
1

QoS-Aware Distributed Query Processing*

Haiwei Ye Brigitte Kerhervé Gregor v. Bochmann
Université de Montréal Université du Québec

à Montréal
University of Ottawa

Département IRO Département Informatique SITE
ye@iro.umontreal.ca Kerherve.Brigitte@uqam.ca bochmann@site.uottawa.ca

* This work was supported by a grant from the Canadian Institute for Telecommunication Research (CITR), under the Network of Center

for Excellence Program of the Canadian Government.

Abstract

In the environment of wide-area networks such as the
Internet, distributed query processing becomes
problematic due to the changing coming from both
underlying networks and user’s requirements. In this new
context, conventional query processing strategies with the
homogeneous assumption will not work well, because they
are unable to adapt to unexpected changes in the
performance of the communication networks. In this
paper, we address the issue of how to make distributed
query processing be aware of these changes. We introduce
the idea of integration distributed query processing with
Quality of Service (QoS) management and accordingly
illustrate our view of QoS-aware distributed query
processing.

1. Introduction

Quality of Service (QoS) management and database
systems (DBS) are two key functional units that contribute
to the success of emerging distributed multimedia
applications, such as electronic commerce [2] or news-on-
demand [14]. However, these applications are not the
simple combination of database and network technologies,
since they require higher performance and real-time
constraints. These new requirements change some of the
underlying assumptions and thereby pose new challenges.
Among them, the integration of QoS management and

DBS appears of prime interest to meet requirements
arising in wide-area distributed multimedia systems.

In such environments, we have to answer the
fundamental question traditionally addressed by the
database community - how to efficiently manage and
query large volumes of widely distributed data? The
problem is still the same, but the situations become more
complex: data access over wide-area networks involves a
large number of remote data sources, intermediate sites,
and communication links, all of which are vulnerable to
congestion and failures. Query processing is now placed in
the context of wide-area, distributed, and dynamic
environments instead of local, homogeneous and static
environments, and thus it becomes problematic due to the
changing coming from both underlying system and user’s
requirements. The changing in underlying system
introduces problems such as unpredictable nature of the
communication network and lack of knowledge about the
load and potential delays at remote end-system. On the
other hand, user’s requirements and expectations from the
service provider are varying in terms of accuracy of the
result, the cost to be charged or the response time.

In this new context, conventional query processing
strategies[6, 5, 10] with the homogeneous assumption will
not work well, because they are unable to adapt to
unexpected changes in the performance of the
communication networks. The limitation of this
assumption becomes manifest in their consideration of
communication cost: constant throughput and no delay
consideration. In addition, traditional query optimizers aim
at achieving one of the two optimization criteria: reduce
response time or minimize total resource consumption, in

2

other words they do not consider different user
requirements. However, in most distributed multimedia
applications today, this single-criteria optimization is
much less plausible and flexible. Since user’s concerns
vary in different applications and thus lead to other
optimization criteria. For example, some user might care
more about the service charge he can afford. Therefore,
the optimizer should also take different optimization goals
into account and the extension and revision of traditional
query processing strategies are required.

We believe one feasible way to capture these changes
is to resort to QoS management [1, 3, 4, 8, 9, 11, 13],
because QoS management aims at deciding and controlling
if and how data streams can be delivered to the user within
the given delay, cost or quality constraints. The
helpfulness of QoS management lies in the fact that it can
acquire the user’s requirements and gather network
performance-related parameters dynamically, including
such as end-to-end delay, bandwidth, and maximum
packet size supported by the underlying network. We
consider in our work the following two quality criteria, as
seen by the user: (1) cost of a service request, and (2) total
delay for obtaining the response. Depending on the usage
context, one or the other of these criteria may be more
important to the user.

The rest of the paper is organized as 3 sections. Section
2 presents an overview of distributed query processing and
a motivation example. Next, in Section 3, we present our
QoS-based query processing. And finally, Section 4
concludes this paper.

2. Review of distributed query processing
and a motivation example

Distributed query processing has attracted a lot of research
attention in the last two decades. These efforts essentially
concentrate on proposing strategies and algorithms to
minimize response time while minimizing resource
consumption. In new environments imposed by the
Internet, such approaches have to be reevaluated to fit for
the changing conditions. In this section, we first present a
short review of distributed query processing and then give
a motivation example.

2.1. Review of distributed query processing

Optimizing a distributed query implies that an
optimization algorithm creates a distributed query plan
composed of relational operators, data transfer operations
and location information for execution. In centralized
database systems, the primary criterion for measuring the
cost of a particular strategy is the number of disk accesses.
In a distributed system, we must take into account several
other matters, including the cost of data transmission over
the network. The relative cost of data transfer over the
network and data transfer to and from disk varies widely

depending on the type of network and on the speed of the
disks. Thus in general, we must find a good tradeoff
between the disk cost and the network cost.

Generally, a query can be executed in many ways, and
different database systems may follow different steps. The
authors in [7] introduced a two-phase view of the query
optimization phase; in [12], more general steps were
given. In Figure 1, we summarize and synthesis them as
representative steps, meaning that not all database systems
exactly follow these steps.

 SQL Parser

Query Rewrite

Optimizer

 Parallel/Distributed optimization

Scheduler and executor

Figure 1. Query Processing Steps

The user’s query is first parsed, syntactically analyzed,
schema validated against the database schema (checking if
tables and attributes really exist), and translated into a
chosen internal representation, often in a graph form. Then
output of the parser is transformed by a set of rewrite
rules. These rewrite rules are usually heuristics aiding in
transforming the query into a semantically equivalent form
that may be processed more efficiently. Based on the
statistic information and the cost model, the optimizer has
the responsibility of generating a query evaluation plan
that minimizes the most relevant performance measure,
which could be the query response time, total resource
usage, a combination of the two or some other
performance measure. In the case of distributed/parallel
query processing, the optimizer should further consider the
data distribution information and the available processors
for a possible parallel execution. For example, the
allocation of processors to each operation and the data
transfer direction should also be decided in this stage. And
last, the scheduling information is associated with this
query plan.

Communication is an important component of
distributed database processing since data need to be
transferred from one site to another. However, existing

Q
ue

ry
 I

nt
er

na
l

R
ep

re
se

nt
at

io
n

Q
ue

ry
 p

la
n

3

approaches proposed in literatures to evaluate the
communication cost are very simple and ideal: it is only a
function of the amount of data transmitted. This is
obviously not enough when the underlying network has a
very dynamic nature. Thus, other important network
performance metrics, such as current delay and available
throughput, should not be neglected.

2.2. A motivation example

In this section, we give a motivating example to show
how the network delay affects the choice of query plan. In
the example we assume the optimization objective of the
optimizer is to minimize the response time. Consider a join
between two tables, T1 and T2, stored at two different sites,
node A and node B, as shown in Figure 4.1. Suppose the
table sizes for T1 and T2 are 1K bytes and 100K bytes,
respectively. Also assume that the available throughput
among three links is the same, say 1MB/s, the current
delays between CA, CB, AB are 0.1s, 0.1s and 1s
respectively.

Figure 2. An example

To make a join between T1 and T2 , depending on
where the join should be executed, three possible
strategies can be used:

1. Make join at node A, thus the data from node B
should be shipped to A;

2. Make join at node B, thus the data from node A
should be shipped to B; or

3. Make join at node C, which means that data from
both node A and B should be transferred to node
C.

A traditional optimizer (with the assumption of
constant throughput and no delay consideration) may
choose strategy 2, because when considering the amount
of data to be transferred, this is the ‘ least cost’ strategy.
However, if we take delay into account (with the help of
QoS management), strategy 3 is obviously a better choice,
because this may reduce the transfer time and thus the
response time.

This example is only the simplest situation in a
distributed system, but convincing enough to make the
optimizer select a different query execution strategy. Thus,

to keep track of the current dynamic performance
information about the underlying network, it is important
for the optimizer to be customized to various
environments and application requirements. In particular,
the cost models should provide a more precise evaluation
of the query execution strategies in order to adapt to the
changing needs in distributed systems. Therefore revised
or new cost models, particular communication cost, should
be built which add delay and other performance
considerations.

3. QoS-aware distributed query processing

As we pointed out previously, to address the changing
from both the user’s requirement and network’s
unpredictable performance, we propose the idea of the
integration of QoS with distributed query processing.
Specifically, we are guided by two main goals when
designing the QoS-based cost models, that is, recognition
of different user’s demands and consideration of dynamic
nature of the underlying network. Thus in this section, we
first give a global view of the interaction of QoS and query
processing. Then the QoS-based cost model is introduced.

3.1. A global view

A logical architecture would be proposed to show the
relationships between QoS management and query
processing and how to put QoS information into the query
processing. Figure 3 shows one possible logical view of
query processing with the interference of QoS. This figure
is based on the query steps given in section 2.1.

The difference between this graph and Figure 1 lies in
the fact that two QoS modules are added. These modules
correspond to the two goals of the proposed cost model:
one provides different optimization criteria and the other
one provides the dynamic information for the underlying
network.

First, in order to effectively target the right information
to the right user, user profile is adopted to store the
information of user’s preference and requirements. The
user profile, generated from QoS specification, contains
user’s QoS requirements and expectations understandable
by the underlying systems, thus it helps the optimizer to
map the QoS specification into various optimization
criteria.

Second, the QoS profile mapping module is used for
this conversion. Sometimes, user’s requirements are
mapped onto several criteria, which means multiple cost
models can be used. In this case, the optimizer has to
analyze these criteria in order to get a compromise so that
it can decide which one of the cost models is most suitable
in this situation.

Node
B

(T2)

0.1s

1s

0.1s

Node
A

(T1)

Node
C

4

 SQL Parser

Query Rewrite

Optimizer

 Parallel/Distributed Optimization

Scheduler and executor

Figure 3. Query Processing with QoS consideration

The last added QoS part shown in the figure is used to
provide dynamic information, such as network throughput,
delay, jitter etc.. This information helps the optimizer to
gain current system state in order to generate a more
reasonable and effective parallel plan. The measurement
of those dynamic is mainly done by QoS monitoring
function, mainly invoked during the optimization phase
and execution phase. A more detailed discussion of QoS
monitoring can be found in [15]. We listed QoS
monitoring in the figure, but in fact, other QoS functions,
such as QoS adaptation, mapping and negotiation, also
make contributions to this part.

In summary, a proper interaction between QoS
management and distributed query processing is important
for our QoS-based query processing. Specifically, the
specification should be an input to the query processing
and help to define the optimization criteria. The QoS
monitoring function can help the query processor to gather
information on the system state and produce information
on the network performance. QoS negotiation, mapping
and resource reservation can help the query processing to
reduce the search space and give constraints for the
execution.

3.2. QoS-based cost models

One of the key problems in the design of a query
optimizer for distributed database system is the derivation
of efficient and accurate cost models. To make the query
processing aware of the QoS, the cost models should also
be QoS based. Together with the database statistic
information, QoS information is also provided to the cost

models so that they can take into account both the user’s
requirement and capture the current network performance.

Two things should be noted for this QoS-based cost
model. First, corresponding to various optimization
criteria, several cost models should be built to deal with
different criteria. Depending on the user’s requirement, the
optimizer should pick up the relevant one to do the
calculation. Thus the input of the user profile is used to
guide the optimizer for the selection of cost models. For
our current work [15], we proposed two cost models. The
first one is derived from user’s point of view, which
mainly considers the query response time and user’s
affordability for that query. This is suitable for the case
that user specifies the time and money constraints. But
sometimes there is the situation where the user does not
specify any optimization constraints: what he cares is just
getting the query done (for example to make some update
operation). For this case, query optimization should be
done from the system performance perspective, that is,
how to complete the query with the lowest system cost.
Accordingly, another cost model is proposed for this
situation.

 Second, the QoS information needed can be broadly
distinguished into two types: static parameters and
dynamic parameters. The static parameters mainly come
from the user profile such as media type, coding format,
network topology, maximum bandwidth supported, cost
that user can afford and so on; the dynamic information,
mainly from QoS monitoring and adaptation, includes
current server load, available network throughput and
current delay.

4. Conclusion

The intention of this paper is to investigate distributed
query processing, particularly cost-based query
optimization, with the awareness of quality of service.
Consequently, QoS-based distributed query processing is
discussed. Being aware of various user’s requirements is
necessary in that they can be further mapped onto different
query optimization criteria, which in turn lead to different
strategies while constructing a query execution plan. Being
aware of current network status is also crucial for the
query optimizer to pick up an optimal query plan. Both
goals are achieved with the aid of QoS management. First,
user requirements can be extracted from user profile,
which is generated by QoS specification. Second, other
QoS management functions, QoS monitoring in particular,
play an important role for collecting parameters of current
network performance and server load. Our current work is
mainly on the theoretical construction of cost model. Thus,
the validation of this cost model through implementation is
our immediate future work.

QoS
Profile
Mapping

Q
oS

 M
on

ito
ri

ng

User
Profile

Optimizaton
Criteria

5

References

[1] ACM Multimedia Systems Journal, Special Issue on
QoS Architecture, May 1998.

[2] N.R. Adam and Y. Yesha Electronic Commerce: An
Overview, in Electronic Commerce, N.R. Adam and Y.
Yesha (eds.), Springer-verlag, 1996.

[3] C. Aurrecoechea, A. Campbell., and L. Hauw, A
Survey of QoS Architectures, ACM Multimedia Systems
Journal, No. 6, May 1998, pp. 138-151.

[4] G.v. Bochmann, B. Kerhervé, H. Hafid., P. Dini, and
A. Pons. Architectural Design of Adaptive Multimedia
Systems, In IEEE International Workshop on Multimedia
Software Development, Berlin, Germany, 1996.

[5] IBM DB2 Universal Database Administration Guide,
Version 5.2, IBM Corp, 1998.

[6] G. Graefe, Query Evaluation Techniques for Large
Databases, ACM Computing Surveys, Vol. 25, No. 2,
June 1993.

[7] W. Hasan, D. Florescu and P. Valduriez, Open Issues
in Parallel Query Optimization, SIGMOD Record, Vol.
25, No. 3, September 1996.

[8] 5th IFIP International Workshop on Quality of Service,
Columbia University, New York.
URL:http://www.ctr.columbia.edu/iwqos, 1997.

[9] 6th IFIP International Workshop on Quality of Service,
Napa Valley, URL: http://www-
ece.rice.edu/conf/iwqos98/, May 1998.

[10] Lohman, l.Mohan et al., Query Processing in R* ,
Query Process in Database System, Springer-verlag, 1985,
pp. 31-47.

[11] K. Nahrstedt, End-to-End QoS Guarantees in
Networked Multimedia Systems. ACM Computing
Surveys, 27 No 4, December 1995, pp. 613-616.

[12] A. Silberschatz, H.F. Korth, S. Sudarshan, Database
System Concepts, Third Edition, McGraw-Hill, 1997.

[13] A. Vogel, B. Kerhervé, G.V. Bochmann, and J.
Gecsei, Quality of Service Management: a survey. IEEE
Journal of Multimedia Systems, Vol 2 no 2 (Summer
1995) , 10-19.[Nahrstedt, 1995] Nahrstedt, K. (1995).
End-to-End QoS Guarantees in Networked Multimedia
Systems. ACM Computing Surveys, 27 No 4, December
1995, pp. 613-616.

[14] J. Wong, K. Lyons, D. Evans, R. Velthuys, G.V.
Bochmann, E. Dubois, N. Georganas, G. Neufeld, T.
Özsu, J. Brinskelle, A. Hafid, P. Iglinski, B. Kerhervé, L.
Lamont, D. Makaroff, D. Szafron, Enabling Technology
for Distributed Multimedia Applications, IBM Systems
Journal, Fall 1997.

[15] H. Ye, B. Kerhervé and G. V. Bochmann, An
adaptive cost model for distributed query processing,
submitted for publication. May 1999.

