(s0;0)/0 
(s0;2)/2 

(s0;1)/1  
(s0;0)/0 
(s0;2)/2 

b (s0;0)/0 (s0;1)/1 (s0;2)/2 (s1;0)/0 (s0;0)/0, (s0;1)/1,(s0;2)/2 (s1;1)/1 

Fig. 5. The FF-Assignment that corresponds to assignment faults of EM1 of Fig.1. 

Proposition 2. A submachine of FF-assignment is feasible only if for each two transitions of the same 
predicate domain the context parts of the next configurations and the output vectors are updated in the same 
way. 

 
                                                           

1 Here we assume the specification domain of each output parameter is finite. 



4 Removing Sub-Machines From a Given Fault Function  

In this section, we present a new method for reducing the FFs. This is done by removing from each FFs 
those sub-machines (i.e. possible faulty implementations) whose output responses to the test cases of the 
given TS disagree with those observed by applying these test cases to the SUT.   
 
Algorithm 1.  Removing from FSM A those sub-machines that do not match the set V of deterministic 
I/O sequences 
Input: A non-deterministic FSM A = (S, I, O, h, s0) representing a given FF, and a set V of deterministic 
sequences over alphabet  (IO)*. 
Output: The smallest sub-FSM Ar = (S, I, O, h, s0) of A, that contains all sub-machines of A whose traces 
include V, if such an Ar exists. 

Step-1. Given FSM A and the set V of deterministic sequences over alphabet  (IO)*, we derive, using A 
and the sequences of V, the set of all families of deterministically compatible paths labelled with the 
sequences of V that satisfy the feasibility requirements of the FF A. Each family is represented as a path in a 
tree Tree. We build Tree as follows: Starting from the initial state s0 of A (the root node of Tree), we select 
a sequence from V and derive all deterministic paths of FSM A that agree with the selected sequence and 
satisfy the feasibility requirements of A. We then, select a new sequence from V, and instead of deriving all 
deterministic paths for the new sequence starting again from the root node of Tree, as done in [1], we start 
from the leaf node of each path that is associated with the initial state s0. Moreover, each new path has to be 
deterministically compatible with the path it appends. If a family of deterministically compatible paths does 
not exist for a given set V, then there is no sub-machine in A that has V as a subset of its set of traces. In this 
case, Ar does not exist; end of Algorithm 1.  

Step-2. For each deterministic path Pathj of the Tree, we derive the corresponding FSM Bj by copying 
the transitions of this path. Moreover, for each pair (s,i) such that the path has no transition from state s 
under input i, we copy into Bj all corresponding transitions from the original FF A. Then, we obtain the 
FSM Ar as the union of all FSMs Bj over all deterministic paths of Tree.  

Step-3: Remove from the obtained machine Ar all states that are not reachable from the initial state of Ar.  
As an application example, consider the FF-Transfer shown in Fig. 3, and the set V={a/1a/2a/0a/2a/2, 
b/0a/1} of I/O sequences of a given SUT. At Step-1, using the observed behavior of the SUT and the set V, 
we derive a Tree of all deterministic compatible paths that satisfy the FF-Transfer feasibility constraints.  

For example, according to FF-Transfer, if t2 has a transfer fault, then from the root node  (s0,0) and 
under input a, the machine moves to state (s1,1) and produces the output 1. However, we do not consider 
the paths from the ending node (s1,1) since the observed output of the SUT after applying the second input 
symbol a is 2, while according to FF-Transfer, any submachine at state (s1,1) produces 1 to the input a. For  
the same reason, after obtaining the output 1202 to the input sequence aaaa, we do not consider the paths 
from the ending node of the transition (s0,2)-a/0->(s0,0). Finally, we observe that according to FF-Transfer, 
a sub-machine of the FF that produces 1202 to the input sequence aaaa can be either at state  (s1,2) or 
(s0,2). At each of these states only the output 1 can be produced for the next input a, while due to the 
observed behavior the SUT produces the output 2. Thus, we eliminate FF-Transfer since there is no sub-
machine in FF-Transfer that has V as a subset of its traces, i.e. the SUT has no transfer faults. We apply 
Algorithm 1 to FF-Predicate and assure the SUT has no predicate faults. It is therefore expected to have 
assignment fault(s). 

Then, we apply Algorithm 1 to FF-Assignment of Figure 5 and we obtain the machine shown in Fig. 6 
below. Now we locate the faulty transition (s12,a,2,s02) that corresponds to the assignment fault of 
transition t6 of the reference EFSM. The context variable is updated to w:=2 instead of w:=1. 

 (s0;0) (s0;1) (s0;2) (s1;0) (s1;2) 
a (s0;1)/1 (s0;2)/2 (s1;0)/0 (s1;2)/2 (s1;2)/2 
b (s0;0)/0 (s0;1)/1 (s0;2)/2 (s1;0)/0 (s0;0)/0 (s0;1)/1 (s0;2)/2 

Fig. 6. Machine obtained after applying Algorithm 1 to FF-Assignment of Fig. 5. 

 



5 Other Steps of the Diagnostic Method 

In this section we derive an identifier of a given SUT based on an adaptive experiment with the SUT. We 
refer to an implementation identifier as an adaptive diagnostic test suite and we propose a method for the 
derivation of an identifier of a given SUT. We recall that the identifier can be derived up to the set of 
equivalent implementations that are equivalent to the SUT. In this case, we know that the fault corresponds 
to one of remaining equivalent implementations. 

According to [3], if there exists a distinguishing set, say DIS, for two given FFs, say FF-predicate and 
FF-assignment, then after applying the sequences of DIS to the SUT and observing corresponding output 
responses, we can always determine if the SUT is a submachine of FF-predicate or FF-assignment, or if it 
is not a submachine of any of them. Therefore, if the machines FF-predicate and FF-transfer and FF-
assignment are pair-wise distinguishable we can always identify the type of the fault.  

However, we do not need to derive a complete distinguishing set based on the intersection of two FFs. 
Instead, we state simpler sufficient conditions for the derivation of test cases that allow us to reduce two 
given FFs. These conditions are also applicable when the two FFs have no distinguishing set. 

Theorem 1. Given two FFs FF1 and FF2, let state st be a deterministically reachable state of the 
intersection FF1 ∩ FF2 through an input sequence β, such that the sets of outputs of FF1 and FF2 at states s 
and t under some input a do not coincide. Then after observing the output response of the SUT to the last 
input symbol a of r.β.a we can delete from FF1 and FF2 the outgoing transitions of states s and t with 
inputs a and outputs that do not match the observed output of the SUT. If for s or t all outgoing transitions 
with an appropriate input label a are removed we can delete FF1 or FF2.  

Hereafter, we assume that the type of a faulty transition is already identified, i.e. only one fault function 
FF remains. Now, to locate a faulty sub-machine (implementation) of the remaining FF, we distinguish 
between the different deterministic sub-machines of FF. This can be done by deriving input sequences as 
described in the following theorem. These sequences then are applied to the SUT in order to reduce the FF 
according to the observed behavior. Afterwards, if only a single implementation remains, then the fault is 
uniquely located, else if a number of equivalent implementations remain, then we can locate the fault up to 
the set of equivalent implementations (equivalent faults).  

Theorem 2. Given an FF, let state s of FF be deterministically reachable through an input sequence β. If 
there exists an input a such that FF has at least two different output responses to a then after observing the 
response of the SUT to the last input symbol a of r.β.a we can delete the outgoing transitions of s with 
input labels a and outputs different than the observed one. Otherwise, if there exist some outgoing 
transitions of s labeled with the same input/output a/o such that in FF the destination states of these 
transitions are separable by the sequence γ, then after observing the output responses of the SUT to the 
sequence γ of r.β.a.γ we can delete the outgoing transitions of s that are labeled with a/o and have 
destination states with outputs to γ different than the observed ones.  

As an application example, we consider the FF-assignment of Figure 6 obtained after applying 
Algorithm 1. The state (s1,2) is deterministically reachable through the I/O sequence a/1a/2a/0a/2. 
Moreover, there are different output responses to the input b at state (s1,2). Therefore, the second fault can 
be identified after applying the input sequence aaaa.b to the SUT. If the output response of the SUT to the 
last input symbol of this sequence is 2, then the second faulty transition is (s12,b,2,s02). This transition 
corresponds to the assignment fault of t7, where the context variable is updated as w:=2 instead of w:=0. 

We note that if the FFs cannot be further reduced based on the above two theorems, then similar to [1], 
we suggest to divide these FFs into several FFs by fixing some of its transitions as deterministic transitions. 
In the worst case, we may need to explicitly enumerate all deterministic sub-machines of a given FF. 
However, our preliminary experiments show that the FFs obtained after applying Algorithm 1 are almost 
deterministic.  

6 Conclusions 

In this paper we have proposed an original method for the fault diagnosis in Extended Finite State 
Machines (EFSMs). The method assumes that an implementation EFSM is complete, consistent and it can 
have either predicate, transfer, or assignment faults. However, our ability to locate the fault is known to 



essentially depend on the observability (i.e. outputs produced) of the implementation EFSM.  In software 
implementations, it is easy to increase the observability by reading some internal variables (eg. some 
context and state variables). Currently we are investigating the problem of determining the minimum 
number of variables that we need to observe in order to locate the faulty transitions. Moreover, we are 
adapting the method for inconsistent implementation EFSMs and we are experimenting with the method to 
assess its applicability to realistic application examples. 
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