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ABSTRACT: We apply the state identification techniques for testing communication sys-
tems which are modeled labeled transition systems (LTSs). The conformance requirements
of specifications are represented as the trace equivalence relation and derived tests have finite
behavior and provide well-defined fault coverage. We redefine in the realm of LTSs the notions
of state identification that were originally defined in the realm of input/output finite state ma-
chines (FSMs). Then we present the corresponding test generation methods and discuss their
fault coverage. It is shown that for an FSM-based method with a notion of state identification
we can have a corresponding LTS-based method with a similar notion of state identification,
and if the FSM-based method guarantees complete fault coverage then the L'T'S-analogue also
guarantees such coverage.

1 Introduction

One of the important issues of conformance testing is to derive useful tests for labeled transition
systems (LTSs), which serve as a semantic model for various specification languages, e.g.,
LOTOS, CCS, and CSP. Testing theories and methods for test derivation in the LTS formalism
have been developed in [3, 21, 16, 4, 7, 1, 18, 20]. In particular, a so-called conf relation and
canonical tester [3] became the basis for a large body of work in this area.

Unfortunately, the canonical tester approach cannot be taken into account when test gen-
eration for real protocols is attempted. The canonical tester has infinite behavior whenever
the specification describes an infinite behavior; no fault coverage is measured for the individual
tests derived in [21] or n-testers derived in [16]. Moreover, we believe that the conf relation
alone is too weak as a criterion to accept an implementation, because only the deadlocks
that are implemented after the valid traces in the specification are to be checked. Since this
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relation does not deal with invalid traces, it allows for a trivial implementation which has a
single state with looping transitions labeled with all possible actions, and such an implemen-
tation conforms to any LTS specification with the same alphabet with respect to the conf
relation [19]. Thus even though an implementation is concluded being valid based on conf,
another relation, such as trace-equivalence, has to be tested as well.

Observing and comparing traces of executed interactions is usual means for conformance
testing of protocols, and in many cases it is required that an implementation should have the
same traces as its specification. In particular, most existing protocols are deterministic, and in
the case of determinism several other finer testing semantics [23], such as failure or failure trace,
are reduced to the trace semantics. Based on the notion of such experiments and the trace
equivalence relation, a number of competing test derivation methods with fault coverage have
been elaborated [10, 5,17, 24,9, 14, 12, 13] for protocols in the formalism of input /output finite
state machines (FSMs), many of which use the state identification techniques to obtain better
fault coverage. Compared to FSMs, L'T'Ss are in some sense a more general descriptive model
which use rendezvous communication without distinction between input and output; there
are various criteria determining whether an implementation conforms to a specification [23];
most existing test derivation methods use the exhaustive testing approach in order to prove
the correctness of the implementation in respect to a given conformance relation. Apparently,
such an approach is often impractical since it may involve a test suite of infinite length. The
approximation approach [16, 21], such as n-testers, which is proposed to solve this problem,
provides no fault coverage measure for conformity of the implementation with its specification.

Conformance testing should be developed in such a way that the given conformance rela-
tion is determined by the real conformance requirements and test suites have finite behavior
and ensure well-defined fault coverage. Several attempts have been made to apply the ideas
underlying the FSM-based methods to the LTS model [8, 4, 1, 18, 19] for several conformance
relations. In particular, this research is directed towards redefining the notions of state identi-
fication in the LTS realm for a given relation. [4] tries the UlO-based state identification [17].
[8] considers the characterization sets [5]. [1] introduces the state identification machines. In
[15, 18], another approach is taken, where an LTS is represented as an FSM model, an existing
FSM-based method is applied, and then the derived tests are translated back into the LTS
formalism. In [19], the HSI method [14, 13] is adapted for trace equivalence.

However, these attempts are limited to individual or informal applications of the notions of
state identification underlying the FSM-based methods. In fact, the FSM-based notions can
also be applied directly to the LTS model if an appropriate distinguishabilty of states is defined
in the LTS model. In the FSM model, two states are distinguished if different output behaviors
are observed when a common input sequence is applied to the two states, respectively. In the
LTS model, two states can be distinguished if, after a common sequence of interactions, a
given action be executed for one of the two states while the same action cannot be executed
for the other. Therefore, a systematic approach based on the notions of state identification
can also be developed in the LTS model such that we could devise alternative and competing
techniques that guarantees fault coverage, for constructing useful tests for protocols based on
the LTS semantics.

In this paper, based on the framework of testing LTSs [20] in respect to trace equivalence,
we redefine in the LTS model the notions of state identification which were originally used in
the FSM realm. Based on the adapted notions, the corresponding test derivation methods are



Figure 1: An LTS graph

presented, and it is shown that for an FSM-based method with a notion of state identification
we can have a corresponding LTS-based method with a similar notion of state identification,
and if the FSM-based method guarantees complete fault coverage then the L'T'S-analogue also
guarantees complete fault coverage.

2 Labeled Transition Systems

Definition 1 (Labeled transition system (LTS)): A labeled transition system is a 4-tuple
< 5,8, A, 89 >, where

e Sis a finite set of states, sg € 5, is the initial state.

e Y is a finite set of labels, called observable actions; 7 € ¥ is called an internal action.

o ACSXx(XU{r}) xS isa transitions set. (p,u,q) € A is denoted by p—p—q.

An LTS is said to be nondeterministic if it has some transition labeled with 7 or there
exist p—a— p1,p—a— p2 € A but p; # pe. A deterministic LTS has no internal actions and
the outgoing transitions of any state are uniquely labeled.

An LTS can also be represented by a directed graph where nodes are states and labeled
edges are transitions. An LTS graph is shown in Figure 1.

Given an LTS S =< S, ¥, A 59 >, let p,¢g € S and p € ¥ U {7}, the conventional nota-
tions shown in Table 1 are relevant to a given LTS, as introduced in [3]. In this paper we
use M,P.S,... to represent LTSs; M, P, Q,..., for sets of states; a,b,¢,..., for actions; and
ip,q,S..., for states. The sequences in T'r(p) are called the traces of S in p.

Given a set of sequences V € ¥* we use the notation Pref(V) to represent all prefixes
of sequences in V. Formally, Pref(V) = {01 € ¥* | oy € ¥* (01.00 € V)}. We also use
“@” to represent the concatenation of two sets of sequences. Formally, assuming Vi, Vo, C ¥~
ViQV, = {o1.00 | 01 € Vi Ao € Vo}. We also write V" = V@V " for n > 0 and V° = {c}.

In the case of nondeterminism, after an observable action sequence, an LTS may enter a
number of different states. In order to consider all these possibilities, a state subset (multi-
state [8]), which contains all the states reachable by the LTS after this action sequence, is
used.

Definition 2 (Multi-state set): The multi-state set of LTS S is the set Il = {5, C 5 | do €
¥ (sp-after-o = 5;)}.



notation meaning
h3u set of sequences over X; ¢ or ay ...a, denotes such a sequence
pP—py ... pn—q there exists pr, 1 < k < n, such that p—p1—p1 ... pp1—pn—q
p=c=rq p—7"—¢q (1 < n)or p=q (note: 7" means n times 7)
p=a=-q there exist py, po such that p=e=p; —a—py=c=y¢
p=aj...a,=q there exists py, 1 <k < n, such that p=a1=p1...pn_1=0,=>¢q
p=0= there exists ¢ such that p=o=y¢
pFo= no ¢ exists such that p=o=y¢
init(p) init(p) ={a € X | p=a=}
p-after-c p-after-oc = {q € S | p=0=¢q}; S-after-o = sp-after-o
Tr(p) Tr(p) ={oc € X¥* | p=o=}; Tr(S) = Tr(so)

Table 1: Basic notations for labeled transition systems

Note that Sy = sg-after-¢ is in Ilg and 1s called the initial multi-state. The multi-state
set can be obtained by a known algorithm which performs the deterministic transformation
of a nondeterministic automaton with trace equivalence [11, 8]. For Figure 1, the multi-state
set is {{s0, 1}, {52, 83}, {s2}, {50, 51, 84, 85}, {85} }.Obviously, each L'TS has one and only one
multi-state set.

After any observable sequence, a nondeterministic system reaches a unique multi-state.
Thus from the test perspective, it makes sense to identify multi-states, rather than single
states. This viewpoint is reflected in the FSM realm by the presentation of a nondeterministic
FSM as an observable FSM [12], in which each state is a subset of states of the non-observable
FSM. The viewpoint is also reflected by the refusal graphs [7], in which a node corresponds to
a multi-state.

3 Conformance Testing

3.1 Conformance Relation

The starting point for conformance testing is a specification in some (formal) notation, an
implementation given in the form of a black box, and the conformance requirements that the
implementation should satisfy. In this paper, the notation of the specification is the LTS for-
malism; the implementation is assumed to be described in the same model as its specification;
a conformance relation, called trace equivalence, is used to formalize the conformance require-
ments. We say that an implementation M conforms to a specification S if M is trace-equivalent
to S.

Definition 3 (Trace equivalence): The trace equivalence relation between two states p and
q, written p ~ ¢, holds iff Tr(p) = Tr(q).

Given two LTSs S and M with initial states sg and mg respectively, we say that M is trace-
equivalent to S, written M & S, iff mg & sq.

We say that two states are distinguishable in trace semantics if they are not trace-equivalent.
For any two states that are not trace-equivalent we can surely find a sequence of observable



actions, which is a trace one of the two states, not both, to distinguish them. We also say that
an LTS is reduced in trace semantics if all of its states are distinguishable in trace semantics.

3.2 Testing Framework

Conformance testing is a finite set of experiments, in which a set of test cases, usually de-
rived from a specification according to a given conformance relation, is applied by a tester
or experimenter to the implementation under test (IUT), such that from the results of the
execution of the test cases, it can be concluded whether or not the implementation conforms
to the specification.

The behavior of the tester during testing is defined by the applied test case. Thus a test
case 1s a specification of behavior, which, like other specifications, can be represented as an
LTS. An experiment should last for a finite time, so a test case should have no infinite behavior.
Moreover, the tester should have certain control over the testing process, so nondeterminism
in a test case is undesirable [19, 22].

Definition 4 (Test cases and test suite): Given an LTS specification S =< S, ¥, A sy >, a
test case T for S is a h-tuple < T, X, Ay, 1o, { > where:
o X CX
o < T Yr, Ar,to > is a deterministic, tree-structured LTS such that for each p € T
there exists exactly one o € X% with to=0=p;
o (:T — {pass,fail, inconclusive} is a state labeling function.
A test suite for S is a finite set of test cases for S.

From this definition, the behavior of test case T is finite, since it has no cycles. Moreover, a
trace of T uniquely determines a single state in T, so we define {(c) = {(1) for {t} = to-after-o.

The interactions between a test case T and the [UT M can be formalized by the composition
operator “||” of LOTOS, that is, T || M. When ¢y || mq after an observable action sequence
o reaches a deadlock, that is, there exists a state p € T' x M such that for all actions a € X,
to || mo=0=p and p# a=- we say that this experiment completes a test run. In order to
start a new test run, a global reset is always assumed in our testing framework.

Usually, LTSs are supposed to be nondeterministic. In order to test nondeterministic
implementations, one usually makes the so-called complete-testing assumption: it is possible,
by applying a given test case to the implementation a finite number of times, to exercise all
possible execution paths of the implementation which are traversed by the test case [8, 13].
Therefore any experiment, in which M is tested by T, should include several test runs and lead
to a complete set of observations Obsiray = {0 € Tr(l) | Ip € T x M,Va € X ((to || mo) =
o= p#a=)}. Note that for deterministic systems, such as most of real-life protocols, there
is no need for this assumption.

Based on Obs(t ), the success or failure of testing needs to be concluded. The way a
verdict is drawn from Obsiy is the verdict assignment for T: Obsirvy = {pass, fail}. A
pass verdict means success, which, intuitively, should mean that no unexpected behavior is
found and the test purpose has been achieved; otherwise, the verdict should be faul. If we
define the test purpose of T, written Pur(T), to be Pur(T) = {0 € Tr(ty) | {(c) = pass},
then the conclusion can be drawn as follows.



Definition 5 (Verdict assignment): Given an IUT M, a test case T, let Obss,y = {0 €
Obsiray | {(0) = fail} and Obsyass = {0 € Obsiry | {(0) = pass},
M passes T iff Obsysuy = 0 A Obspyss = Pur(T)
{ M fails T otherwise.

Given a test suite TS, we also denote that M passes TS iff for all T € TS M passes T, and
M fails TS otherwise.

3.3 State Labelings of Test Cases

Given a specification S, the state labeling function of test cases T must be “sound”, that is,
for any implementation M, if M and S are trace-equivalent, then M passes T.

In the context of trace equivalence, a conforming implementation should have the same
traces as a given specification. Therefore each test case specifies certain sequences of actions,
which are either valid or invalid traces of the specification. The purpose of a test case is to
verify that an [UT has implemented the valid ones and not any of the invalid ones. Accordingly,
we conclude that all test cases for trace equivalence must be of the following form [20]:

Definition 6 (Test cases for trace equivalence): Given an LTS specification S, a test case T
is said to be a test case for S w.r.t. &, if, for all o € Tr(ty) and {t;} = to-after-o, the state
labeling of T satisfies

pass if o € Tr(so) Ainit(t;) Nout(sg-after-o) =0
l(t;) = ¢ fail o & Tr(so)

inconclusive otherwise.

A test suite for S w.r.t. ~ is a set of test cases for S w.r.t. ~.

From this definition, we have the following proposition [20]: Given a test case T for S w.r.t.
~, for any LTS M, if M & S, then M passes T.

Since in trace semantics test cases for S are represented as valid or invalid traces of S,
given a sequence o € ¥* let ¢ = aj.az....a,, a test case T for S w.r.t. & can be obtained
by constructing an LTS T = tp—a;—t;...t,_1 —a,— t, and then labeling T according to
Definition 6. A sequence that is used to form a test case is also called a test sequence.

3.4 Fault Model and Fault Coverage

The goal of conformance testing is to gain confidence in the correct functioning of the imple-
mentation under test. Increased confidence is normally obtained through time and effort spent
in testing the implementation, which, however, is limited by practical and economical consid-
erations. In order to have a more precise measure of the effectiveness of testing, a fault model
and fault coverage criteria [2] are introduced, which usually take the mutation approach [2],
that is, a fault model is defined as a set of all faulty LTS implementations considered. Here
we consider a particular fault model F(m) which consists of all LTS implementations over the
alphabet of the specification S and with at most m multi-states, where m is a known integer.
Based on F(m), a test suite with complete fault coverage for a given LTS specification with
respect to the trace equivalence relation can be defined as follows.



Figure 2: A corresponding trace observable system of Figure 1

Definition 7 (Complete test suite): Given an LTS specification S and the fault model F(m),
a test suite TS for S w.r.t. & is said to be complete, if for any M in F(m), M &~ S iff M passes
Ts.

We also say that a test suite is m-complete for S if it is complete for S in respect to
the fault model F(m). A complete test suite guarantees that for any implementation M in
the context of the given fault model, if M passes all test cases, it must be a conforming
implementation of the given specification with respect to the given conformance relation, and
any faulty implementation in F(m) must be detected by failing at least one test case in the
test suite.

4 State Identification in Specifications

Similar to the case of FSMs, in order to identify states in a given LTS specification, at first the
specification is required to have certain testability properties, two of which are the so-called
reducibility and observability.

4.1 'Trace Observable System

Definition 8 (Trace observable system (TOS)): Given an LTS S, a deterministic LTS S is
said to be the trace observable system corresponding to S, if S~ S and S is reduced in trace
semantics.

From the above definition, the TOS S of S is deterministic, reduced and trace-equivalent to
S; moreover, the TOS S is unique for all LTSs trace-equivalent to S. There are the algorithms
and tools that transform a given LTS into its TOS form [11, 4]. For the LTS in Figure 1, the
TOS is given in Figure 2.

In the context of trace semantics, for any LTS, the corresponding TOS models all its
observable behavior. Therefore, for test generation, any LTS considered can be assumed to be

in the TOS form.

4.2 State Identification Facilities

There are the following facilities of state identification which can be adapted from the FSM
model to the LTS model. Here we assume that the given LTS specification S is in the TOS
form that has n states sg, s1,...8,_1, where sq is the initial state.



Distinguishing Sequence
Given an LTS S, we say that an observable sequence distinguishes two states if the sequence
has a prefix that is a trace for one of the two states, but not for both. A distinguishing sequence
for S is an observable sequence that distinguishes any two different states. Formally, o € ¥~
is a distinguishing sequence of S if for all s;,s; € S,7 # j, there exists o’ € Pref(c) such that
o' € Tr(s;) @ Tr(s;). Given two sets A and B, A& B = (A\B)U (B\A).

There are LTSs in the TOS form without any distinguishing sequence. As an example, the
LTS in Figure 2 has no distinguishing sequence.

Unique Sequences
A unique sequence for a state is an observable sequence that distinguishes the given state from
all others. Formally, o; € ¥* is a unique sequence for s; € S, if, for all s; € S,7 # 7, there
exists of € Pref(o;) such that of € Tr(s;) ® Tr(s;). Let S have n states, a tuple of unique
sequences < 0g, 01, ...,0,_1 > is said be set of unique sequences for S. If there exists o € ¥*
such that o; € Pref(o), for 0 <¢ < n—1, then o is a distinguishing sequence. The notion of
unique sequences, also called unique event sequences in [4], corresponds to that of FSM-based
UIO sequences [17].

For the LTS in Figure 2, we may choose < a,b.a,b.a,c > as its unique sequences. Note
that unique sequences do not always exist. For example, if the transition sys—c— sz in Figure 2
is deleted, then no unique sequence exists for s3 in the resulting LTS.

Characterization Set
If a set of observable sequences, instead of a unique distinguishing sequence, is used to distin-
guish all the states of S, we have a so-called characterization set for S. A characterization set
for S is a set W C ¥* such that for all s;,s; € 5,1 # j, there exists 0; € Pref(W) such that
o € Tr(s;) & Tr(s;).

There exists a characterization set W for any S in the TOS form. For the LTS in Figure 2,
we may choose W = {a,b.a}.

Partial Characterization Set

A tuple of sets of observable sequences < Wy, Wy, ..., W,_1 > is said to be partial characteri-
zation sets, if, for all s; € 5,0 <@ <n—1, and for all s; € 5,¢ # j, there exists o; € Pref(W;)
such that o; € Tr(s;) @ Tr(s;). The notion of partial characterization sets correspond to the
notion of partial UIO sequences in [6].

Obviously, since the given S is in the TOS form, in other words, none of its two states are
trace-equivalent, there exist partial characterization sets for S. We also note that the union of
all partial characterization sets for S is a characterization set for S. For the LTS in Figure 2,
we may choose < {a},{b.a},{b.a},{a,b} > as its partial characterization sets.

Harmonized State Identifiers
A tuple of sets of observable sequences < Hy, Hy,..., H,_1 > is said to be a set of harmonized
state identifiers for S, if it is a tuple of partial characterization sets for S and for 7,7 =
0,1,...,n—1,i # j, there exists o € Pref(H;)N Pref(H;). H; also is said to be a harmonized
identifier for s; € S. The harmonized identifier for s; captures the following property: for any
different state s;, there exists a sequence o; in Pref(H;) that distinguishes s; from s; and o;
is also in Pref(H;).

Harmonized state identifiers always exist, just as partial characterization sets do. As
an example, for the LTS in Figure 2, we can choose the harmonized state identifiers Hy =



{a,b}, H; = {b.a}, Hy = {b.a}, H3 = {a,b}. Considering Hy: a is used to distinguish 3, from
S3, 80 a is also in Hs; b is used to distinguish 5y from 357 and 33, so H; and Hy have b.a where
b is its prefix.

5 State Identification in Implementations

Similar to FSM-based testing, we assume that the given implementation is an LTS M whose
set of all possible actions is limited to the set of actions ¥ of the specification S (the correct
interface assumption [2]). We also have a reliable reset, such that the state entered when this
implementation is started or after the reset is applied is the initial state (the reliable reset
assumption [25]). In the case of nondeterminism, it makes no sense to identify single states of
M, so M is also assumed to be a TOS, in which each multi-state consist of a single state. For
this reason, we require that S is in the TOS form, so that a state identification facility can be
developed from S and also can be used to identify the states of M.

In order to identify the states of the implementation M, the number of states of M is also
assumed to be bound by a known integer m. Therefore, M is also a mutant according to the
fault model F(m).

Similar to FSM-based testing [9], there are also the two phases for LTS-based testing. In
the first phase, the used state identification facility is applied to M to check if it can also
properly identify the states in M. Once M passes the first phase, we can in the second phase
test whether each transition and its tail state are correctly implemented. We present the
structure of tests for the two phases using harmonized state identifiers as an example. In
order to perform the first testing phase, proper transfer sequences are needed to bring M from
the initial state to those particular states in M to which H; should be applied. Moreover, it
should be guaranteed that all the sequences in H; are applied to the same particular state in
M. Since a reliable reset is assumed, we can guarantee this in a way similar to FSM based
testing: after a sequence in H; is applied, the implementation M is reset to the initial state,
and brought into the same particular state by the same transfer sequence,and then another
sequence in H; is applied. This process is repeated until all the sequences are applied.

Accordingly, let ) be a state cover for S, i.e. for each state s; of S, there exists exactly
one input sequence o in () such that sg—o— s;, similar to FSM based testing, we can use
< No, Ni,...N,—1 > to cover all states of M (a state cover for M), where

Ni={oc€QQXE'US U...UX" ") | sy=0=s}

and construct a set of test sequences to be executed by M from the initial state in the first
testing phase as follows:
TS, = U N;,QH,
=0

Inituitively, sequences of the sets N; are used to reach n required states, as well as all
possible (m —n) additional states in M. Harmonized state identifiers H; are applied to identify
all states in M. In order to execute a given sequence o = aj.as...a; from the initial state
mg, we can convert o into an LTS tg—ay—t3...—ap— t; and then compose this LTS with
M in parallel composition tq || me. Due to nondeterminism, it is possible that this run ends



before the final action of this sequence is executed. Several runs are needed to exercise all the
possible paths of M that can be traversed by this sequence (the complete testing assumption).

Using 1157, we can make test cases for LTS S for the first testing phase by transforming the
sequences in T)S| into the corresponding LTSs as above and then labeling the LTSs according
to Definition 6. In the following, this transforming and labeling process is always implied if
we say that a test suite is obtained from a given set of test sequences.

After TS is successfully executed, all the states of M which execute all traces of Hj are
grouped in the same group f(si), where 0 <k <n — 1.

In the second phase of testing, for testing a given defined transition s;—a—s; in S, it is
necessary to first bring M into each state my € f(s;), then apply a at this state to see if a
can be executed; moreover, let M be in m; after a is executed, it is necessary to check that
my € f(s;) which should be verified by H;. (Note that due to nondeterminism, mj may really
be a multi-state, the action that is expected to check may not be executed in a time, so the
above process should be tried several times.) On the other hand, we should further check if
any undefined transition out of s; has been implemented in M, i.e. for each b € X, if 5; fb—,
then check that mj = b= does not exist. Because if my—b— exists, M is surely an invalid
implementation, so it is not necessary to verify the tail state after b is executed.

Obviously, N; may be used to bring M to any state my € f(s;). Using this state cover, we

can obtain a wvalid transition cover < Ky, Fq,... E,_1 >, where
n—1
Ei = {0’ - U(Nk@Z) | 80:0':>SZ'}
k=0

which covers all transitions that should be present in any conforming implementation, and an
invalid transition cover F,

n—1
E={caec |J(N:QY)|3s; € S (so=0=s#a=)}
k=0
which covers all transitions that should be absent in any conforming implementation.

Next, H; is used to verify the tail states of reached after each sequence in F;. Excluding
the transitions that have already been tested in the first testing phase, we can construct the
set of test sequences for the second testing phase as follows:

. n—1
TSy = EU (| J(E\N,)QH;)
=0

We conclude that the set of test sequences is expressed as follow, by combining the two
sets of test sequences for the first and second testing phases:

n—1 n—1
TS = TS;UTS; = (| NQI)UEU (| J(EA\N,)QH)
=0 =0
n—1
= EU(|J EQH;)
=0

We have seen that the above checking experiments for the LTS model is an analogue of
the checking experiments for the FSM model, except that invalid transitions need to be tested
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although their tail states need not to be verified. Similarly, it is expected that a test suite which
is derived from S based on the above process is complete with respect to trace equivalence for
the fault model F(m). In the next section, we present the LTS-based test generation methods,
based on various state identification facilities presented in Section 4.2.

6 Test Generation

6.1 Methods

Based on the existing state identification techniques, we have a number of methods for con-
structing a set TS of test sequences for a given LTS specification S and with certain fault
coverage for the fault model F(m). Let S be given in the form of a TOS with n states. We
can obtain the state cover for implementation < Ny, Ny,...N,_; >, the valid transition cover
for implementation < Fo, Ey,... E,_1 > and the invalid transition cover for implementation
I as presented in the above section. Let £ = J'-y F; and N = '~} N,.

The DS-method

Similar to the FSM-based DS-method [10], we use a distinguishing sequence o for S to form
a test suite for S, as follows.

1S = BEa{s}UE (1)

Theorem 1 Given an LTS specification S in the TOS form and a distinguishing sequence o
for S, the test suite obtained from TS as given in (1) is an m-complete test suite for S w.r.t.

~
~.

Unlike the traditional FSM-based DS-method, the LTS-based DS-method does not con-
struct a single test sequence since a reliable reset exists. It seems that, in case of a deadlock,
the reset is the only way to continue test execution.

The US-method

Let < 09,01,...,0,_1 > be a set of unique sequences for S, then a test suite for S, which is

an analogue of that derived by the FSM-based UIO-method [17], can be formed as
n—1 .
s = (|J EQ{ec}HUE (2)
=0

As a specific case, unique sequences might be prefixes of the same (distinguishing) sequence.
For the same reason explained in relation with the DS-method, the US-method does not
combine unique sequences using the rural Chinese postman tour algorithm to obtain an optimal
single test sequence.

Since unique sequences do not always exist, the US-method can be improved if partial
characterization sets are used instead of unique sequences. This corresponds to the improve-
ment on the UlO-method in [6]. Although partial characterization sets exist for any LTS in
the form of a TOS, like the US-method, the improvement can not guarantee that a derived
test suite is m-complete.
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A similar LTS-based test derivation method borrowing the notion of UIO sequences in the
FSM model is proposed in [4], in which unique sequences are called unique event sequences.
This method does not check invalid transitions, so it may not cover a fault where an undefined
transition has been implemented in the implementation.

The Uv-method

In order to obtain an m-complete test suite, the US-method can be improved such that

75 = N@(D ai)U(nQ(Ei\Ni)@{ai})UF (3)

Theorem 2 Given an LTS specification S in the TOS form and a set of unique sequences
< 00,01y, 0n_1 > for S, the test suite obtained from TS as given in (3) is an m-complete
test suite for S w.r.t. ~.

The length of a set of test sequences derived by the Uv-method is usually larger than
that of a set of test sequences derived by the US-method. However, unlike the US-method,
it guarantees complete fault coverage. The Uv-method corresponds to the FSM-based UIOv-
method [24].

The W-method

Given a characterization set W for S, we form a test suite for S by the following formula. This

is an LTS-analogue of the FSM-based W-method [5].
S = EaW UL (4)

Theorem 3 Given an LTS specification S in the TOS form and a characterization set W for
S, the test suite obtained from TS as given in (4) is an m-complete test suite for S w.r.t. ~.

We note that in the case that |W/| =1, the W-method is the DS-method.

The Wp-method
Let W be a characterization set for S and < Wy, Wy, ..., W, _y > be partial characterization

sets for S, similar to the FSM-based Wp-method [9], the Wp-method uses the following test
sequences to form a test suite for S
n—1 .
TS = Naw U (|J(E\N)ew,)UE (5)
=0
Theorem 4 Given an LTS specification S in the TOS form, a characterization set W and

partial characterization sets < Wo, Wy, ..., W,_1 > for S, the test suite obtained from TS as
given in (5) is an m-complete test suite for S w.r.t. ~.

Obviously, a test suite derived from the Wp-method is a subset of a test suite derived
by the W-method using the union of the W, as the W set. We note that the Uv-method is
a specific case of the Wp-method, in which the union U?Z) o; is a characterization set and
<A{oo},{o1},...,{on-1} > are partial characterization sets.
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The HSI-method
Let < Ho, Hy,...,H,_1 > be harmonized state identifiers for S, similar to the FSM-based
HSI-method [14, 13], The HSI-method follows completely the approach presented in the above
section to form a test suite for S.
n—1
TS = (U EQH,)UFE (6)

=0

Theorem 5 Given an LTS specification S in the TOS form and harmonized state identifiers
< Ho, Hy,...,Hy_1 > for S, the test suite obtained from TS as given in (6) is an m-complete
test suite for S w.r.t. ~.

Since the union U?Z,) H; is a characterization set, the length of a test suite derived by the
HSI-method is usually less than that of a test suite derived by the W-method.

The Wp-method and the HSI-method are two basic methods; all the other methods are
reduced to their specific or simplified cases. For example, the DS-method is a specific case of
the W-method, the Uv-method is a specific case of the Wp-method, while the Wp-method is
an improved case of the W-method. On the other hand, the HSI-method is an improved case
not only of the US-method, but also of the W-method. Thus in order to prove all the above
theorems, it is enough to prove the Wp-method and the HSI-method.

6.2 Examples

Assuming that the specification is given in Figure 2, with the HSI-method, we can derive a
4-complete test suite, which checks trace equivalence with respect to this specification, as well
as to the specification in Figure 1 which has the same traces, as follows.

So S1 S9 S3
State Identifiers H; a, b | ba|ba a, b
State Cover () 3 a c a.c
Valid Transition Cover E; | ¢, a.b| a c a.c, ¢.b, c.c
Invalid Transition Cover I = {b, a.a, c.a, a.c.a, a.c.b, a.c.c}

TS ={b, a.a, c.a, a.b.b, a.b.a, a.c.a, a.c.b, a.c.c, c.b.a, ¢.b.b, c.c.a, c.c.b}. The corresponding
test cases are shown in Figure 3.

Similarly, we could also use the Wp-method to derive a 4-complete test suite for the
specification.

So S1 S9 S3
W, b.a | b.a a, b
Q € a | ¢ a.c
E e, ab| a ¢ | ac, cb, cc
W = {a, b.a}
E=1b, a.a, ca, a.c.a, a.c.h, a.c.c}
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pass incon incon incon incon incon incon incon

O O O O O O O
b a ¢ a a a c c
PSS passy i“COfﬁ inCOFE incon 5 incon incon
fail
a a b b c b c
& & inconty  pass’ pass pass pass
fail fail
a b a c a b a b
L4 g
pass fail fail fail fail fail fail fail fail

Figure 3: A complete test suite for the L'TS specification in Figure 2.1
TS ={b.a, a.a, ca, a.b.a, a.ca, a.ch.a, a.cc, c.b.a, c.b.b, c.c.a,c.c.b}.

We note that a characterization set W may contain sequences whose suffixes are not nec-
essary for the identification of some states; thus it follows that the tests derived by the Wp-
method may have certain redundancy. For example, the W set in the above example includes
b.a, in which the suffix @ is not necessary to identify the initial state sq because b should be
blocked in the corresponding state for any conforming implementation. The HSI-method can
avoid the redundancy if appropriate harmonized state identifiers are selected such that they
do not contain such suffixes.

7 Conclusion

Labeled transition systems (LTSs) are the basic semantics for the LOTOS language and other
specification formalisms. In this paper, we have redefined, in the LTS model, the notions of
state identification, which were originally defined in the formalism of input/output finite state
machines (FSMs). Then we presented corresponding test derivation methods for specifications
given in the LTS formalism that derive finite tests with fault coverage for the so-called trace
equivalence relation. Note that the existing FSM-based methods are not directly applicable
to LTSs, because L'TSs assume rendezvous interactions making no distinction between inputs
and outputs.

The notions of state identification in the LTS realm are distinguishing sequence, unique
sequences, the characterization set, partial characterization sets and harmonized state identi-
fiers. The test generation methods based on these state identification techniques are the DS-
method, the US-method, the Uv-method, the W-method, the Wp-method and HSI-method.
Among these methods, the DS-method, Uv-method, the W-method, the Wp-method and the

HSI-method guarantee complete fault coverage.
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Appendix

In this appendix we give the proof of Theorem 4 and Theorem 5. First we recall the basic assumptions
and introduce several notations to help the proof, then we prove a series of lemmas among which
Lemmas 1, 2, 3,4, 7, 8,9 and 10 lead to Theorem 5 and Lemmas 1, 2,4, 5, 6, 7, 8 9 and 10 lead to
Theorem 4.

Given an LTS specification S and an LTS implementation M, we assume the following:

(1) All states of S and M are reachable from the initial state so and mg, respectively.

(2) Sis the TOS of S and has at most n states with n > 1.

(3) M is the TOS of M and has at most m states with m > n.

(4) 5;,5;, 5%, 51 and Ty, T, Ty, Ty represent the states of S and M, respectively.

(5) A tuple of harmonized state identifiers {Hg, H1, ..., H,—1} (for Theorem 5).

(6) A characterization set W and a tuple of partial characterization sets {Wo, Wy,...,W,_1}
(for Theorem 4).

to—ay1—ty .. .—ap—1p and then labeling the LTS according to Definition 6.

Definition 9 V-equivalence. Given a set V' C ¥*, The V—equivalence relation between two states p
and ¢, written p &y ¢, holds if and only if for all o € Pref(V), o € Tr(p) < o € Tr(q).

Given two LTSs S and M with initial states sy and mg respectively, we say that M is V-equivalent to
S, written S &y M, if only if sq &~y mg.

notation meaning
[5;,m;]—a—[5;,m;] Fora € X,5—a—3; and m; —a—T0;
[§i7 mz] =0= [§]‘,m]‘] For o € X%, S, =0=75; and 7; :_U:>_m]‘
[5;, m;]-after-V given a pair of states [5;, ;] € S X M, and a set V C ¥*
[s;, m;]-after-V = {[gj, m]‘] | Vo € Pf‘ef(V) ([§i7 mi|=0= [§]‘, m]])}

D D =[Sy, Tp)-after-2*
D, D, ={[si,m;] € D | 5i =u, m;} ({[5i,m;] € D | 5 =w m;})
ik ik = Uf:o ¢

Lemma 1 For V. C ¥*, assume |[So, Tp]-after-V| > k. If |D| > k, then |[§0,WO]-after-V.il| >
k+1;4f |D| <k, then [§0,m0]-after-V@il = [So, Tp]-after-V.

Proof:
(I) To prove that the lemma holds when |D| > k.
The lemma holds when |[So, Tg]-after-V| > k. Consider the case that |[So, mg]-after-V| = k.

(1) |D| > k and |[So, Tp]-after-V| = k hypothesis
(2) [So,mgl-after-V C D definition of D
(3)  3d[Sk, mk] € D\[So, mol-after-V (1),(2)

a[s;, ;] € [So, Mg -after-V (1)
Jdo € Pref(V) Jo.a € X*([So, o) =0 = [S;, Ti] — a— [k, Ti]) (2)
(4)  [5, 7] € [So, To)-after-VaS:'\[so, mo)-after-V (3)
(5)  [So, mo]-after-VaS > k+ 1 (4)
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(I1I) To prove that the lemma holds when |D] < k.

(1) |D| <k and |[Sg, Tp]-after-V| = k hypothesis
(2)  [So,mgl-after-V C D definition of D
(3)  [So, To)-after-VaS = [so, mo|-after-V (1),(2).

Lemma 2 Assume 5y =g To. If |D| > m, then |[So, To]-after-Qa@S"""| > m; and if |D| < m,
then [5y, Tp)-after-Q@X" " = D.

Proof:

(I) To prove that the lemma holds when |D| > m.
(1) 3o =g Mg and |D| > m hypothesis
(2)  |[So0, T0]-after-Q| > n initially connected S, (1)
(3)  |[S0, Mo)-after-Q@X"""| > m Lemma 1, (1),(2).

(I1I) 1t is evident from Lemma 1 when |D| < m.

Lemma 3 If5; =y, my and 5; A, Mk, then i = j.

Proof:
(1) For VCY*5 my M <5 Rpref(v) Tk evident
(2) 5 ~pg, My, and 5; &g, Ty hypothesis
(3) i ®pres(a,) Mk and 5j Xppeg(m,) Mk (1),(2)
(4) i#y assumption
(5) JoeTr(s)@Tr(s;) N Pref(H;) N Pref(H;) definition of H;, (4)
(6) let o € Tr(s;), then o € Tr(Ty) (3)
7 oelr(s) (3).0)
(8) 1= (6),(7)5 Tr(5) @ Tr(s;).
Lemma 4 |D,.| < m.
Proof:
(1) M| <m hypothesis
(2) D, >m assumption
(3)  Asi, e, [55, M) (i # 4,5 ~u, Mk AN'Sj =, ™) (1),(2)
(35s, ], [55, k] (4 # 5,50 mw e A5 2w )
(4) D, <m (3)¢4Lemma 3 (definition of W).
Lemma 5 If Sy &=yaw T, then V[s;,myi] € D (3[5;, mi] € D,.).
Proof:
(1)  So=naw To hypothesis
(2) 80 NQ mo (1)
(3) ot (V[5;,my) € D (3[5;, ] € D)) assumption
(1) [So.mol afterQas" " € D, ¢ D (1.3
() D] >m (2),(4),Lemma 2
(6)  [S0,mo)-after-Q.5" 7" > m (2),(5),Lemma 2
(1) D Zzm (4),(6)
®) 3 Ml [s,me] € Dy (5 # 155 =w T A5 2w M) (7)
(9) not (5, =w ) definition of W
(10) V[s“mk] € D (3[5;, mi) € D,) (8)4+(9).
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Lemma 6 If sy ~yaw g, then V[§i,mk] eD (§Z' Rw, M < S; =W mk)

Proof:
(1) 3o ~naw o
(2)  [5i,m] € D, 5 mw, Ty
(3) S; Rw My
(4) S "W S
(5) i=j
(6) V[s;,mi] €D (5; =w, My = 5; =w Mg)
(7) Vs, M) € D (5 =w Ty = S; ~w, Mg)
(8) V[s;,m] € D (5 =w, My < 5; =w Mg).

Lemma 7 If 5, ~15 Mo, then [5o, Tp-after-Q@x" " = D,

Proof:
(I) To prove that the lemma holds when |D| < m.

(1
2
3

e~ N~ TN TN N
N N — ~ O T
NGNS N2 - ==

[

TN TN TN TN
-1
e e e e

D] < m

So =TS Mo

S0 ~=Q Mo

[5o, Tg-after-Q@X" ™" = D

V[5:, ;] € [So, Tol-after-QQY" ™" (5, =y, ;)
(V[5;, ;] € [S0, To]-after-Q@X" " (5; ~w m;))
D = Dr

To prove that the lemma holds when |D| > m.

|D| > m
So R Mg
[§0,m0]—after—Q@im_n+l CcD

V[s;, m;] € [So, Mo-after-Q@S" " (5; ~y. m))

(V[5:, 7] € [So, Mo]-after-Q@S" " (5, ~yy ;)
[§0,m0]—after—Q@im_n+l CD,

(S0, mo]—after—Q@im_n+1| >m+1

|D.| >m+1

|D| <m

[5o, Tgl-after-Q@X" ™" = D, = D

Lemma 8 If 3y ~7s Mg, then 5y ~ My.

Proof:

SN TN TN N N N
=W N =
S D e N e S

Sp AT Mg

V5, ] € D 3o € QAZ™ ™" ([5o, o) = 0 = [5;, ;)
§; Ry Ty,

not(So = o)

da € X EI[E,WZ'] eD not(@' 0 mz))

So &~ o

Lemma 9 35q ~71s Mg iff so = mg.
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hypothesis

assumption

(1),(2), Lemma 5
(2),(3), Wi C Pref(W)
(4), definition of W;
(2),(5)

definition of W,

=D.

hypothesis
hypothesis

(2)
(1),(3),Lemma 2
(2)

(4),(5),definition of D,.

assumption
hypothesis

definition of D
(2)

3),(4),definition of D,
1),(2)
)+(4)
)
)

,JLemma 2,Lemma 1

w

5)¢»Lemma 4

6),Lemma 2.

(
(
(
(
(

hypothesis
(1),Lemma 7
m
assumption
(4)

(5)52(3).



Proof:

1
2
3
4
5

AAA,_\,_\
e e S S e

Lemma 10 For all M € F(m), M passes TS” iff S = M.

So ~T9 Ty = Sg ~ T
So & Mg = Sg =75 Mo
So ~TS o <= Sg ~ My
Sp ~ S(hmo ~ Mo

So AT T <= Sg ~ My

Proof:

(I) To prove S &~ M = M passes TS’

(1)
(2)
(

w
=

(IT) To prove M passes T'S" — S ~ M.

S~ M

M fails T'S’, i.e. 3T € TS M fails T
Jo € Obs(pny ({(0) = fail) or

Jo € Tr(to (ell(c) = pass A o & Obs(t )

do € Tr(M)\Tr(S) or 3o € Tr(S)\Tr(M)

not (S~ M)
M passes T)S’

VM € F(m) (M passes TS’
dM € F(m) (not (S~ M))

do € TS (o € Tr(M)\Tr(S) or o € Tr(S)\Tr(M))

let T € TS where o € Tr(to)

l(o) = fail Ao € Obs(p\py or (o) = pass Ao & Obs(

M fails T, i.e. M fails TS’
S~ M
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Lemma 8

evident

(1:(2)

definition of TOS

(3),(4)-

hypothesis
assumption
definition 5, (2)

definition 6, (3)
definition 3, (4)

hypothesis
assumption
Lemma 9

T made by ¢
definition 6, (3)
definition 5 (5)
(5)(1).



