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Abstract In this paper, we propose a method for diagnostic test derivation when the 
system specification and implementation are given in the form of two 
communicating finite state machines and at most a single component machine 
can be faulty. The method enables to decide if it is possible to identify the 
faulty machine in the system, once faults have been detected in a system 
implementation. If this is possible, it also provides tests for locating the faulty 
component machine. Two examples are used to demonstrate the different steps 
of the method. The method can also be used for locating faults within a 
machine when the system specification and implementation are given in the 
form of a single FSM.   
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1. INTRODUCTION 

The purpose of conformance testing is to check whether an 
implementation conforms to its specification. Usually a conforming 
implementation is required to have the same I/O behavior. An interesting 
complementary yet more complex problem is to locate the differences 
between a specification and its implementation when the implementation is 
found to be nonconforming [7]. A solution to this problem has various 
applications. For example, it makes easy the job of correcting the 
implementation so that it conforms to its specification [7].  

In the software domain where a system may be represented as an FSM, 
some work has already been done for the diagnostic and fault localization 



  
 
problems [2][4][7]. However, the work done for distributed systems 
represented as two Communicating FSMs [3] makes some important 
simplifying assumptions. In [2][7] and [3] the difference between the 
system specification and its implementation is located under the assumption 
of a single fault in the implementation. In [4] the differences can be located 
for multiple faults under the assumption that each of the faults is reachable 
through non-faulty transitions. 

In this paper, we consider a system consisting of two communicating 
FSMs, called components. One component, called context machine, 
communicates with the environment and the other component, called 
embedded machine. The interaction between these two components is 
assumed to be hidden, that is, unobservable. We assume that multiple output 
or transfer faults may occur in at most one component [5]. None of these 
faults will increase the number of states in the implementation of the 
component. It is not always possible to locate the faulty component of the 
given system when faults have been detected in a system implementation 
(SUT). This happens when certain faults in an implementation of the 
context and other faults in the implementation of the embedded component 
may cause the same observable behavior of the SUT. We present a novel 
approach for diagnostic test derivation. The approach enables us to decide 
whether it is possible to identify the faulty component in the given system, 
and if this is possible then tests for locating the fault are derived. We use a 
non-deterministic FSM for the compact representation of possible faulty 
transitions. The same technique can also be used for locating multiple faults 
when the system specification and implementation are given in the form of a 
single FSM. 

This paper is organized as follows. Section 2 comprises necessary 
definitions for communicating FSMs. In Section 3, the diagnostic problem 
is discussed, while the method to solve the problem is presented in Section 
5. In Section 4, the different steps of the method are presented illustrated by 
a working example. Future work is described in Section 6. 

2. FINITE STATE MACHINES 

A non-deterministic finite state machine (FSM) is an initialized non-
deterministic Mealy machine which can be formally defined as follows [9]. 
A non-deterministic finite state machine A is a 6-tuple 〈S, I, O, h, DA, s0〉, 
where S is a finite nonempty set of n states with s0 as the initial state; I and O 
are input and output alphabets; DA is a specification domain which is a 
subset of SxI; and h: DA → 2S×O\∅ is a behavior function where 2S×O is the 
set of all subsets of the set S×O. The behavior function defines the possible 
transitions of the machine. Given present state si and input symbol i, each 
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pair (sj,o)∈h(si,i) represents a possible transition to the next state sj with the 

output o. This is also written as a transition of the form si si/o → j. If DA = 
S×I then A is said to be a complete FSM; otherwise, it is called a partial 
FSM. In the complete FSM we omit the specification domain DA, i.e. 
complete FSM is 5-tuple A = 〈S, I, O, h, s0〉. If for each pair si∈DA it holds 
that |h(s,i)| =1 then FSM A is said to be deterministic. In the deterministic 
FSM A instead of behavior function h we use two functions, transition 
function δ: S×I →S and output function λ: S×I →O. FSM B = (S’,I,O,g,s 0), 
S’⊆S, is a sub-machine of complete FSM A if for each pair si∈S’×I, it holds 
that g(s,i) ⊆ h(s,i). Similar to [6], we further denote Sub(A) the set of all 
deterministic sub-machines of FSM A. We also use the definition of a 
deterministic path in FSM A since only such paths can occur in its 
deterministic sub-machines. A deterministic path P of FSM A starts at the 
initial state and has no transitions with different next states and/or outputs 
for the same state-input combination. 

As usual, function h can be extended to the set I* of finite input 
sequences. Given state s∈S and input sequence α=i1i2...ik∈I*, output 
sequence o1o2...ok∈h(s,α) if there exist states s1=s, s2, ... , sk, sk+1 such that 
(sj+1,oj)∈h(sj,ij), j = 1,…,k. We let the set ho(s,α) = {γ| ∃s’ ∈  S [(s’, γ)∈h(s, 

)]}denote the output projection of h, while denoting hs(s,α) = {s’| ∃γ ∈ Y* 
[(s’, γ)∈h(s, )]} the state projection of h. Input/Output sequence 
i1o1i2o2...ikok is called a trace of A if o1o2...ok∈ho(s0,i1i2...ik). We also use the 
notation hs

γ(s,α) to denote the set {s’| (s’, γ) ∈ h(s, α)] }of all states where 
the sequence α can take FSM A from the initial state with the output 
response . For appropriate (s, γ) the set hs

γ(s,α) can be empty. If the set 
hs

γ(s,α) has the unique state s then we say the state s is observably reachable 
from the initial state via the trace α/γ.  

Given states s1 and s2 of complete FSM A, states s1 and s2 are equivalent, 
written s1 ≅ s2, if for each input sequence i1i2...ik∈I*, it holds that h(s1,i1i2...ik) 
= h(s2,i1i2...ik). If states s1 and s2 are not equivalent then they are 
distinguishable, written s1 ≠ s2. Given complete FSM A, sequence α∈I* such 
that h(s1, α) ≠ h(s2, α) is said to distinguish states s1 and s2. FSM A with pair-
wise distinguishable states is called a reduced FSM.  

Complete FSMs A = (S,I,O,h,s 0) and B = (T,I,O,g,t 0) are equivalent, 
written A ≅ B, if their sets of traces coincide. It is well known, given 
complete deterministic FSM A, there always exists a reduced FSM that is 
equivalent to A. 



  
 
2.1 A System of Two Communicating FSMs  

Many complex systems are typically specified as a collection of 
communicating components. We consider here a special case, where the 
system consists of two Communicating FSMs (ComFSMs), called embedded 
machine (or M2) and context machine (or M1). We let the alphabet X and Y 
represent the externally observable input/output actions of the system, while 
the U and Z alphabets represent the internal (hidden) input/output 
interactions between the two components. The two (deterministic) FSMs 
communicate asynchronously via bounded input queues where input/output 
messages are stored. An FSM produces an output in response to each input. 
We assume that the system at hand has at most one message in transit, i.e. 
the next external input is submitted to the system only after it produced an 
external output y to the previous input. Under these assumptions, the 
collective behavior of the two communicating FSMs can be described by 
product machine. The product machine M1xM2 is a Labeled Transition 
System (LTS) that describes the joint behavior of the component machines 
in terms of all actions within the system. If the product machine has a cycle 
labeled only with internal actions from the alphabet U∪Z then the system 
falls into live-lock when an input sequence leading to this cycle is applied; 
i.e. the system will not produce any external output. Here we accept a 
catastrophic interpretation of live- locks and, similar to [9], say the 
composed FSM of M1 and M2 is not defined. Otherwise, a composed 
machine, denoted as Reference System(RS) = M1◊M2, can be obtained from 
the product machine by hiding all internal actions in the product machine, 
and pairing input with output actions [9].  
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Figure 1.  A system of two ComFSMs M1 and M2 

As an example, we consider the two machines M1 and M2 shown in 
Fig.1. The set of external inputs is X={x1,x2}, the set of external outputs is 
Y={y1, y2, y3}, the set of internal inputs is U ={u1, u2}, and the set of 
internal outputs is  Z = {z1, z2}. Their corresponding reference system RS = 
M1 ◊ M2 is shown in Fig. 2. 

A tester, implements a given test by executing external input sequences 
(test cases) simultaneously against both the SUT consisting of the 
implementation of M1 and M2, and the reference system in order to generate 



  
 
the observed and expected outputs. If for each test case, the sequences of the 
observed and expected outputs coincide then the system is said to pass the 
test suite. 

b 1a 1

x 1 /y 1

a 2 b 2

x 1 /y 2

x 1 /y 1

x 1 /y 1

x 2 /y 1 x 2 /y 3

x 2 /y 2

x 2 /y 2  
Figure 2. Reference System (M1 ◊ M2) of the M1 and M2 of Fig. 1 

2.2 A Fault Model for the System of Communicating 
FSMs 

We consider a fault model based on output and transfer faults of a 
deterministic FSM [2]. Given complete deterministic specification and 
implementation FSMs 〈S, I, O, , λ, sδ

δ

0〉 and 〈S, I, O, ∆, Λ, s0〉, we say a 
transition (s,i) has an output fault if δ(s,i)=∆(s,i) while λ(s,i)≠Λ(s,i). An 
implementation has a single output fault if one and only one of its transitions 
has an output fault. We say that a transition has a transfer fault if 
(s,i)≠∆(s,i), i.e. given state s and input i, the implementation enters a 

different state than that specified by the next-state function of the 
specification. An implementation has a single transfer fault if there is no 
output fault in the implementation and one and only one of its transitions has 
a transfer fault. We say that the implementation under test of the given 
system may have multiple faults if several transitions have output or transfer 
faults. Here we notice the fault model based on output and transfer faults is 
often used for diagnosis of a system decomposed into components, where 
only one component may be faulty [5]. In our context, the specification is a 
decomposed system; i.e. its implementation is a system of two ComFSMs, 
where at most one of these machines is faulty. 

3. DIAGNOSIS PROBLEM 

3.1 Diagnosis Problem Statement 
Let M1 and M2 be complete deterministic FSMs representing the 

specifications of the components of the given system while M’1 and M’2 are 
their corresponding implementations. We propose an adaptive method for 
diagnostic test derivation. If the implementation system does not pass a 
given test suite, our algorithm enables to decide whether it is possible to 



  
 
identify a faulty component of the given system under the assumption that 
multiple faults may occur only in one of the implementations M’1 or M’2. 
Furthermore, if this is possible, the algorithm enables to decide whether it is 
possible to locate the faulty transitions within the faulty component, and if 
possible it locates them. Moreover, the algorithm draws the conclusion 
“Faults cannot be captured by the assumed fault model” if it has been 
detected that the implementation at hand has faults that cannot be captured 
by the assumed fault model. 

The diagnostic method can be used for the case where multiple transfer 
or output faults can occur in one of the implementation component FSMs 
M’1 or M’2. However, without loss of generality and for simplicity of 
presentation, hereafter, we assume that only output faults may occur. 

3.2 An Overview of the Diagnostic Approach 
Let RS = M1◊M2 be a specification system while TS is a conformance 

test suite. If the composition M’1◊M’2 of the implementations M’1 and M’2 
of the given system produces unexpected output responses to the given test 
suite TS, then the composition M’1◊M’2 is not equivalent to RS, i.e. either 
M’1 or M’2 is a faulty implementation. Our objective is to determine 
whether M’1 is not equivalent to M1 while M’2 and M2 are equivalent, or 
vice versa.  

In order to determine whether the output responses of TS can be 
produced when FSM M’2 has output faults and M’1 is equivalent to its 
specification, we derive the FSM (M2)a

out by adding new (faulty) transitions 
with all possible outputs to each transition of M2, and then we combine the 
obtained non-deterministic FSM with M1. We call the obtained non-
deterministic machine, M1◊(M2)a

out, the Fault Function (FF) of the 
embedded component (or FF-Embedded). Similarly, we derive the FF of the 
context M1, FF-Context = (M1)a

out◊M2, to determine whether the output 
responses of TS can be produced when FSM M’1 has output faults and M’2 
is equivalent to its specification. Fault functions were introduced in [8] to 
represent in a concise way all mutants of a given FSM with a given type of 
implementation errors. 

The set of all deterministic sub-machines of M1◊(M2)a
out (or 

(M1)a
out◊M2) includes each implementation M1◊M’2 (or M’1◊M2), where 

output faults are possible in the implementation of component FSM M2 (or 
M1). However, the set also includes superfluous sub-machines that do not 
correspond to a composition of any possible deterministic component 
machines. This is due to the fact that while deriving the composition, we do 



  
 
not take into consideration that for a specific state-input combination (s,i), 
one and only one output is possible in a deterministic implementation.  

Since our implementation system is deterministic we do not take into 
account non-deterministic paths of machines M1◊(M2)a

out and (M1)a
out ◊M2. 

Moreover, we also remove from M1◊(M2)a
out and (M1)a

out◊M2 a behavior 
that does not agree with the observed outputs to the applied test suite TS. In 
Section 4, we describe the algorithm that removes from machine 
M1◊(M2)a

out (or (M1)a
out ◊M2) sub-machines whose output responses to the 

test suite do not agree with those obtained by applying the test suite TS to the 
SUT. 

If the SUT is equivalent to a deterministic sub-machine of M1◊(M2)a
out 

then the faulty machine is M2, and if it is equivalent to a deterministic sub-
machine of (M1)a

out ◊ M2, then the faulty machine is M1. However, if the 
SUT is equivalent to a deterministic sub-machine of M1◊(M2)a

out and to a 
deterministic sub-machine of (M1)a

out ◊M2, then the faulty machine cannot 
be identified. This is due to the fact that there are some possible faults in M1 
and some possible faults in M2 that cause the same observable behavior of 
the SUT. If none of the above cases applies, we conclude that the 
implementation has faults that are not captured by the considered fault 
model.  

In order to draw one of the above conclusions, we should have test cases 
such that by observing the output responses of the SUT to these test cases, 
we can distinguish the SUT and sub-machines of  (M1)a

out ◊ M2 and of 
M1◊(M2)a

out. If the machines (M1)a
out◊M2 and M1◊(M2)a

out have no 
equivalent deterministic sub-machines then there exists a so-called 
distinguishing set of input sequences [6] such that given the set of 
deterministic output responses to these input sequences, we always can 
determine whether the machine under test is a sub-machine of (M1)a

out◊M2 
or M1◊(M2)a

out. The algorithm for deriving such a distinguishing set is 
proposed in [6]. We illustrate this algorithm in Section 4. In other cases, it 
may happen that there are sub-machines of  (M1)a

out◊M2 and others of 
(M1)a

out◊M2 that are equivalent, but these sub-machines are not equivalent to 
the SUT. In this case, the observed outputs to the given test suite are 
insufficient to distinguish between these sub-machines and the SUT. 
Therefore, more test cases must be generated and added to the test suite. This 
can be done by breaking FF-Embedded and FF-Context into sub-machines, 
and by comparing each pair of the obtained sub-machines. Each time when 
two obtained sub-machines become distinguishable, their distinguishing test 
is added to the test suite. This enables the elimination of all sub-machines 
whose output responses to a distinguishing test are different from those 



  
 

λ λ λ

observed by applying this test to the SUT. We break the machines by fixing 
some transitions as deterministic transitions, i.e. by reducing the non-
determinism of Fault Functions.  In the worst case, we can come up with 
explicit enumeration of all faulty machines. However, as the considered 
examples show, we usually need to fix only a small number of transitions in 
order to draw a conclusion.  

The details of the diagnostic method are presented in Section 5. 
Meanwhile, in the following section we present its constituent algorithms 
illustrated by a working example. 

3.3 Working Example 
Consider the two machines M1 and M2 given in Fig. 1, and their 

corresponding reference system RS = M1◊M2 shown in Fig. 2. A given 
complete test suite TS derived from RS is TS = {x1x1x1, x1x2x2, x2x1x1x2, 
x2x1x2x2, x2x2x1}. TS is derived using the method presented in [1], and it 
detects any complete FSM M’1◊M’2 that is not equivalent to RS, under the 
assumption that FSMs M’1 and M’2 have up to two states. The set of 
expected output responses to the TS is as follows:  

(s0, x1x1x1) = y1y2y2; (s0, x1x2x2) = y1y2y1; (s0, x2x1x1x2) =  
y1y1y1y3;  λ(s0, x2x1x2x2) = y1y1y2y3; λ(s0, x2x2x1) = y1y3y2.  

Let us assume that the composition M’1◊M’2 of the implementation 
component FSMs M’1 and M’2 produces unexpected output responses  
y1y3y3   to  x1x1x1;   y1y1y3y2   to  x2x1x1x2  and  y1y3y3   to  x2 x2 x1 (1) 

Thus, the composition M’1◊M’2 is not equivalent to RS, i.e. either M’1 or 
M’2 is a faulty component implementation.  

Figure 3 includes the FF-Embedded machine, M1◊(M2)a
out, and the FF-

Context ,(M1)a
out◊M2, obtained as described in Section 3.2. In this example, 

the FF-Context is derived under an assumption that in the faulty context 
implementation, external outputs can only be replaced with external outputs 
and internal outputs can only be replaced with internal outputs, respectively. 
This is done in order to have a simple and more readable working example. 
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Figure 3. (a) Fault function of Embedded Component       (b) Fault Function of Context 



  
 

4. DISTINGUISHING NON-DETERMINISTIC FSMS 

In this section, we present the different algorithms of the test suite derivation 
method, given in the subsequent section, for locating a faulty component 
FSM.  

4.1 Removing Sub-machines of a Non-Deterministic 
FSM  

The following algorithm is used to remove from (M1)a
out◊M2 (and from 

M1◊(M2)a
out) sub-machines whose output responses to the test cases of TS 

disagree with those obtained by applying these test cases to the SUT. 
Given a complete non-deterministic FSM A = (S,I,O,h,s0) and a set V of 

deterministic sequences over alphabet  (IO)*, the algorithm returns a smallest 
sub-machine Ar of A which has the property that each sub-machine of A that 
comprises V as a subset of its traces is a sub-machine of Ar. We note that in 
our case, the input parts of the sequences of the initial set V are those of the 
given test suite TS, and the output parts are those observed by applying TS to 
the SUT. 
Algorithm 4.1.  Removing from FSM A sub-machines that do not match V 

Input: A complete non-deterministic FSM A = (S, I, O, h, s0) and a set V 
of deterministic sequences over alphabet  (IO)*  

Output: The smallest subFSM Ar = (S, I, O, h, s0) of A that contains each 
sub-machine of A, such that the set of its traces comprises V, if exists. 

Step-1. Given FSM A1 = A and the set V of sequences over alphabet  
(IO)*, we derive the tree Tree1 of all deterministic paths through A1 labeled 
with sequences of V.  Assign i:=1 and go-to Step-2. 

Step-2. If there exists a sequence in V such that no path in Treei is 
labeled with this sequence, then there is no sub-machine in A such that V is a 
subset of the set of traces of that sub-machine (Ar does not exist, end of 
Algorithm 4.1). Otherwise, we build a machine Ai+1 which is a sub-machine 
of Ai as follows. For each observably reachable node in Treei, we copy into 
the corresponding state in Ai+1 the outgoing transitions from this node. If 
there are several observably reachable nodes in Treei with the same label, we 
copy for the corresponding state in Ai+1 only the matching transitions at 
these nodes (same input/output/next-state values). If there are no matching 
transitions in Treei, then there is no sub-machine in A such that V is a subset 
of the set of traces of that sub-machine (Ar does not exist, end of Algorithm 
4.1). For each state in Ai, that labels only non-observably reachable nodes in 
Treei, we copy all the outgoing transitions from machine Ai into Ai+1. If no 



  
 

→

→ →

transition in the machine Ai has been changed (i.e. Ai+1=Ai), then we have 
Ar = Ai (End of Algorithm 4.1). Otherwise, go-to Step-3. 

Step-3. At this step we trim Treei in order to obtain Treei+1 using the 
machine Ai+1 obtained by Step-2 above. For each path in Treei that has a 
node where the output and/or next node of the transition do not match 
machine Ai+1, remove this transition and its sub-tree. If all outgoing 
transitions from some node for an appropriate input have been removed, we 
remove the incoming transition to this node. If all transitions from the root 
node for an appropriate input have been removed, then there is no sub-
machine in A such that V is a subset of the set of traces of that submachine 
(Ar does not exist, end of Algorithm 4.1). If the trees Treei and Treei+1 
coincide, then the machine Ar = Ai+1 is derived (End of Algorithm 4.1). 
Otherwise, increment  i by 1 and go back to Step-2. 

As an example, we consider Tree1 in Fig. 4-a generated for the fault 
function of the context, i.e. A1 = (M1)a

out◊M2  in Fig. 3-b, using Step-1 and 
TS. We do not include in Tree1 the paths that do not match the observed 
output of TS. For example, for all test cases in the TS that start with the input 
x2, the observed output for x2 is y1. Therefore, the paths of (M1)a

out◊M2 that 
start from the initial state a1 by a transition labeled with a label other than 
x2/y1 are not included in Tree1. Moreover, we do not include in Tree1 any 
non-deterministic path. For example, we do not include the path 

a1 b1 b1 a1. 
x /y1 1 →

x /y1 3 →
x /y1 3 

In Tree1, the root node a1 is observably reachable through the empty 
sequence. Therefore, in Step-2, we copy the outgoing transitions of that node 

into A2 (shown in Fig. 4-b), i.e. transitions, a1 b1, 

a1 a2 and a1  b1. Moreover, in Tree1, starting from the 
root node a1, the node b1 is observably reachable through the sequence 
x1/y1. Therefore, in Step-2, we copy the outgoing transitions of b1 from 
Tree1 into A2. Nodes a2 and b2 in Tree1 are only non-observably reachable. 
Therefore, we copy from A1 in Fig. 3-b the outgoing transitions from states 
a2 and b2 into A2.  

x /y1 1 →
x /y2 1 

x /y2 1 

Afterwards, using A2 in Step-3, we consider in Tree1, starting from the 
root node a1, the outgoing transitions from the node b1 that is reached 
through the sequence x2/y1. We notice that all its outgoing transitions do not 
match A2. Therefore we trim the sub-tree of this node, and since all outgoing 
transitions for inputs x1 and x2 from this node are removed, we remove its 



  
 
incoming edge, and we get Tree2, which is equal to Tree1 except that the 
shaded area TRIM-1 is removed. 

Back to Step-2, by considering Tree2, the root node a1 is observably 
reachable through the empty sequence. Moreover, starting from the root 
node a1, the ending nodes a1, b1, and a2 are observably reachable through 
the sequences x1/y1x2/y2, x1/y1, and x2/y1, respectively, and node b2 is 
observably reachable through the sequence x2/y1x1/y1. Therefore, for these 
nodes, we copy their matching outgoing transitions from Tree2 into A3 in 
Fig.5-a.  
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Figure 4 . (a) Tree1 obtained by removing non-deterministic paths from (M1)a

out◊M2 of 
Fig.3-b , (b) Machine A2 that correspond to Tree1 depicted in Fig. 4-a 
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Using the same reasoning we trim from Tree2 the shaded areas of   
TRIM-3, TRIM-4, and TRIM-5 and we obtain Tree3. 
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Figure 5. (a) Machine A3 that correspond to Tree2, (b) Machine A4 that correspond to 
Tree3, (c) Machine for the embedded component 

Back to Step-2, by considering Tree3, we notice that all nodes are 
observably reachable. We copy all the matching outgoing transitions of these 
nodes and obtain the final machine A4 shown in Fig. 5-b. 

We apply Algorithm 4.1. to the FF-Embedded, i.e. for M1◊(M2)a
out of 

Fig. 3-a, and we obtain the machine shown in Fig. 5-c.   
Theorem 4.1. Given a complete non-deterministic FSM A = (S, I, O, h, 

s0) and a set V of deterministic sequences over alphabet  (IO)*, if there exist a 
sub-machine B of A that has V as a subset of its traces, then the FSM Ar is 



  
 
derived by Algorithm 4.1 and it includes B. Otherwise, the FSM Ar does not 
exist. 

Proof: In Step-2 of Algorithm 4.1, if there exists no deterministic path in 
Treei labeled with some sequence α/β ∈ V, then there is no deterministic 
sub-machine of A that can produce the observed output sequence β to the 
input sequence α, i.e. there is no sub-machine Ar in A such that V is a subset 
of traces of Ar. Moreover, In Step-3, if all the transitions from the root node 
in Treei have been removed, then there is no deterministic sub-machine Ar in 
A such that V is subset of traces of Ar. The transitions of A are changed only 
during Step-2 for the states that label observably reachable nodes of the 
corresponding tree. For this reason, it is enough to show that each sub-
machine B of Ai that has V as a subset of its traces, is a sub-machine of Ai+1. 
Let state s label an observably reachable node of Treei that is reachable 
through some sequence α/β ∈ V. Any sub-machine of Ai that has V as a 
subset of its traces must reach state s after applying the sequence α. 
Therefore, all transitions from the state s of B match transitions from this 
node, i.e. B is a sub-machine of Ai+1.  

4.2 Distinguishing the Sets of Deterministic Sub-
Machines of Two Non-Deterministic FSMs 

If the two sub-machines of the FSMs FF-Context and FF-Embedded 
obtained after using the above procedure for removing behaviors that do not 
match observed outputs, do not have equivalent sub-machines then we can 
derive a distinguishing set DisSet that allows us to recognize which of the 
component FSMs is faulty. This set can be constructed using the algorithm 
given in [6]. In other words, let machines M1◊(M2)a

out and (M1)a
out ◊M2 be 

distinguished with the distinguishing set DisSet. Let also P be a sub-machine 
of M1◊(M2)a

out or of (M1)a
out ◊M2. Then by observing the output responses 

of P to sequences in the set DisSet, we can always conclude whether 
P∈Sub(M1◊(M2)a

out) or P∈Sub((M1)a
out ◊M2), i.e. the diagnostic problem is 

always solvable. Therefore, we derive, using the algorithm given in [6], a 
distinguishing set DisSet for the FSMs  FF-Context and FF-Embedded in 
order to recognize a sub-machine that corresponds to the faulty SUT. 

 As an example, we consider the machines FF-Context (machine A4 of 
Fig. 5-b) and FF-Embedded (Fig. 5-c) obtained after deleting sub-machines 
with traces that do not match observed output responses. The sequence 
x2x1x1x2x2 distinguishes these machines. Therefore, if we apply the input x2 

after the input sequence x2x1x1x2 and the implementation at hand produces 
the output response y1 to the tail input x2, then we conclude that M’1 is the 



  
 
faulty implementation. If the output y3 is produced to the tail input x2, then 
we conclude that M’2 is faulty. If the implementation produces the output 
different from y3 and y1, then the implementation at hand has faults that 
cannot be captured by the assumed fault model. 

4.3 Determining a Superfluous Sub-machine 
Due to the considered fault model, the SUT M is a sub-machine of 

M1◊(M2)a
out or (M1)a

out ◊ M2. However, we mentioned above that not each 
sub-machine of M1◊(M2)a

out (or (M1)a
out ◊ M2) can be obtained through 

output faults in the implementation of M2 (or M1). The reason is that we do 
not take into account deterministic and non-deterministic paths when 
combining the compact representation (M2)a

out of all possible 
implementations of M2 with M1 (or the compact representation (M1)a

out of 
all possible implementations of M1 with M2), and thus we may obtain 
superfluous sub-machines. Therefore, it may happen that the SUT M is 
equivalent to a sub-machine of M1◊(M2)a

out and to a submachine of (M1)a
out 

◊ M2, but there is no sub-machine M'2∈(M2)a
out such that M1◊M'2 is 

equivalent to M. In this case, only the implementation of M1 is faulty. Thus, 
we have the following problem. 

Given FSM M1◊(M2)a
out and its sub-machine M, we must check whether 

there exists FSM M'2 ∈ (M2)a
out such that M=M1◊M'2. To solve the problem 

we can project sub-machine M onto the set of states of M2 and input and 
output alphabets of M2. There exists FSM M'2∈(M2)a

out such that 
M=M1◊M'2 if and only if the obtained FSM is deterministic. A sub-machine 
M of M1◊(M2)a

out for which there is no M'2∈(M2)a
out such that FSMs 

M1◊M'2 and M are equivalent, is called a superfluous sub-machine. 

5. FAULT DIAGNOSIS ALGORITHM 

Algorithm 5.1. Recognizing a faulty component FSM 
Input: Composition M ≅ M1◊M2 of two FSMs M1 and M2, and the set   

V =TS of sequences over alphabet  (IO)*, 
Output: Verdict “Component FSM M1 (or M2) is faulty”, or verdict 

“Both M1/M2 could be faulty” when there is a possible faulty 
implementation of M1 and a possible faulty implementation of M2 that 
cause the same observable behavior as the implementation at hand, or 



  
 

ℜ

verdict “Faults cannot be captured by the assumed fault model” if it has 
been detected that the implementation at hand has faults that can not be 
captured by the assumed fault model. 

Step-1. Derive machines, A1 = (M1)a
out ◊ M2 (Fault Function of M1) and 

A2= M1◊(M2)a
out(Fault Function of M2). Let the set ℜ1 be equal to {A1}, 

and the set ℜ2 be equal to {A2}. 
Step-2. For each machine say Ak in the sets ℜ1 and ℜ2, call Algorithm 

4.1. to obtain the smallest sub-machine Ar of Ak which includes all sub-
machines of Ak that have V as a subset of their traces. If such an Ar exist, 
replace Ak by Ar. Otherwise, remove Ak from the corresponding set ℜ1 or 

2. 
If the sets ℜ1 and ℜ2 are empty, then the implementation at hand has a fault 
that is not captured by the assumed fault model (End of diagnosis algorithm). 
If the set ℜ1 (or ℜ2) is empty, then we conclude the other machine M2 (or 
M1) is faulty (End of diagnosis algorithm). 
Otherwise, check, as described in [6], whether there are two machines, say 
Ai in ℜ1 and Aj in ℜ2, that are distinguishable. 
♦- If there exist such two machines, we obtain, using the algorithm given 
in [6], the Distset that distinguish them, and we apply the input sequences 
of this set to the SUT. 

--If |ℜ1| = 1 and |ℜ2| = 1, i.e. ℜ1 = {Ai} and ℜ2 = {Aj}, then: 
-If the output responses of the SUT to the Distset are different from 
those expected by both machines Ai and Aj, then we conclude that the 
implementation at hand has faults that cannot be captured by the 
assumed fault model (End of diagnosis algorithm). 
-Else, if the output responses of the SUT are different than those 
expected by Aj  (or Ai), then we conclude that M1 (or M2) is the faulty 
machine (End of diagnosis Algorithm). 

-- If |ℜ1| >1 or |ℜ2| > 1, then after observing the output responses of the 
SUT to the sequences in Distset, we remove Ai (or Aj) from the set ℜ1 
(or ℜ2) if these responses are different than those expected by Ai (or Aj). 
Then, we add the sequences in Distset with the observed output 
responses to V, and we return return back to Step-2.  

♦- If all the machines in ℜ1 are indistinguishable from those in ℜ2, then  
--If ℜ1 and ℜ2 have only deterministic machines, then check whether 
all the machines in ℜ1 and in ℜ2 are superfluous as described above. 

-If all the sub-machines in ℜ1 (or in ℜ2) are superfluous, then 
machine M2 (or M1) is faulty (End of diagnosis algorithm).  



  
 

ℜ

-Else, If there exist a sub-machine in ℜ1 and another in ℜ2 that are 
not superfluous, then we conclude that “Both_M1/M2 
could_be_faulty”. There is a possible faulty implementation of M1 and 
a possible faulty implementation of M2 that cause the same observable 
behavior as that of the implementation at hand 

--Else, if the set ℜ1 (or ℜ2) has at least one non-deterministic FSM, then 
we break that machine into k machines by fixing one of its non-
deterministic transitions. Then, we replace that machine in the set ℜ1 (or 

2) with the obtained sub-machines, and we go back to Step-2. 
 
As another example, suppose that the implementation of the composed 

system M’1◊M’2 of specifications in Fig. 1 produces the unexpected output 
responses y1y1y2 y2 to the input sequence x2x1x1x2 of TS. This can happen 
if M’1 has an output fault; namely it produces y2 instead of u2 on executing 
transition t5. 

By applying the diagnostic method described above, we find that M’1 can 
not be identified as the faulty implementation since there exists a faulty 
implementation M’2 of M2 such that M1◊M’2 and M’1◊M2 are equivalent. It 
is the case when M’2 produces z2 instead of z1 on executing t'4. 

6. FURTHER RESEARCH WORK 

In this paper we presented a method for diagnostic test derivation when 
the system specification and implementation are given in the form of two 
communicating finite state machines and at most a single component 
machine can be faulty. The algorithm can be extended for locating the faults 
within the faulty machine (if possible). The idea here is to locate the faulty 
implementation that corresponds to the faulty machine. This implementation 
is a sub-machine of  (M1)a

out ◊ M2 when M1 has a faulty implementation, or 
a sub-machine of M1◊(M2)a

out when M2 has a faulty implementation. 
Therefore, the algorithm can be extended to decide which sub-machine of 
(M1)a

out ◊ M2 (or M1◊(M2)a
out) is equivalent to the system at hand, i.e. 

comparison between sub-machines of a given FSM can be added to the 
algorithm. We note that sometimes it is not possible to locate the faulty sub-
machine. It is the case when the SUT has the same observable behavior for 
different output faults of the faulty machine. Moreover, the algorithm can be 
extended for locating faults when the specification and implementation 
systems are given in the form of a single FSM 



  
 

Currently, we are performing experiments to estimate the effectiveness 
and the complexity of the method. The preliminary results obtained for the 
case when only single output faults in a component are taken into account, 
show that almost always the faulty component can be identified. 
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