
Cooperative QoS Management for Multimedia Applications

Stefan Fischer1, Abdelhakim Hafid1, Gregor v. Bochmann1 and Hermann de Meer2

1University of Montréal, DIRO, C.P. 6128, succ. Centre-Ville,Montréal (PQ) H3C 3J7, CANADA
Email: {fischer,hafid,bochmann}@iro.umontreal.ca

2University of Hamburg, CS Department, Vogt-Koelln-Str. 30, 22527 Hamburg, GERMANY
Email: demeer@informatik.uni-hamburg.de

In: Proc. of the 4th IEEE Int. Conf. on Multi-
media Computing and Systems (ICMCS’97),
Ottawa, Canada, pages 303 - 310, IEEE Com-
puter Society Press, June 1997.

Abstract
Quality of Service (QoS) management becomes more

and more important, especially in networks where many
applications are competing for a limited number of
resources. As these applications become more complex
(consider e.g. multiparty multimedia applications), the
number of options for QoS management increases,
leading to more complex decision processes. In this paper,
we propose an approach for cooperative QoS
management, where application-oriented QoS agents are
distributed throughout the network and the end systems,
communicating with each other. This distributed
management system tries to guarantee the QoS level
negotiated with the users, at the same time optimizing
resource usage. The advantages of distributing the
management process are (i) an easier and more precise
localization of the cause of QoS problems, (ii) better
knowledge of local situations, (iii) a lower complexity for
a single QoS agent and (iv) an increase in possible
actions. We describe management procedures for QoS
negotiation, adaptation and renegotiation.

1. Introduction

The design of distributed multimedia applications,
such as systems for access to remote multimedia
databases or teleconferencing, requires careful
consideration of quality of service (QoS) issues, because
the presentation quality of live media, especially video,
requires relatively high utililisation of networking
bandwidth and processing power in the end systems. For
applications running in a shared environment, the
allocation and management of these resources is an
important question, although most existing systems are
based on a best-effort approach.

Best-effort approaches are not suitable for distributed
multimedia systems, in general, because some users may
be ready to pay some higher price for obtaining a
maximum quality, while others may prefer low-cost
presentations with lower quality. In addition, for a

teleconferencing application involving many users, a
single quality of service level may not be appropriate for
all participating users, since some users may participate
with a very limited local workstation which cannot
provide for the quality which is adopted by the majority
of the conference participants. We therefore adopt the
premise that different levels of quality, often
corresponding to different levels of cost, must be provided
in the context of distributed multimedia applications.

Much work on QoS has been done in the context of
high-speed networks in order to provide for some
guarantee of quality for the provided communication
service, which is characterized by the bandwidth of the
media stream and the delay, jitter and loss rate provided
by the network. More recently, QoS have been considered
in a more global context, including also the end systems,
such as the user’s workstations and database servers.
Various global QoS architectures have been developed
(for a recent overview see [1]), which include also
functions for performance monitoring, resource allocation
and QoS management. For instance, in previous work [8],
we have developed a framework for QoS management of
distributed multimedia applications which stresses two
points: (a) the user should define (through a suitable user
interface for QoS negotiation) the criteria which are used
by the system to select the “best” system configuration for
the application at hand, and (b) the selection of an
appropriate system configuration is the first step of the
QoS management process, followed by resource
reservation and commitment, which is performed during
the initialization of the multimedia application and each
time a QoS renegotiation is required.

A prototype system has been developed which
implemented the above ideas for the application of remote
access to multimedia databases [7]. In this context, it was
assumed that, for a given monomedia component of a
multimedia document, such as a video clip, there may be
several variants with identical “content”, but with
different QoS characteristics, possibly stored in different
continuous-media file servers. During the initial access to
the document, the QoS manager would select the most
suitable variant to be presented to the user, and in case of
network congestion, for instance, with the video server in

question, another variant may be selected which resides in
a different server. The negotiation process which leads to
the selection of a variant involves three parties: (1) the
database server, which contains the meta-information of
the documents including all existing variants, (2) the
network and (3) the user workstation, which knows the
user’s preferences and may also impose certain QoS
restrictions.

In this paper, we consider multimedia applications
including multicasting to many users, such as
teleconferencing or educational applications. In this
context, the global QoS management approach which
involves a few system components, as described above for
remote database access, is not workable any more,
because the number of users involved is too large for a
global management approach. Instead, it is necessary to
distribute part of the QoS management process and allow
each user process to make certain QoS decisions based on
its local context. As discussed above for access to
multimedia documents, we assume that different variants
(of video streams, for instance) are available to the users’
workstations throughout the network by means of multi-
casting. In the case of a tele-teaching application, for
instance, the video showing the teacher may be available
in several variants, differing in frame rate, color quality
and/or resolution. Each student may then select the video
stream which is most appropriate given his/her
preferences and the capacities of the local workstation.

In this paper, we present our solution for a distributed
or cooperative QoS management. In Section 2, we first
introduce a sample application and use it to show that
current QoS management schemes have some
shortcomings. Then, in Sections 3 and 4, we describe our
management scheme in terms of architecture and
communication protocols between the distributed parts.
Section 5 describes some strategies that could be followed
by QoS management, i.e. it discusses in which situation to
take which action. The mechansisms provided by the
protocols in the given architecture may be used according
to the chosen strategy. Section 6 concludes the paper.

2. Multimedia applications and QoS manage-
ment

2.1 An example application: remote teaching

The remote-teaching application we use as a base for
our investigations supports the delivery of a lecture from a
given site to students located in several remote locations.
The delivery consists of video and audio from the lecturer.
In addition, the lecturer may present multimedia
documents stored locally or in some other locations.
Students have the possibility to ask questions, but they
first have to get permission to do so. In this prototype, we
allow only one student to talk at a time. The lecturer is
always allowed to talk. The overall structure of this
application is visualized in Figure 1.

Fig. 1. Structure of the teaching application.

What makes this kind of application especially
interesting is its point-to-multipoint communication. The
streams sent out by a given source (e.g. the lecturer) will
be received by several other users (here: the students).
This communication structure is best supported by
multicast transfer, and in the following sections, we will
show how multicast influences the QoS characteristics of
an application and how this situation can be handled by
QoS management.

2.2 QoS management scenarios

To ensure that the requirements of the users are
satisfied, QoS management is essential. Examples of QoS
management functions are QoS negotiation, QoS
renegotiation, QoS mapping, resource reservation, QoS
monitoring, and QoS adaptation. In this paper we restrict
our attention to negotiation, renegotiation and adaptation
functions in the context of distributed MM conversational
applications. A more detailed description of some QoS
management functions in the context of distributed MM
presentational applications, e.g, news-on-demand, can be
found in [8].

In the following, these QoS management functions are
described using a concrete example. Consider the
situation described in Figure 2, which is a snapshot of our
teaching application. For this example, we assume that
video streams may be sent in different qualities
simultaneously, and that the multicast routing algorithm is
based on core-based tree routing (CBT) [2], i.e., there is
only one multicast tree per multicast address. Resources
are reserved using RSVP [15], and receivers may set
filters to decide which streams they wish to receive (i.e.
use the reserved resources for). However, we do only use
these assumptions as an example. Since our techniques
are independent of underlying protocols and mechanisms,
they also work for other coding and routing techniques,
such as hierarchical video encoding [13], multicast
routing already including resource reservations as
discussed e.g. in [10], MBone routing techniques [4] or
video selection using group management protocols [11].
The sample system consists of two senders and five

Network
(possibly consisting of
several subnetworks)

Lecturer

Document
Base

Document
Base

Student

Student

Student

Student

receivers. Source s1 (the lecturer) is sending out two
video streams simultaneously, representing two different
qualities. The thin regular arrows indicate the low, the
thick ones the high quality. Source s2 (one student) is
sending an audio stream (dashed arrows) in one quality
(In reality, both senders are also receivers, but for the sake
of clarity, we omit these additional arrows). The other
boxes represent routers, and the grey box represents the
core router, i.e. the root of the multicast tree. The goal of
QoS management is to satisfy the QoS requirements of
the service users while optimizing resource usage. We
now briefly introduce each of the three managememt
functions discussed here and show how they might work
in this scenario.

Fig. 2. A typical situation within a network sup-
porting a multimedia application.

QoS negotiation. The role ofQoS negotiation is to
find an agreement on the required values of QoS
parameters between the system and the users, e.g.
participants in a teleconference. In many applications,
including presentational MM applications, this process
includes three parties: the user, the communication
subsystem and the information provider. QoS negotiation
in this scenario, however, is different from negotiation in
such typical unicast connections. Consider an application
with several hundred receivers, as it is e.g. typical for
MBone sessions. Every receiver would have to negotiate
with the sender, and the sender would have to keep the
state of every receiver. Obviously, this approach scales
very poorly. A popular solution to this problem consists of
doing no negotiation at all between sender and receiver,
instead let the sender broadcast streams in several
qualities (e.g. low resolution black&white and high-
resolution color) among which the receiver may select
(see e.g. [5]). A characteristics of the existing QoS
management schemes for this approach is that
neighboring receivers have no means of coordinating their
QoS requests. If a new user knew about the currently
supported qualities in his region, he could select one of
them instead of one not received in his region so far. This
would result in saving resources and would make the
communication service cheaper. It should be noted that
the network provider himself certainly has such

information and could convey it to the user, but he may
not always be interested in doing so, since in times of low
network load, that could decrease his profit. As we will
see later, our cooperative approach provides an
application-oriented solution for this.

QoS adaptation. The role of QoS adaptation is to keep
providing the negotiated quality of service, eventually
lowering it in case of resource shortages. The user usually
specifies a degradation path along which the quality can
be lowered, and he also specifies a minimum acceptable
quality which defines the point where renegotiation of the
quality or abortion of the service has to take place.

Considering multicast as our focus, adaptation may
consist of reconfiguring the multicast tree, if we assume
that one possible problem could be that parts of the tree
are no longer capable of providing the negotiated service.
Reconfiguration means destroying the old multicast tree
and building a new one using the multicast routing and
resource reservation mechanisms. Building complete new
multicast trees is algorithmically expensive; depending on
the goals (e.g. minimum overall cost), it could even be
NP-complete [9]. In addition, it seems to make more
sense to do the reconfiguration only in that part of the tree
that causes the QoS problem. This, however, is difficult
when application-oriented QoS management functions
are only located in the end system, since then, it may be
difficult to detect the problem area.

If, in our example, receiver r1 detects a violation of his
negotiated QoS level, he may try to solve this problem
himself, e.g. by switching to the lower-quality video. But
this definitely leads to a lower quality, while the problem
perhaps could have been solved by a reconfiguration
without lowering the quality, if is were located
somewhere deep in the net. On the other hand, would he
ask instead the net to provide a solution (e.g. by multicast
tree reconfiguration), then such a reconfiguration could be
without any effect, if the problem is located on his own
link or in the workstation. He could, as a third option, also
send a message to the sender, asking him for a solution.
The sender, however, has the same problem of lack of
information. He could either adjust the quality of the
stream he sends (as it is done in IVS [14]) or ask the net to
solve the problem. Thus, a partial reconfiguration would
still be impossible since the location of the problem is not
known. Apparently, due to the lack of information, QoS
management here consists mainly of guessing a solution
and examining the results. Our approach will provide a
solution for this problem by localizing the problem
source.

QoS renegotiation. A renegotiation may be initiated
by the user or the system, e.g., the communication system.
The user-initiated renegotiation allows a user to request a
better quality, e.g., a user asks for color quality while the
currently delivered quality is black&white, or to reduce
his/her requirements from the service provider in order to
reduce the cost of the current session. On the other hand,
the system initiated renegotiation usually occurs, when
the system can no longer support the negotiated QoS and

s1

s2

r1

r2 r3

r4

r5

A

B

the quality drops below the acceptable limit. In such a
case, the user is asked to accept a lower quality.

Another interesting option would be to do
renegotiation in order to optimize resource usage, i.e.
without any QoS violation triggering it. Consider again
our example. Receiver r1 is receiving the high-quality
video, while r2 and r3 are receiving the lower quality.
This leads to the next upstream link having to support
both qualities. It would be helpful if the receivers could
communicate and coordinate their resource requirements.
Thus, r2 and r3 could switch to a higher quality without
paying much more, or r1 could switch to a lower quality,
thus saving a lot of money since a huge amount of
resources is no longer used. Even more, it could be
interesting if receivers of different applications could
coordinate their QoS requests, leading e.g. to temporal
shifting of QoS requirements of one application to
facilitate high quality for another during a certain period
of time. In the existing schemes, such a communication is
impossible, since receivers do not know each other.
Again, such a coordination could be done via the sender,
but senders do not know receivers either, and if they did,
we would quickly have a scaling problem.

We believe that the described scenarios often occur in
distributed multimedia applications and that they are not
handled adequatly by existing QoS management schemes
with respect to optimized resource usage. Therefore, we
have developed a newcooperative QoS management
scheme which provides more information about the state
of the network and the QoS requirements of receivers.
Based on this information, better decision may be met to
fulfill such requirements and optimize resource usage.

3. An Architecture for Cooperative QoS
Management

The basic idea of our new scheme is to install an
application-oriented QoS agent on each router of the
underlying network and on every end system participating
in an application. These QoS agents are able to
communicate with their neighboring agents, informing
them e.g. about current QoS values supported in their
local area or about possible QoS problems. This
knowledge is basicallyapplication-oriented, i.e. the
agents know about QoS requirements and negotiated
values for users. This constitutes a main difference of this
approach compared to existing QoS management
functions on network nodes which deal with lower-layer
QoS, such as ATM cell loss priority etc., and which do not
have any information about relationships between streams
and applications.

In our approach, however, not every agent may contact
any other agent. Rather, communication depends on the
existing multicast trees, leading to a hierarchical
communication structure. For each multicast tree in which
a given router is involved, the QoS agent knows its
upstream and all downstream neighbors. If the

neighboring node is an end system, the agent knows all
receivers on this end system. A receiver’s QoS agent
knows only its upstream QoS agent, and a sender’s agent
its downstream neighbors. The information about
neighbors may be easily set up during the establishment
of the multicast tree, resp. when a member leaves or a new
member joins.

We are now giving an overview of how this new
management scheme works for the three QoS
management functions described above. A discussion of
the protocols used between neighboring agents follows in
Section 4.

3.1 QoS negotiation

QoS negotiation occurs when a new receiver enters an
existing multicast tree. The following steps are executed
during this join process:
1. The user resp. its local QoS agent gets the address

information for an application to join from a session
directory. Since the available streams and their resp.
costs depend on the current application situation resp.
the actual network load and stream distribution, the
local manager first gets this information from the
agents in the net. This means contacting an agent for
each multicast stream. In case of CBT, e.g., the local
agent only has to contact one agent for each multicast
group. A QoS agent which is already part of the
respective application may be found using e.g. parts of
the multicast join algorithm. The contacted agents
send back all information (including cost) about avail-
able streams and already supported streams in this part
of the tree. This action may include several other QoS
agents not yet on the tree, but on the route between the
tree and the new receiver.

2. The end-system QoS agent assembles a list of all
streams which can be supported by network and work-
station and offers it to the user. The user then selects
the desired streams and returns his selection to the
local agent.

3. The agent has the information of how to deliver the
stream to the user. This information is passed to the
respective underlying protocols, e.g. RSVP or the
MBone group management protocol. Then, the join
procedure is executed to become part of the applica-
tion’s multicast trees. Resources are reserved along the
selected new path, in order to guarantee the desired
QoS. If a quality was requested that so far has not been
supported on the branch of the tree where the new
member is attached, QoS reservations have to be
increased accordingly on that branch. If a resource
reservation is not possible due to a lack of resources,
the receiver’s QoS agent may initiate a new negotia-
tion process with the user (i.e., go back to step 2), or
he may ask the multicast routing algorithm to find a
new route.

3.2 QoS adaptation

Adaptation occurs when the negotiated quality can no
longer be supported, but also when new members join the
receiver group or current members leave. The second and
third case offer possibilities for resource usage
optimization, which could be done e.g. by a multicast tree
reconfiguration. More interesting in the context of this
paper is the first case.

Receivers usually monitor the QoS they receive from
the network. By comparing these values to the negotiated
QoS, it is possible to discover QoS problems. If a receiver
realizes such a problem, it sends a QoS violation message
to its upstream neighbor. Upon receipt of such a message,
this agent waits a certain amount of time to see if it
receives more such messages from other downstream
agents. If this is not the case, the problem is likely to be
located between the receiver and its upstream neighbor.
Therefore, the upstream agent sends a message back to
the receiver telling him this. A possible solution of the
problem could then be to select a lower quality, since the
link to the receiver or the workstation might not be able to
support the quality currently selected.

In case that the upstream agent receives several
violation messages, it sends a violation message to its
own upstream router. By the combined usage of solve and
violation messages, the part of the multicast tree causing
the problem could be easily located. The solution may be
a partial reconfiguration of the tree. Remember that partial
reconfigurations are much less costly than a complete
reconfiguration of the tree. Figure 3 shows this situation.

Fig. 3. A problem somewhere in the network

A problem occurs on one of the network links (Figure
3(a)). All three receivers are affected and send a violation
message. The upstream router collects them and decides
to send a message to its own upstream router. Since the
latter does not receive any violation message from any
other branch, it tells the former to solve the problem
(Figure 3(b)). A partial tree reconfiguration is then

initiated (Figure 3(c)).
It may also be found that the problem is at the source,

e.g., if the first link cannot support the quality of the data
stream sent. In this case, a solution would be to change
the qualities offered by the sender. This could be done by
completely stopping one stream and using the additional
bandwidth for the other streams, or by scaling the existing
media streams e.g. by switching to another MPEG frame
pattern.

This approach of localizing and solving possible QoS
problems works well when the branches of the multicast
trees are real trees, i.e., a QoS agent always has more than
one downstream agent. However, it is not unlikely to
encounter situations where agents only have one
downstream agent.

When such an agent receives a violation message from
its only downstream router, it cannot decide whether the
problem is likely to be upstream or downstream since
there is no way of getting more information by waiting for
messages from other downstream routers. In such a case,
the agent has to contact its own QoS monitor which is
constantly checking the QoS situation on the router. Since
it knows the stream the quality of which is violated, it
may ask the monitor for current statistics of that stream. If
these statistics do not indicate any violation, the problem
must be located downstream. Otherwise, the problem may
be located upstream or in the own router. If the monitor
indicates a violation, the agent sends a message to its own
upstream router. If it gets back the answer to solve the
problem himself, this problem must be located in the own
router, otherwise, the problem is located upstream and
will be solved there.

3.3 QoS renegotiation

In a context where QoS guarantees are provided,
constraints on admission are usually imposed to account
for the limitation of resources. Admission control is
usually implemented on the premise that admission is
granted as long as sufficient resources are available. But
this approach could lead to inefficiencies if certain forms
of group communication, like multicast, are used.
Multicast is based on the principle of resource sharing and
takes advantage of group members' “common interests”.
In principle, the group members share the same
application and receive the same media streams. But
media scaling due to user preferences and adaptation due
to system dynamics could lead to a situation where the
resulting multicast tree appears to be rather degenerated,
providing many users with specifically selected qualities.
As a consequence, too many heterogeneous requirements
would have to be supported so that reserved resources
would rather be dedicated to particular users than be
shared by many ones.

As an example, consider the multicast tree in Figure 2.
Only receivers r1 and r5 prefer high quality video while
receivers two, three and four are content with low quality

data stream control message

r1 r2 r3 r1 r2 r3 r1 r2 r3

VIOL

VIOL

VIOLVIOL

SOLVE

(a) A problem in the network(b) Control messages are sent(c) Tree is reconfigured

video. Since all intermediate links, in particular the
upstream routers, accordingly have to provide resource
reservations, a rather inefficient resource usage results.
This is particularly true if other applications compete as
well for limited resources of the involved components. In
such a situation we suggest to potentially apply a
renegotiation procedure based on the strategies discussed
in Section 5. The general idea of the renegotiation
procedure is that a given agent sendsPERSUADE
messages to some downstream agents, as soon as it
detects a possibility of resource usage optimization. A
PERSUADE message contains an offer to switch, for a
given stream, to another quality. Such offers may be
generated by any of the QoS agents. Each agent receiving
such a message has to decide which action to take. Its
reaction depends on its own strategy.

Users may instruct their QoS agents to ignore such
offers in order to follow the session without interruption.

4. Protocol Descriptions

In the following, we describe some of the operations of
a given QoS agent in terms of algorithms. An agent’s
action is usually triggered by an incoming message from
other agents or when the agent detects poor resource
usage. Due to space restrictions, we concentrate on a QoS
agent in the network and do not describe the behavior of
an agent on end systems.

A QoS agent on a multicast tree (to keep the
description simple, we assume that all senders use the
same multicast tree as in CBT routing) keeps the
following information:
 • : the set of neighbouring QoS agents down in the

multicast tree associated with

 • : the neighbouring QoS agent up in the multicast

tree.
 • : the set of media available on

 • : the set of qualities available for the medium

 available on

 • : the set of qualities for medium cur-

rently supported on QoS agent

For a given in the multicast tree in question, the
following operations are performed.

4.1 Reaction on QoS negotiation

When receives Ask_QOS_Info() (x is a QoS agent
not yet on)
 • send Give_QOS_Info() to where is

an ordered (according to the strategy) list of all
 (note that all available qualities are

offered, but preferences are expressed by the agent)

4.2 Initiation QoS renegotiation

When receives a QoS_added() or

QoS_removed() (to indicate that a new

quality is supported by the downstream agent or an
existing one has been removed; it is used for join, leave
and for indication of renegotiated QoS values)

1. update for

2. send persuade() messages if the chosen strategy pro-
poses to do so:

 • in case a new QoS has been added: send Per-
suade() to all with

 and (is not the cur-

rently selected quality of the medium and the medium
is transmitted on this branch)

 • in case an existing QoS has been removed: select new
 according to strategy and send Per-

suade() to all with

 and

4.3 Reaction on QoS renegotiation request

When receives Persuade() from

 • if the chosen strategy encourages the promotion of
 then

send Persuade() to all with

 and

4.4 QoS adaptation

When receives Viol()

1. wait a certain time interval
2. if the number of Viol() messages that

have arrived from other and is

larger than a given limit (depending on the strategy)
then
send Viol() to the upstream agent

else send Solve() to all for which
Viol() has been received

5. Strategies for the QoS agents

5.1 The Quality of Operation

In order to initiate renegotiation, a QoS agent has to
carefully evaluate the current situation of its resource

qa mct

QAD

qa

qau

M mct

QoSm

m M∈ mct

QoSm
x m M∈

x

qa

qa x

mct

qoslist x qoslist

QoSm m M∈∀,

qa x qos QoSm∈,

x qos QoSm∈,

x

QoSm
x

x QAD∈

m qos Q∈ oSm, x QAD∈

QoSm
x qos{ }≠ QoSm

x ∅≠ qos

qos'

m qos' Q∈ oSm, x QAD∈

QoSm
x qos'{ }≠ QoSm

x ∅≠

qa m qos Q∈ oSm, qau

qos

m qos Q∈ oSm, x QAD∈

QoSm
x qos{ }≠ QoSm

x ∅≠

qa x QAD∈ qos QoSm∈,

d

y QAD∈ qos,

y QAD∈ qos QoSm
y∈

qa qos QoSm∈, qau
x

x QAD∈ qos QoSm∈,

domain. Several parameters have to be taken into account
and an overall measure has to be used. We borrow the
name for this overall measure from [12] and call it the
quality of operation QoO. We also adopt their definition
of QoO but modify it in a way such that properties of
multicast communication can be captured (which has not
been considered in [12]).

The measure is applied so that if the current QoO is
relatively low, renegotiation will be initiated that would
lead to higher QoO if accepted by some users. More than
one modes of operation corresponding to higher QoO
could alternatively be suggested to users. The difference
between the current QoO and the candidate QoO is used
as a measure for a potential increase in revenue if the
mode of operation were changed. Part of the potential
increase in revenue, 50% say, is either used as a discount
if a decrease in quality of service is suggested or as
additional service cost ifquality of service is suggested to
be increased. As an effect, the potential increase in
revenue is shared among service provider and service
users. Note that renegotiation is only initiated if a
potential increase in revenue exceeds a certain threshold.

Thequality of operation is defined as follows:

It is a cumulative measure of the reward gained by
accomodating a set of media streams in the resource
domain of a certain QoS agent. For each streamj resp.
each stream typet1 the following measurement
parameters are defined:
 • , a measure for the value of resources (bandwidth)

reserved for streamj;
 • , a measure for the value of remaining free band-

width that could still be devoted to streams of typet,
 • , a measure for the cost of a degraded quality of

service parameteri measured for streamj. These
parameters express the difference between actual and
negotiated values. If a negotiated QoS value cannot be
supplied by the provider, the user will pay less,
decreasing the revenue for that stream.

, and are control parameters that can

dynamically or statically be set:
 • is used to characterize the revenue gained by trans-

mitting streamj; is chosen as proportional to the

number of outgoing links of the multicast tree for
streamj.

 • characterizes the importance of the current system

state, i.e., the value of free resource to accommodate
further streams of certain types;

1. Stream types are certain classes of streams such as
high-quality color video or low-quality audio.

 • characterizes the importance of a particular quality

of service parameteri for a media streamj.
With these definitions the cumulative QoO measure

expresses a compromise between the additional revenue
of accommodating media streams, the (potential) value of
free resources, and the current values of quality of service
measures. Accepting a new stream of a certain type will
increase the revenue, but it will also decrease the amount
of available resources which in turn leads to a decrease in
QoO. The importance of a higher immediate vs. a
possible higher future reward (which is only possible
when resources are available) can be expressed by
selecting the values of resp. accordingly. Degraded

QoS parameters of a certain media stream can have an
adverse effect on QoO if such a media stream were further
distributed at a router.

It should be noted that the values for single parameters
have to be carefully selected. Usually, it should be
avoided that one parameter dominates the QoO. A set of
values for the parameters is equivalent to a strategy.

5.2 An Example

In what follows, the QoO will be evaluated for the
scenario depicted in Figure 2. The QoS agent
corresponding to routerA accommodates audio stream 1
with the desired QoS parameters, which is distributed to
all three immediate receivers, and therefore and

, .

The revenue gained for an audio stream is assumed

to be one unit. In the current situation the load on routerA
is assumed to be low, so that there is no particular need to
care about resources for audio streams, which have
relatively low bandwidth requirements, and therefore

. Concerning the accommodated video streams we

assume a black/white type video stream 2 distributed to
receivers r2 and r3 without quality distortions, and
therefore , , , and (the

revenue for the delievery of a b&w video is three times
higher than for the audio). Due to the low load situation
there is also no need to worry about accommodating
further black/white videos, and therefore . Finally,

there is a colored video stream 3 accommodated, which
requires reservation of resources in equivalence to five
units of rewards , and . The reward for

colored video suffers from additional loss and

from additional delay . Since some loss can be

tolerated for video streams we let , but

emphasize the importance of delay in conversational
video applications by letting . In the current

situation we can accommodate one additional colored
video, and therefore let . Since this is only a

QuO α j Aj δ j i D ji
i QoS∈
∑–

j streams∈

∑ βtBt
t strtypes∈

∑+=

Aj

Bt

D ji

α j βt δ j i

α j

α j

βt

δ j i

α j βt

α1 3=

D1i 0= i QoS∈∀

A1

β1 0=

D2i 0= i QoS∈∀ α2 2= A3 3=

β2 0=

A3 5= α3 1=

D31 1=

D32 1=

δ31 0.2=

δ32 1=

B3 5=

potential revenue, we set . With these

assumptions the current QoO for routerA evaluates as
follows:

+
A first possibility to adapt the mode of operation

consists in suggesting the degradation of video quality to
receiver r1 which would result in more free resources to
accommodate an additional colored video stream and the
following :

An increase of video quality for receivers two and
three as a second option would result in the following

:

From the service-provider's point of view both
adaptations would yield a similar effect with respect to
revenue increase in the current situation.

In contrast, we assume that routerB is highly loaded so
that it would be of higher value to free resources;
otherwise, the same assumptions apply:

Due to the higher load, renegotiation could improve
revenue much more with respect to routerB, regardless of
whether an increase or a decrease of video quality were
performed. Furthermore, video quality should be
degraded for receiver r4 rather than enhanced for receiver
r5.

Due to space restrictions, we can only sketch our
approach to strategy selection. An important issue we do
not further discuss here is the coordination between QoS
agents by exchanging information about parameter
settings etc. It is based on the general framework
described in [6] which provides mechanisms for group
decision making processes, fornegotiation among
competing proposals, handlingresource conflicts and
reachingconsensus.

6. Conclusions and Outlook

In this paper, we have described a new distributed and
cooperative QoS management scheme. The basic idea of
this scheme is to install QoS agents on each node of the
network and in every application program running on an
end system. Agents are able to communicate with each
other, thereby locating QoS problems and allowing
negotiations for optimal resource usage. At the same time,
single agents can be kept simple, since they only
communicate with neighbors (and keep only their state
thus making the scheme scale very well) and have
knowledge about their local area.

Among other work, we are in the process of further

formalizing the protocol and strategy descriptions, using
Extended Finite State Machines resp. Stochastic Petri
Nets. The former will allow for extensive simulations
which will become important when the protocols become
more complex, e.g. when dealing with more than one
multicast tree in an application and especially with inter-
application communication. With the latter, we will
examine different model-based strategy selections, as
described in [3].

References

1. C. Aurrecoechea, A. Campbell, and L. Hauw. A Survey of
QOS Architectures.Multimedia Systems Journal, Special
Issue on QoS Architectures, 1997. To appear.

2. A. Ballardie, J. Crowcroft, and P. Francis. Core based trees
(CBT) – An Architecture for Scalable Inter-Domain Multi-
cast Routing. InACM SIGCOMM ’93, pages 85–95, 1993.

3. H. de Meer. Adaptive Quality of Service Management: A
Model-Based Approach. In10th European Simulation Mul-
ticonference (ESM’96), Budapest, Hungary, June 1996.

4. S. Deering.Multicast Routing in a Datagram Internetwork.
PhD thesis, Stanford University, 1991.

5. S. Deering. Internet multicast routing: State of the art and
open research issues. InMultimedia Integrated Conferenc-
ing for Europe (MICE). Seminar at SICS, Sweden, 1993.

6. B. J. Grosz and S. Kraus. Collaborative Plans for Complex
Group Action. Technical Report TR-20-95, Harvard Univer-
sity, Center for Research in Computing Technology, 1995.

7. A. Hafid and G. v. Bochmann. Quality of Service Negotia-
tion in News-on-Demand Systems: An Implementation. In
A. Azcorra, T. D. Miguel, E. Pastor, and E. Vazquez, editors,
Proc. of the 3rd Int. Workshop on Protocols for Multimedia
Systems, Madrid, Spain, pages 221–240, Oct. 1996.

8. A. Hafid and G. v. Bochmann. Some Priciples for QoS man-
agement.Distributed System Engineering Journal, 1996. To
appear.

9. R. M. Karp. Reducibility Among Combinatorial Problems.
In Complexity of Computer Computations, pages 85–103.
Plenum Press, New York, 1972.

10. V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast
routing for multimedia communication.IEEE/ACM Trans-
actions on Networking, 1(3):286–292, June 1993.

11. S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven
layered multicast. InACM SIGCOMM’96, Stanford, CA,
Aug. 1996.

12. J. E. Neves, L. B. de Almeida, and M. J. Leitao. ATM Call
Control by Neural Networks. In J. A. et al., editor,Proc. of
the 1st Intern. Workshop on Applications of Neural Net-
works to Telecommunication, pages 210–217, 1993.

13. N. Shacham. Multipoint communication by hierarchically
encoded data. InIEEE Infocom’92, pages 2107–2114, 1992.

14. T. Turletti and C. Huitema. Videoconferencing in the inter-
net. IEEE/ACM Transactions on Networks, pages 340–351,
June 1996.

15. L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A New Resource Reservation Protocol.IEEE Net-
work, 7(5), Sept. 1993.

β3 0.5=

QoO 3 1⋅ 0 0+ +() 2 3⋅ 0 0+ +() 0.2 1 1 1⋅+⋅()–+=

1 5 0.5 5⋅+⋅() 15.3=

QoOA1

QoOA1 3 1⋅() 3 3⋅() 0.5 2 5⋅ ⋅()+ + 17.= =

QoOA2

QoOA2 3 0 3 0.2 1+() 3 5 0.5 5⋅+⋅()+⋅–+ 16.9= =

QoOB 2 1⋅() 1 3⋅() 1.2 1 5⋅()+–+ 8.8= =

QoOB1 2 0.5+() 2 3 0.5 3⋅+⋅() 0.5 5⋅()+ + 12.5= =

QoOB2 2 0.5+() 0.5 3⋅() 2 5 1.2–()⋅()+ + 11.6= =

