

DIAGNOSING MULTIPLE FAULTS IN
COMMUNICATING FINITE STATE MACHINES

Khaled El-Fakih+, Nina Yevtushenko++ and Gregor v. Bochmann+
+School of Information Technology and Engineering,University of Ottawa, ON, K1N 6N5,
Canada.{kelfakih, bochmann}@ site.uottawa.ca
++Tomsk State University, 36 Lenin Str., Tomsk, 634050, Russia, yevtushenko.rff@elefot.tsu.ru

Abstract In this paper, we propose a method for diagnostic test derivation when the
system specification and implementation are given in the form of two
communicating finite state machines and at most a single component machine
can be faulty. The method enables to decide if it is possible to identify the
faulty machine in the system, once faults have been detected in a system
implementation. If this is possible, it also provides tests for locating the faulty
component machine. Two examples are used to demonstrate the different steps
of the method. The method can also be used for locating faults within a
machine when the system specification and implementation are given in the
form of a single FSM.

Keywords: Diagnostics, conformance testing, communicating finite state machines

1. INTRODUCTION

The purpose of conformance testing is to check whether an
implementation conforms to its specification. Usually a conforming
implementation is required to have the same I/O behavior. An interesting
complementary yet more complex problem is to locate the differences
between a specification and its implementation when the implementation is
found to be nonconforming [7]. A solution to this problem has various
applications. For example, it makes easy the job of correcting the
implementation so that it conforms to its specification [7].

In the software domain where a system may be represented as an FSM,
some work has already been done for the diagnostic and fault localization

problems [2][4][7]. However, the work done for distributed systems
represented as two Communicating FSMs [3] makes some important
simplifying assumptions. In [2][7] and [3] the difference between the
system specification and its implementation is located under the assumption
of a single fault in the implementation. In [4] the differences can be located
for multiple faults under the assumption that each of the faults is reachable
through non-faulty transitions.

In this paper, we consider a system consisting of two communicating
FSMs, called components. One component, called context machine,
communicates with the environment and the other component, called
embedded machine. The interaction between these two components is
assumed to be hidden, that is, unobservable. We assume that multiple output
or transfer faults may occur in at most one component [5]. None of these
faults will increase the number of states in the implementation of the
component. It is not always possible to locate the faulty component of the
given system when faults have been detected in a system implementation
(SUT). This happens when certain faults in an implementation of the
context and other faults in the implementation of the embedded component
may cause the same observable behavior of the SUT. We present a novel
approach for diagnostic test derivation. The approach enables us to decide
whether it is possible to identify the faulty component in the given system,
and if this is possible then tests for locating the fault are derived. We use a
non-deterministic FSM for the compact representation of possible faulty
transitions. The same technique can also be used for locating multiple faults
when the system specification and implementation are given in the form of a
single FSM.

This paper is organized as follows. Section 2 comprises necessary
definitions for communicating FSMs. In Section 3, the diagnostic problem
is discussed, while the method to solve the problem is presented in Section
5. In Section 4, the different steps of the method are presented illustrated by
a working example. Future work is described in Section 6.

2. FINITE STATE MACHINES

A non-deterministic finite state machine (FSM) is an initialized non-
deterministic Mealy machine which can be formally defined as follows [9].
A non-deterministic finite state machine A is a 6-tuple 〈S, I, O, h, DA, s0〉,
where S is a finite nonempty set of n states with s0 as the initial state; I and O
are input and output alphabets; DA is a specification domain which is a
subset of SxI; and h: DA → 2S×O\∅ is a behavior function where 2S×O is the
set of all subsets of the set S×O. The behavior function defines the possible
transitions of the machine. Given present state si and input symbol i, each

α
α

γ

pair (sj,o)∈h(si,i) represents a possible transition to the next state sj with the

output o. This is also written as a transition of the form si si/o → j. If DA =
S×I then A is said to be a complete FSM; otherwise, it is called a partial
FSM. In the complete FSM we omit the specification domain DA, i.e.
complete FSM is 5-tuple A = 〈S, I, O, h, s0〉. If for each pair si∈DA it holds
that |h(s,i)| =1 then FSM A is said to be deterministic. In the deterministic
FSM A instead of behavior function h we use two functions, transition
function δ: S×I →S and output function λ: S×I →O. FSM B = (S’,I,O,g,s 0),
S’⊆S, is a sub-machine of complete FSM A if for each pair si∈S’×I, it holds
that g(s,i) ⊆ h(s,i). Similar to [6], we further denote Sub(A) the set of all
deterministic sub-machines of FSM A. We also use the definition of a
deterministic path in FSM A since only such paths can occur in its
deterministic sub-machines. A deterministic path P of FSM A starts at the
initial state and has no transitions with different next states and/or outputs
for the same state-input combination.

As usual, function h can be extended to the set I* of finite input
sequences. Given state s∈S and input sequence α=i1i2...ik∈I*, output
sequence o1o2...ok∈h(s,α) if there exist states s1=s, s2, ... , sk, sk+1 such that
(sj+1,oj)∈h(sj,ij), j = 1,…,k. We let the set ho(s,α) = {γ| ∃s’ ∈ S [(s’, γ)∈h(s,

)]}denote the output projection of h, while denoting hs(s,α) = {s’| ∃γ ∈ Y*
[(s’, γ)∈h(s,)]} the state projection of h. Input/Output sequence
i1o1i2o2...ikok is called a trace of A if o1o2...ok∈ho(s0,i1i2...ik). We also use the
notation hs

γ(s,α) to denote the set {s’| (s’, γ) ∈ h(s, α)] }of all states where
the sequence α can take FSM A from the initial state with the output
response . For appropriate (s, γ) the set hs

γ(s,α) can be empty. If the set
hs

γ(s,α) has the unique state s then we say the state s is observably reachable
from the initial state via the trace α/γ.

Given states s1 and s2 of complete FSM A, states s1 and s2 are equivalent,
written s1 ≅ s2, if for each input sequence i1i2...ik∈I*, it holds that h(s1,i1i2...ik)
= h(s2,i1i2...ik). If states s1 and s2 are not equivalent then they are
distinguishable, written s1 ≠ s2. Given complete FSM A, sequence α∈I* such
that h(s1, α) ≠ h(s2, α) is said to distinguish states s1 and s2. FSM A with pair-
wise distinguishable states is called a reduced FSM.

Complete FSMs A = (S,I,O,h,s 0) and B = (T,I,O,g,t 0) are equivalent,
written A ≅ B, if their sets of traces coincide. It is well known, given
complete deterministic FSM A, there always exists a reduced FSM that is
equivalent to A.

2.1 A System of Two Communicating FSMs

Many complex systems are typically specified as a collection of
communicating components. We consider here a special case, where the
system consists of two Communicating FSMs (ComFSMs), called embedded
machine (or M2) and context machine (or M1). We let the alphabet X and Y
represent the externally observable input/output actions of the system, while
the U and Z alphabets represent the internal (hidden) input/output
interactions between the two components. The two (deterministic) FSMs
communicate asynchronously via bounded input queues where input/output
messages are stored. An FSM produces an output in response to each input.
We assume that the system at hand has at most one message in transit, i.e.
the next external input is submitted to the system only after it produced an
external output y to the previous input. Under these assumptions, the
collective behavior of the two communicating FSMs can be described by
product machine. The product machine M1xM2 is a Labeled Transition
System (LTS) that describes the joint behavior of the component machines
in terms of all actions within the system. If the product machine has a cycle
labeled only with internal actions from the alphabet U∪Z then the system
falls into live-lock when an input sequence leading to this cycle is applied;
i.e. the system will not produce any external output. Here we accept a
catastrophic interpretation of live- locks and, similar to [9], say the
composed FSM of M1 and M2 is not defined. Otherwise, a composed
machine, denoted as Reference System(RS) = M1◊M2, can be obtained from
the product machine by hiding all internal actions in the product machine,
and pairing input with output actions [9].

ba

M 1

t 2 : x 2 / u 1

21

 M 2

t 1 : x 1 / y 1

t 3 : z 1 / y 1 t 7 : z 1 / u 2

t 4 : z 2 / y 3

t 6 : x 2 / y 2

t 5 : x 1 / u 2

t 8 : z 2 / y 2

t ' 2 : u 2 / z 2

t ' 1 : u 1 / z 1

t ' 3 : u 1 / z 2

t ' 4 : u 2 / z 1

x 1 , x 2
y 1 , y 2 , y 3

u 1 , u 2

z 1 , z 2

Figure 1. A system of two ComFSMs M1 and M2

As an example, we consider the two machines M1 and M2 shown in
Fig.1. The set of external inputs is X={x1,x2}, the set of external outputs is
Y={y1, y2, y3}, the set of internal inputs is U ={u1, u2}, and the set of
internal outputs is Z = {z1, z2}. Their corresponding reference system RS =
M1 ◊ M2 is shown in Fig. 2.

A tester, implements a given test by executing external input sequences
(test cases) simultaneously against both the SUT consisting of the
implementation of M1 and M2, and the reference system in order to generate

the observed and expected outputs. If for each test case, the sequences of the
observed and expected outputs coincide then the system is said to pass the
test suite.

b 1a 1

x 1 /y 1

a 2 b 2

x 1 /y 2

x 1 /y 1

x 1 /y 1

x 2 /y 1 x 2 /y 3

x 2 /y 2

x 2 /y 2
Figure 2. Reference System (M1 ◊ M2) of the M1 and M2 of Fig. 1

2.2 A Fault Model for the System of Communicating
FSMs

We consider a fault model based on output and transfer faults of a
deterministic FSM [2]. Given complete deterministic specification and
implementation FSMs 〈S, I, O, , λ, sδ

δ

0〉 and 〈S, I, O, ∆, Λ, s0〉, we say a
transition (s,i) has an output fault if δ(s,i)=∆(s,i) while λ(s,i)≠Λ(s,i). An
implementation has a single output fault if one and only one of its transitions
has an output fault. We say that a transition has a transfer fault if
(s,i)≠∆(s,i), i.e. given state s and input i, the implementation enters a

different state than that specified by the next-state function of the
specification. An implementation has a single transfer fault if there is no
output fault in the implementation and one and only one of its transitions has
a transfer fault. We say that the implementation under test of the given
system may have multiple faults if several transitions have output or transfer
faults. Here we notice the fault model based on output and transfer faults is
often used for diagnosis of a system decomposed into components, where
only one component may be faulty [5]. In our context, the specification is a
decomposed system; i.e. its implementation is a system of two ComFSMs,
where at most one of these machines is faulty.

3. DIAGNOSIS PROBLEM

3.1 Diagnosis Problem Statement
Let M1 and M2 be complete deterministic FSMs representing the

specifications of the components of the given system while M’1 and M’2 are
their corresponding implementations. We propose an adaptive method for
diagnostic test derivation. If the implementation system does not pass a
given test suite, our algorithm enables to decide whether it is possible to

identify a faulty component of the given system under the assumption that
multiple faults may occur only in one of the implementations M’1 or M’2.
Furthermore, if this is possible, the algorithm enables to decide whether it is
possible to locate the faulty transitions within the faulty component, and if
possible it locates them. Moreover, the algorithm draws the conclusion
“Faults cannot be captured by the assumed fault model” if it has been
detected that the implementation at hand has faults that cannot be captured
by the assumed fault model.

The diagnostic method can be used for the case where multiple transfer
or output faults can occur in one of the implementation component FSMs
M’1 or M’2. However, without loss of generality and for simplicity of
presentation, hereafter, we assume that only output faults may occur.

3.2 An Overview of the Diagnostic Approach
Let RS = M1◊M2 be a specification system while TS is a conformance

test suite. If the composition M’1◊M’2 of the implementations M’1 and M’2
of the given system produces unexpected output responses to the given test
suite TS, then the composition M’1◊M’2 is not equivalent to RS, i.e. either
M’1 or M’2 is a faulty implementation. Our objective is to determine
whether M’1 is not equivalent to M1 while M’2 and M2 are equivalent, or
vice versa.

In order to determine whether the output responses of TS can be
produced when FSM M’2 has output faults and M’1 is equivalent to its
specification, we derive the FSM (M2)a

out by adding new (faulty) transitions
with all possible outputs to each transition of M2, and then we combine the
obtained non-deterministic FSM with M1. We call the obtained non-
deterministic machine, M1◊(M2)a

out, the Fault Function (FF) of the
embedded component (or FF-Embedded). Similarly, we derive the FF of the
context M1, FF-Context = (M1)a

out◊M2, to determine whether the output
responses of TS can be produced when FSM M’1 has output faults and M’2
is equivalent to its specification. Fault functions were introduced in [8] to
represent in a concise way all mutants of a given FSM with a given type of
implementation errors.

The set of all deterministic sub-machines of M1◊(M2)a
out (or

(M1)a
out◊M2) includes each implementation M1◊M’2 (or M’1◊M2), where

output faults are possible in the implementation of component FSM M2 (or
M1). However, the set also includes superfluous sub-machines that do not
correspond to a composition of any possible deterministic component
machines. This is due to the fact that while deriving the composition, we do

not take into consideration that for a specific state-input combination (s,i),
one and only one output is possible in a deterministic implementation.

Since our implementation system is deterministic we do not take into
account non-deterministic paths of machines M1◊(M2)a

out and (M1)a
out ◊M2.

Moreover, we also remove from M1◊(M2)a
out and (M1)a

out◊M2 a behavior
that does not agree with the observed outputs to the applied test suite TS. In
Section 4, we describe the algorithm that removes from machine
M1◊(M2)a

out (or (M1)a
out ◊M2) sub-machines whose output responses to the

test suite do not agree with those obtained by applying the test suite TS to the
SUT.

If the SUT is equivalent to a deterministic sub-machine of M1◊(M2)a
out

then the faulty machine is M2, and if it is equivalent to a deterministic sub-
machine of (M1)a

out ◊ M2, then the faulty machine is M1. However, if the
SUT is equivalent to a deterministic sub-machine of M1◊(M2)a

out and to a
deterministic sub-machine of (M1)a

out ◊M2, then the faulty machine cannot
be identified. This is due to the fact that there are some possible faults in M1
and some possible faults in M2 that cause the same observable behavior of
the SUT. If none of the above cases applies, we conclude that the
implementation has faults that are not captured by the considered fault
model.

In order to draw one of the above conclusions, we should have test cases
such that by observing the output responses of the SUT to these test cases,
we can distinguish the SUT and sub-machines of (M1)a

out ◊ M2 and of
M1◊(M2)a

out. If the machines (M1)a
out◊M2 and M1◊(M2)a

out have no
equivalent deterministic sub-machines then there exists a so-called
distinguishing set of input sequences [6] such that given the set of
deterministic output responses to these input sequences, we always can
determine whether the machine under test is a sub-machine of (M1)a

out◊M2
or M1◊(M2)a

out. The algorithm for deriving such a distinguishing set is
proposed in [6]. We illustrate this algorithm in Section 4. In other cases, it
may happen that there are sub-machines of (M1)a

out◊M2 and others of
(M1)a

out◊M2 that are equivalent, but these sub-machines are not equivalent to
the SUT. In this case, the observed outputs to the given test suite are
insufficient to distinguish between these sub-machines and the SUT.
Therefore, more test cases must be generated and added to the test suite. This
can be done by breaking FF-Embedded and FF-Context into sub-machines,
and by comparing each pair of the obtained sub-machines. Each time when
two obtained sub-machines become distinguishable, their distinguishing test
is added to the test suite. This enables the elimination of all sub-machines
whose output responses to a distinguishing test are different from those

λ λ λ

observed by applying this test to the SUT. We break the machines by fixing
some transitions as deterministic transitions, i.e. by reducing the non-
determinism of Fault Functions. In the worst case, we can come up with
explicit enumeration of all faulty machines. However, as the considered
examples show, we usually need to fix only a small number of transitions in
order to draw a conclusion.

The details of the diagnostic method are presented in Section 5.
Meanwhile, in the following section we present its constituent algorithms
illustrated by a working example.

3.3 Working Example
Consider the two machines M1 and M2 given in Fig. 1, and their

corresponding reference system RS = M1◊M2 shown in Fig. 2. A given
complete test suite TS derived from RS is TS = {x1x1x1, x1x2x2, x2x1x1x2,
x2x1x2x2, x2x2x1}. TS is derived using the method presented in [1], and it
detects any complete FSM M’1◊M’2 that is not equivalent to RS, under the
assumption that FSMs M’1 and M’2 have up to two states. The set of
expected output responses to the TS is as follows:

(s0, x1x1x1) = y1y2y2; (s0, x1x2x2) = y1y2y1; (s0, x2x1x1x2) =
y1y1y1y3; λ(s0, x2x1x2x2) = y1y1y2y3; λ(s0, x2x2x1) = y1y3y2.

Let us assume that the composition M’1◊M’2 of the implementation
component FSMs M’1 and M’2 produces unexpected output responses
y1y3y3 to x1x1x1; y1y1y3y2 to x2x1x1x2 and y1y3y3 to x2 x2 x1 (1)

Thus, the composition M’1◊M’2 is not equivalent to RS, i.e. either M’1 or
M’2 is a faulty component implementation.

Figure 3 includes the FF-Embedded machine, M1◊(M2)a
out, and the FF-

Context ,(M1)a
out◊M2, obtained as described in Section 3.2. In this example,

the FF-Context is derived under an assumption that in the faulty context
implementation, external outputs can only be replaced with external outputs
and internal outputs can only be replaced with internal outputs, respectively.
This is done in order to have a simple and more readable working example.

b 1a 1

a 2 b 2

x 2 /y 1 ,y 2 , y 3x 1 /y 1 ,y 2 , y 3

x 1 /y 1 ,y 2 , y 3

x 1 /y 1 ,y 2 , y 3
x 1 /y 1 ,y 2 , y 3

x 1 /y 1 ,y 2 , y 3

x 1 /y 1 ,y 2 , y 3

x 2 /y 1 ,y 2 , y 3

x 2 /y 1 ,y 2 , y 3

x 2 /y 1 ,y 2 , y 3

x 2 /y 1 ,y 2 , y 3

x 2 /y 1 ,y 2 , y 3 b 1a 1

a 2 b 2

x 1 /y 2 , y 3x 1 /y 1

x 1 /y 2 , y 3

x 1 /y 1

x 2 /y 1

x 2 /y 3

x 2 / y 2

x 2 /y 2

x 2 / y 1

x 1 /y 1

x 1 /y 1

x 2 /y 3

Figure 3. (a) Fault function of Embedded Component (b) Fault Function of Context

4. DISTINGUISHING NON-DETERMINISTIC FSMS

In this section, we present the different algorithms of the test suite derivation
method, given in the subsequent section, for locating a faulty component
FSM.

4.1 Removing Sub-machines of a Non-Deterministic
FSM

The following algorithm is used to remove from (M1)a
out◊M2 (and from

M1◊(M2)a
out) sub-machines whose output responses to the test cases of TS

disagree with those obtained by applying these test cases to the SUT.
Given a complete non-deterministic FSM A = (S,I,O,h,s0) and a set V of

deterministic sequences over alphabet (IO)*, the algorithm returns a smallest
sub-machine Ar of A which has the property that each sub-machine of A that
comprises V as a subset of its traces is a sub-machine of Ar. We note that in
our case, the input parts of the sequences of the initial set V are those of the
given test suite TS, and the output parts are those observed by applying TS to
the SUT.
Algorithm 4.1. Removing from FSM A sub-machines that do not match V

Input: A complete non-deterministic FSM A = (S, I, O, h, s0) and a set V
of deterministic sequences over alphabet (IO)*

Output: The smallest subFSM Ar = (S, I, O, h, s0) of A that contains each
sub-machine of A, such that the set of its traces comprises V, if exists.

Step-1. Given FSM A1 = A and the set V of sequences over alphabet
(IO)*, we derive the tree Tree1 of all deterministic paths through A1 labeled
with sequences of V. Assign i:=1 and go-to Step-2.

Step-2. If there exists a sequence in V such that no path in Treei is
labeled with this sequence, then there is no sub-machine in A such that V is a
subset of the set of traces of that sub-machine (Ar does not exist, end of
Algorithm 4.1). Otherwise, we build a machine Ai+1 which is a sub-machine
of Ai as follows. For each observably reachable node in Treei, we copy into
the corresponding state in Ai+1 the outgoing transitions from this node. If
there are several observably reachable nodes in Treei with the same label, we
copy for the corresponding state in Ai+1 only the matching transitions at
these nodes (same input/output/next-state values). If there are no matching
transitions in Treei, then there is no sub-machine in A such that V is a subset
of the set of traces of that sub-machine (Ar does not exist, end of Algorithm
4.1). For each state in Ai, that labels only non-observably reachable nodes in
Treei, we copy all the outgoing transitions from machine Ai into Ai+1. If no

→

→ →

transition in the machine Ai has been changed (i.e. Ai+1=Ai), then we have
Ar = Ai (End of Algorithm 4.1). Otherwise, go-to Step-3.

Step-3. At this step we trim Treei in order to obtain Treei+1 using the
machine Ai+1 obtained by Step-2 above. For each path in Treei that has a
node where the output and/or next node of the transition do not match
machine Ai+1, remove this transition and its sub-tree. If all outgoing
transitions from some node for an appropriate input have been removed, we
remove the incoming transition to this node. If all transitions from the root
node for an appropriate input have been removed, then there is no sub-
machine in A such that V is a subset of the set of traces of that submachine
(Ar does not exist, end of Algorithm 4.1). If the trees Treei and Treei+1
coincide, then the machine Ar = Ai+1 is derived (End of Algorithm 4.1).
Otherwise, increment i by 1 and go back to Step-2.

As an example, we consider Tree1 in Fig. 4-a generated for the fault
function of the context, i.e. A1 = (M1)a

out◊M2 in Fig. 3-b, using Step-1 and
TS. We do not include in Tree1 the paths that do not match the observed
output of TS. For example, for all test cases in the TS that start with the input
x2, the observed output for x2 is y1. Therefore, the paths of (M1)a

out◊M2 that
start from the initial state a1 by a transition labeled with a label other than
x2/y1 are not included in Tree1. Moreover, we do not include in Tree1 any
non-deterministic path. For example, we do not include the path

a1 b1 b1 a1.
x /y1 1 →

x /y1 3 →
x /y1 3 

In Tree1, the root node a1 is observably reachable through the empty
sequence. Therefore, in Step-2, we copy the outgoing transitions of that node

into A2 (shown in Fig. 4-b), i.e. transitions, a1 b1,

a1 a2 and a1 b1. Moreover, in Tree1, starting from the
root node a1, the node b1 is observably reachable through the sequence
x1/y1. Therefore, in Step-2, we copy the outgoing transitions of b1 from
Tree1 into A2. Nodes a2 and b2 in Tree1 are only non-observably reachable.
Therefore, we copy from A1 in Fig. 3-b the outgoing transitions from states
a2 and b2 into A2.

x /y1 1 →
x /y2 1 

x /y2 1 

Afterwards, using A2 in Step-3, we consider in Tree1, starting from the
root node a1, the outgoing transitions from the node b1 that is reached
through the sequence x2/y1. We notice that all its outgoing transitions do not
match A2. Therefore we trim the sub-tree of this node, and since all outgoing
transitions for inputs x1 and x2 from this node are removed, we remove its

incoming edge, and we get Tree2, which is equal to Tree1 except that the
shaded area TRIM-1 is removed.

Back to Step-2, by considering Tree2, the root node a1 is observably
reachable through the empty sequence. Moreover, starting from the root
node a1, the ending nodes a1, b1, and a2 are observably reachable through
the sequences x1/y1x2/y2, x1/y1, and x2/y1, respectively, and node b2 is
observably reachable through the sequence x2/y1x1/y1. Therefore, for these
nodes, we copy their matching outgoing transitions from Tree2 into A3 in
Fig.5-a.

a1X1/Y1

b1
b1

b1

a1

b1

a2

a2

b2

b1

b1 a2

a2 b1

b1 a2 a1

a1

a2

b1b2

a1

b1

X1/Y1
X1/Y1

X1/Y1

X1/Y3

X1/Y3 X1/Y3

X1/Y3 X1/Y3

X2/Y2

X2/Y2 X2/Y2
X1/Y3

X2/Y1

X2/Y3
X2/Y3

X2/Y2

X2/Y2
X2/Y3

X2/Y1

X2/Y1

X2/Y1

a1

X2/Y2
X2/Y3

X2/Y3

b1 a2

X1/Y3X1/Y3

X2/Y2

a2

TRIM-1

a2

b2

TRIM-2

a2

b2

x1/y3

TRIM-3
a2

a2b1

x2/y2

TRIM-4

x2/y2

x1/y3

x1/y3

x2/y3

TRIM-5

b1

(a)

b1a1

a2 b2

x1/y1

x1/y3

x1/y3

x2/y2

x2/y1, y2, y3

x2/y1

x2/y1

x1/y1, y2, y3

x1/y1, y2, y3
x2/y1, y2, y3

x2/y1, y2, y3

x1/y1, y2, y3

(b)
Figure 4 . (a) Tree1 obtained by removing non-deterministic paths from (M1)a

out◊M2 of
Fig.3-b , (b) Machine A2 that correspond to Tree1 depicted in Fig. 4-a

b1a1

x1/y1
x1/y3

x1/y3

x2/y2

x2/y3

x2/y1 x1/y3

x1/y1 b2a2

Using the same reasoning we trim from Tree2 the shaded areas of
TRIM-3, TRIM-4, and TRIM-5 and we obtain Tree3.

b1a1

a2 b2

x1/y1

x1/y1

x1/y3

x2/y1 x1/y3

x2/y2

x2/y2

x2/y3

(c)
x2/y2x2/y3

x1/y3

b1a1

a2 b2

x1/y1
x1/y3

x2/y2

x2/y3

x2/y1 x1/y3

x2/y2

x1/y1

(a) (b)

Figure 5. (a) Machine A3 that correspond to Tree2, (b) Machine A4 that correspond to
Tree3, (c) Machine for the embedded component

Back to Step-2, by considering Tree3, we notice that all nodes are
observably reachable. We copy all the matching outgoing transitions of these
nodes and obtain the final machine A4 shown in Fig. 5-b.

We apply Algorithm 4.1. to the FF-Embedded, i.e. for M1◊(M2)a
out of

Fig. 3-a, and we obtain the machine shown in Fig. 5-c.
Theorem 4.1. Given a complete non-deterministic FSM A = (S, I, O, h,

s0) and a set V of deterministic sequences over alphabet (IO)*, if there exist a
sub-machine B of A that has V as a subset of its traces, then the FSM Ar is

derived by Algorithm 4.1 and it includes B. Otherwise, the FSM Ar does not
exist.

Proof: In Step-2 of Algorithm 4.1, if there exists no deterministic path in
Treei labeled with some sequence α/β ∈ V, then there is no deterministic
sub-machine of A that can produce the observed output sequence β to the
input sequence α, i.e. there is no sub-machine Ar in A such that V is a subset
of traces of Ar. Moreover, In Step-3, if all the transitions from the root node
in Treei have been removed, then there is no deterministic sub-machine Ar in
A such that V is subset of traces of Ar. The transitions of A are changed only
during Step-2 for the states that label observably reachable nodes of the
corresponding tree. For this reason, it is enough to show that each sub-
machine B of Ai that has V as a subset of its traces, is a sub-machine of Ai+1.
Let state s label an observably reachable node of Treei that is reachable
through some sequence α/β ∈ V. Any sub-machine of Ai that has V as a
subset of its traces must reach state s after applying the sequence α.
Therefore, all transitions from the state s of B match transitions from this
node, i.e. B is a sub-machine of Ai+1.

4.2 Distinguishing the Sets of Deterministic Sub-
Machines of Two Non-Deterministic FSMs

If the two sub-machines of the FSMs FF-Context and FF-Embedded
obtained after using the above procedure for removing behaviors that do not
match observed outputs, do not have equivalent sub-machines then we can
derive a distinguishing set DisSet that allows us to recognize which of the
component FSMs is faulty. This set can be constructed using the algorithm
given in [6]. In other words, let machines M1◊(M2)a

out and (M1)a
out ◊M2 be

distinguished with the distinguishing set DisSet. Let also P be a sub-machine
of M1◊(M2)a

out or of (M1)a
out ◊M2. Then by observing the output responses

of P to sequences in the set DisSet, we can always conclude whether
P∈Sub(M1◊(M2)a

out) or P∈Sub((M1)a
out ◊M2), i.e. the diagnostic problem is

always solvable. Therefore, we derive, using the algorithm given in [6], a
distinguishing set DisSet for the FSMs FF-Context and FF-Embedded in
order to recognize a sub-machine that corresponds to the faulty SUT.

 As an example, we consider the machines FF-Context (machine A4 of
Fig. 5-b) and FF-Embedded (Fig. 5-c) obtained after deleting sub-machines
with traces that do not match observed output responses. The sequence
x2x1x1x2x2 distinguishes these machines. Therefore, if we apply the input x2

after the input sequence x2x1x1x2 and the implementation at hand produces
the output response y1 to the tail input x2, then we conclude that M’1 is the

faulty implementation. If the output y3 is produced to the tail input x2, then
we conclude that M’2 is faulty. If the implementation produces the output
different from y3 and y1, then the implementation at hand has faults that
cannot be captured by the assumed fault model.

4.3 Determining a Superfluous Sub-machine
Due to the considered fault model, the SUT M is a sub-machine of

M1◊(M2)a
out or (M1)a

out ◊ M2. However, we mentioned above that not each
sub-machine of M1◊(M2)a

out (or (M1)a
out ◊ M2) can be obtained through

output faults in the implementation of M2 (or M1). The reason is that we do
not take into account deterministic and non-deterministic paths when
combining the compact representation (M2)a

out of all possible
implementations of M2 with M1 (or the compact representation (M1)a

out of
all possible implementations of M1 with M2), and thus we may obtain
superfluous sub-machines. Therefore, it may happen that the SUT M is
equivalent to a sub-machine of M1◊(M2)a

out and to a submachine of (M1)a
out

◊ M2, but there is no sub-machine M'2∈(M2)a
out such that M1◊M'2 is

equivalent to M. In this case, only the implementation of M1 is faulty. Thus,
we have the following problem.

Given FSM M1◊(M2)a
out and its sub-machine M, we must check whether

there exists FSM M'2 ∈ (M2)a
out such that M=M1◊M'2. To solve the problem

we can project sub-machine M onto the set of states of M2 and input and
output alphabets of M2. There exists FSM M'2∈(M2)a

out such that
M=M1◊M'2 if and only if the obtained FSM is deterministic. A sub-machine
M of M1◊(M2)a

out for which there is no M'2∈(M2)a
out such that FSMs

M1◊M'2 and M are equivalent, is called a superfluous sub-machine.

5. FAULT DIAGNOSIS ALGORITHM

Algorithm 5.1. Recognizing a faulty component FSM
Input: Composition M ≅ M1◊M2 of two FSMs M1 and M2, and the set

V =TS of sequences over alphabet (IO)*,
Output: Verdict “Component FSM M1 (or M2) is faulty”, or verdict

“Both M1/M2 could be faulty” when there is a possible faulty
implementation of M1 and a possible faulty implementation of M2 that
cause the same observable behavior as the implementation at hand, or

ℜ

verdict “Faults cannot be captured by the assumed fault model” if it has
been detected that the implementation at hand has faults that can not be
captured by the assumed fault model.

Step-1. Derive machines, A1 = (M1)a
out ◊ M2 (Fault Function of M1) and

A2= M1◊(M2)a
out(Fault Function of M2). Let the set ℜ1 be equal to {A1},

and the set ℜ2 be equal to {A2}.
Step-2. For each machine say Ak in the sets ℜ1 and ℜ2, call Algorithm

4.1. to obtain the smallest sub-machine Ar of Ak which includes all sub-
machines of Ak that have V as a subset of their traces. If such an Ar exist,
replace Ak by Ar. Otherwise, remove Ak from the corresponding set ℜ1 or

2.
If the sets ℜ1 and ℜ2 are empty, then the implementation at hand has a fault
that is not captured by the assumed fault model (End of diagnosis algorithm).
If the set ℜ1 (or ℜ2) is empty, then we conclude the other machine M2 (or
M1) is faulty (End of diagnosis algorithm).
Otherwise, check, as described in [6], whether there are two machines, say
Ai in ℜ1 and Aj in ℜ2, that are distinguishable.
♦- If there exist such two machines, we obtain, using the algorithm given
in [6], the Distset that distinguish them, and we apply the input sequences
of this set to the SUT.

--If |ℜ1| = 1 and |ℜ2| = 1, i.e. ℜ1 = {Ai} and ℜ2 = {Aj}, then:
-If the output responses of the SUT to the Distset are different from
those expected by both machines Ai and Aj, then we conclude that the
implementation at hand has faults that cannot be captured by the
assumed fault model (End of diagnosis algorithm).
-Else, if the output responses of the SUT are different than those
expected by Aj (or Ai), then we conclude that M1 (or M2) is the faulty
machine (End of diagnosis Algorithm).

-- If |ℜ1| >1 or |ℜ2| > 1, then after observing the output responses of the
SUT to the sequences in Distset, we remove Ai (or Aj) from the set ℜ1
(or ℜ2) if these responses are different than those expected by Ai (or Aj).
Then, we add the sequences in Distset with the observed output
responses to V, and we return return back to Step-2.

♦- If all the machines in ℜ1 are indistinguishable from those in ℜ2, then
--If ℜ1 and ℜ2 have only deterministic machines, then check whether
all the machines in ℜ1 and in ℜ2 are superfluous as described above.

-If all the sub-machines in ℜ1 (or in ℜ2) are superfluous, then
machine M2 (or M1) is faulty (End of diagnosis algorithm).

ℜ

-Else, If there exist a sub-machine in ℜ1 and another in ℜ2 that are
not superfluous, then we conclude that “Both_M1/M2
could_be_faulty”. There is a possible faulty implementation of M1 and
a possible faulty implementation of M2 that cause the same observable
behavior as that of the implementation at hand

--Else, if the set ℜ1 (or ℜ2) has at least one non-deterministic FSM, then
we break that machine into k machines by fixing one of its non-
deterministic transitions. Then, we replace that machine in the set ℜ1 (or

2) with the obtained sub-machines, and we go back to Step-2.

As another example, suppose that the implementation of the composed

system M’1◊M’2 of specifications in Fig. 1 produces the unexpected output
responses y1y1y2 y2 to the input sequence x2x1x1x2 of TS. This can happen
if M’1 has an output fault; namely it produces y2 instead of u2 on executing
transition t5.

By applying the diagnostic method described above, we find that M’1 can
not be identified as the faulty implementation since there exists a faulty
implementation M’2 of M2 such that M1◊M’2 and M’1◊M2 are equivalent. It
is the case when M’2 produces z2 instead of z1 on executing t'4.

6. FURTHER RESEARCH WORK

In this paper we presented a method for diagnostic test derivation when
the system specification and implementation are given in the form of two
communicating finite state machines and at most a single component
machine can be faulty. The algorithm can be extended for locating the faults
within the faulty machine (if possible). The idea here is to locate the faulty
implementation that corresponds to the faulty machine. This implementation
is a sub-machine of (M1)a

out ◊ M2 when M1 has a faulty implementation, or
a sub-machine of M1◊(M2)a

out when M2 has a faulty implementation.
Therefore, the algorithm can be extended to decide which sub-machine of
(M1)a

out ◊ M2 (or M1◊(M2)a
out) is equivalent to the system at hand, i.e.

comparison between sub-machines of a given FSM can be added to the
algorithm. We note that sometimes it is not possible to locate the faulty sub-
machine. It is the case when the SUT has the same observable behavior for
different output faults of the faulty machine. Moreover, the algorithm can be
extended for locating faults when the specification and implementation
systems are given in the form of a single FSM

Currently, we are performing experiments to estimate the effectiveness
and the complexity of the method. The preliminary results obtained for the
case when only single output faults in a component are taken into account,
show that almost always the faulty component can be identified.

REFERENCES

[1] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou and A. Ghedamsi.‘Test
selection based on finite state models’, IEEE Trans. SE-17, No. 6, 1991, pp. 591-603.

[2] A. Ghedamsi and G. v. Bochmann.‘Test result analysis and diagnostics for finite state
machines’, Proc. of the 12-th ICDS, Yokohama, Japan, 1992.

[3] A. Ghedamsi, G. v. Bochmann and R. Dssouli.‘Diagnostic Tests for Communicating
Finite State Machines’, Proc. of the 12th IEEE Internaitonal Phoenix Conference on
Communications, Scottsdale, USA, March 1993.

[4] A. Ghedamsi, G. v. Bochmann and R. Dssouli. ‘Multiple fault diagnosis for finite state
machines’, Proc. of IEEE INFOCOM’93, 1993, pp.782-791.

[5] J. de. Kleer and B.c. Williams.‘Diagnosing multiple faults’, Artificial Intelligence
32(1), 1987, pp. 97-130.

[6] I. Koufareva. ‘Using non-deterministic FSMs for test suite derivation’, Ph.D. Thesis,
Tomsk State University, Russia, 2000 (In Russian).

[7] D. Lee and K. Sabnani. ‘Reverse engineering of communication protocols’, Proc. of
ICNP, October 1993, pp. 208-216.

[8] A. Petrenko and N. Yevtushenko.‘Test suite generation for a FSM with a given type of
implementation errors’, Proc. of the 12th IWPSTV, 1992, pp. 229-243.

[9] A. Petrenko, N. Yevtushenko, G. v. Bochmann, and R. Dssouli. ‘Testing in context:
Framework and test derivation’, Computer Communications Journal, Special issue on
protocol engineering, 1996, pp. 1236-1249.

	INTRODUCTION
	FINITE STATE MACHINES
	A System of Two Communicating FSMs
	A Fault Model for the System of Communicating FSMs

	DIAGNOSIS PROBLEM
	Diagnosis Problem Statement
	An Overview of the Diagnostic Approach
	Working Example

	DISTINGUISHING NON-DETERMINISTIC FSMS
	Removing Sub-machines of a Non-Deterministic FSM
	Algorithm 4.1. Removing from FSM A sub-machines that do not match V
	Input: A complete non-deterministic FSM A = (S, I, O, h, s0) and a set V of deterministic sequences over alphabet (IO)*
	Output: The smallest subFSM Ar = (S, I, O, h, s0) of A that contains each sub-machine of A, such that the set of its traces comprises V, if exists.
	Step-1. Given FSM A1 = A and the set V of sequences over alphabet (IO)*, we derive the tree Tree1 of all deterministic paths through A1 labeled with sequences of V. Assign i:=1 and go-to Step-2.
	Step-2. If there exists a sequence in V such that no path in Treei is labeled with this sequence, then there is no sub-machine in A such that V is a subset of the set of traces of that sub-machine (Ar does not exist, end of Algorithm 4.1). Otherwise, w
	
	
	
	��

	Distinguishing the Sets of Deterministic Sub-Machines of Two Non-Deterministic FSMs
	Determining a Superfluous Sub-machine

	FAULT DIAGNOSIS ALGORITHM
	
	
	
	
	Algorithm 5.1. Recognizing a faulty component FSM

	FURTHER RESEARCH WORK
	REFERENCES

