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relation does not deal with invalid traces, it allows for a trivial implementation which has asingle state with looping transitions labeled with all possible actions, and such an implemen-tation conforms to any LTS speci�cation with the same alphabet with respect to the confrelation [19]. Thus even though an implementation is concluded being valid based on conf,another relation, such as trace-equivalence, has to be tested as well.Observing and comparing traces of executed interactions is usual means for conformancetesting of protocols, and in many cases it is required that an implementation should have thesame traces as its speci�cation. In particular, most existing protocols are deterministic, and inthe case of determinism several other �ner testing semantics [23], such as failure or failure trace,are reduced to the trace semantics. Based on the notion of such experiments and the traceequivalence relation, a number of competing test derivation methods with fault coverage havebeen elaborated [10, 5, 17, 24, 9, 14, 12, 13] for protocols in the formalismof input/output �nitestate machines (FSMs), many of which use the state identi�cation techniques to obtain betterfault coverage. Compared to FSMs, LTSs are in some sense a more general descriptive modelwhich use rendezvous communication without distinction between input and output; thereare various criteria determining whether an implementation conforms to a speci�cation [23];most existing test derivation methods use the exhaustive testing approach in order to provethe correctness of the implementation in respect to a given conformance relation. Apparently,such an approach is often impractical since it may involve a test suite of in�nite length. Theapproximation approach [16, 21], such as n-testers, which is proposed to solve this problem,provides no fault coverage measure for conformity of the implementation with its speci�cation.Conformance testing should be developed in such a way that the given conformance rela-tion is determined by the real conformance requirements and test suites have �nite behaviorand ensure well-de�ned fault coverage. Several attempts have been made to apply the ideasunderlying the FSM-based methods to the LTS model [8, 4, 1, 18, 19] for several conformancerelations. In particular, this research is directed towards rede�ning the notions of state identi-�cation in the LTS realm for a given relation. [4] tries the UIO-based state identi�cation [17].[8] considers the characterization sets [5]. [1] introduces the state identi�cation machines. In[15, 18], another approach is taken, where an LTS is represented as an FSM model, an existingFSM-based method is applied, and then the derived tests are translated back into the LTSformalism. In [19], the HSI method [14, 13] is adapted for trace equivalence.However, these attempts are limited to individual or informal applications of the notions ofstate identi�cation underlying the FSM-based methods. In fact, the FSM-based notions canalso be applied directly to the LTS model if an appropriate distinguishabilty of states is de�nedin the LTS model. In the FSM model, two states are distinguished if di�erent output behaviorsare observed when a common input sequence is applied to the two states, respectively. In theLTS model, two states can be distinguished if, after a common sequence of interactions, agiven action be executed for one of the two states while the same action cannot be executedfor the other. Therefore, a systematic approach based on the notions of state identi�cationcan also be developed in the LTS model such that we could devise alternative and competingtechniques that guarantees fault coverage, for constructing useful tests for protocols based onthe LTS semantics.In this paper, based on the framework of testing LTSs [20] in respect to trace equivalence,we rede�ne in the LTS model the notions of state identi�cation which were originally used inthe FSM realm. Based on the adapted notions, the corresponding test derivation methods are2
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τFigure 1: An LTS graphpresented, and it is shown that for an FSM-based method with a notion of state identi�cationwe can have a corresponding LTS-based method with a similar notion of state identi�cation,and if the FSM-based method guarantees complete fault coverage then the LTS-analogue alsoguarantees complete fault coverage.2 Labeled Transition SystemsDe�nition 1 (Labeled transition system (LTS)): A labeled transition system is a 4-tuple< S;�;�; s0 >, where� S is a �nite set of states, s0 2 S, is the initial state.� � is a �nite set of labels, called observable actions; � 62 � is called an internal action.� � � S � (� [ f�g)� S is a transitions set. (p; �; q) 2 � is denoted by p��!q.An LTS is said to be nondeterministic if it has some transition labeled with � or thereexist p�a! p1; p�a! p2 2 � but p1 6= p2. A deterministic LTS has no internal actions andthe outgoing transitions of any state are uniquely labeled.An LTS can also be represented by a directed graph where nodes are states and labelededges are transitions. An LTS graph is shown in Figure 1.Given an LTS S =< S;�;�; s0 >, let p; q 2 S and � 2 � [ f�g, the conventional nota-tions shown in Table 1 are relevant to a given LTS, as introduced in [3]. In this paper weuse M;P;S; : : : to represent LTSs; M;P;Q; : : :, for sets of states; a; b; c; : : :, for actions; andi; p; q; s : : :, for states. The sequences in Tr(p) are called the traces of S in p.Given a set of sequences V 2 ��, we use the notation Pref(V ) to represent all pre�xesof sequences in V . Formally, Pref(V ) = f�1 2 �� j 9�2 2 �� (�1:�2 2 V )g. We also use\@" to represent the concatenation of two sets of sequences. Formally, assuming V1; V2 � ��,V1@V2 = f�1:�2 j �1 2 V1 ^ � 2 V2g. We also write V n = V@V n�1 for n > 0 and V 0 = f"g.In the case of nondeterminism, after an observable action sequence, an LTS may enter anumber of di�erent states. In order to consider all these possibilities, a state subset (multi-state [8]), which contains all the states reachable by the LTS after this action sequence, isused.De�nition 2 (Multi-state set): The multi-state set of LTS S is the set �S = fSi � S j 9� 2�� (s0-after-� = Si)g. 3



notation meaning�� set of sequences over �; � or a1 : : :an denotes such a sequencep��1 : : :�n!q there exists pk, 1 � k < n, such that p��1!p1 : : : pn�1��n!qp=")q p��n!q (1 � n) or p = q (note: �n means n times �)p=a)q there exist p1; p2 such that p=")p1�a!p2=")qp=a1 : : :an)q there exists pk, 1 � k < n, such that p=a1)p1 : : :pn�1=an)qp=�) there exists q such that p=�)qp 6=�) no q exists such that p=�)qinit(p) init(p) = fa 2 � j p=a)gp-after-� p-after-� = fq 2 S j p=�)qg; S-after-� = s0-after-�Tr(p) Tr(p) = f� 2 �� j p=�)g; Tr(S) = Tr(s0)Table 1: Basic notations for labeled transition systemsNote that S0 = s0-after-" is in �S and is called the initial multi-state. The multi-stateset can be obtained by a known algorithm which performs the deterministic transformationof a nondeterministic automaton with trace equivalence [11, 8]. For Figure 1, the multi-stateset is ffs0; s1g; fs2; s3g; fs2g; fs0; s1; s4; s5g; fs5gg.Obviously, each LTS has one and only onemulti-state set.After any observable sequence, a nondeterministic system reaches a unique multi-state.Thus from the test perspective, it makes sense to identify multi-states, rather than singlestates. This viewpoint is re
ected in the FSM realm by the presentation of a nondeterministicFSM as an observable FSM [12], in which each state is a subset of states of the non-observableFSM. The viewpoint is also re
ected by the refusal graphs [7], in which a node corresponds toa multi-state.3 Conformance Testing3.1 Conformance RelationThe starting point for conformance testing is a speci�cation in some (formal) notation, animplementation given in the form of a black box, and the conformance requirements that theimplementation should satisfy. In this paper, the notation of the speci�cation is the LTS for-malism; the implementation is assumed to be described in the same model as its speci�cation;a conformance relation, called trace equivalence, is used to formalize the conformance require-ments. We say that an implementationM conforms to a speci�cation S if M is trace-equivalentto S.De�nition 3 (Trace equivalence): The trace equivalence relation between two states p andq, written p � q, holds i� Tr(p) = Tr(q).Given two LTSs S and M with initial states s0 and m0 respectively, we say that M is trace-equivalent to S, written M � S, i� m0 � s0.We say that two states are distinguishable in trace semantics if they are not trace-equivalent.For any two states that are not trace-equivalent we can surely �nd a sequence of observable4



actions, which is a trace one of the two states, not both, to distinguish them. We also say thatan LTS is reduced in trace semantics if all of its states are distinguishable in trace semantics.3.2 Testing FrameworkConformance testing is a �nite set of experiments, in which a set of test cases, usually de-rived from a speci�cation according to a given conformance relation, is applied by a testeror experimenter to the implementation under test (IUT), such that from the results of theexecution of the test cases, it can be concluded whether or not the implementation conformsto the speci�cation.The behavior of the tester during testing is de�ned by the applied test case. Thus a testcase is a speci�cation of behavior, which, like other speci�cations, can be represented as anLTS. An experiment should last for a �nite time, so a test case should have no in�nite behavior.Moreover, the tester should have certain control over the testing process, so nondeterminismin a test case is undesirable [19, 22].De�nition 4 (Test cases and test suite): Given an LTS speci�cation S =< S;�;�; s0 >, atest case T for S is a 5-tuple < T;�T ;�T ; t0; ` > where:� �T � �;� < T;�T ;�T ; t0 > is a deterministic, tree-structured LTS such that for each p 2 Tthere exists exactly one � 2 ��T with t0=�)p;� ` : T ! fpass; fail; inconclusiveg is a state labeling function.A test suite for S is a �nite set of test cases for S.From this de�nition, the behavior of test case T is �nite, since it has no cycles. Moreover, atrace of T uniquely determines a single state in T, so we de�ne `(�) = `(t) for ftg = t0-after-�.The interactions between a test case T and the IUTM can be formalized by the compositionoperator \k" of LOTOS, that is, T k M. When t0 k m0 after an observable action sequence� reaches a deadlock, that is, there exists a state p 2 T �M such that for all actions a 2 �,t0 k m0= �) p and p 6= a), we say that this experiment completes a test run. In order tostart a new test run, a global reset is always assumed in our testing framework.Usually, LTSs are supposed to be nondeterministic. In order to test nondeterministicimplementations, one usually makes the so-called complete-testing assumption: it is possible,by applying a given test case to the implementation a �nite number of times, to exercise allpossible execution paths of the implementation which are traversed by the test case [8, 13].Therefore any experiment, in which M is tested by T, should include several test runs and leadto a complete set of observations Obs(T;M) = f� 2 Tr(t0) j 9p 2 T �M;8a 2 � ((t0 k m0)=�) p 6= a))g. Note that for deterministic systems, such as most of real-life protocols, thereis no need for this assumption.Based on Obs(T;M), the success or failure of testing needs to be concluded. The way averdict is drawn from Obs(T;M) is the verdict assignment for T: Obs(T;M) ) fpass; failg. Apass verdict means success, which, intuitively, should mean that no unexpected behavior isfound and the test purpose has been achieved; otherwise, the verdict should be fail. If wede�ne the test purpose of T, written Pur(T), to be Pur(T) = f� 2 Tr(t0) j `(�) = passg,then the conclusion can be drawn as follows. 5



De�nition 5 (Verdict assignment): Given an IUT M, a test case T, let Obsfail = f� 2Obs(T;M) j `(�) = failg and Obspass = f� 2 Obs(T;M) j `(�) = passg,( M passes T i� Obsfail = ; ^Obspass = Pur(T)M fails T otherwise:Given a test suite TS, we also denote that M passes TS i� for all T 2 TS M passes T, andM fails TS otherwise.3.3 State Labelings of Test CasesGiven a speci�cation S, the state labeling function of test cases T must be \sound", that is,for any implementation M, if M and S are trace-equivalent, then M passes T.In the context of trace equivalence, a conforming implementation should have the sametraces as a given speci�cation. Therefore each test case speci�es certain sequences of actions,which are either valid or invalid traces of the speci�cation. The purpose of a test case is toverify that an IUT has implemented the valid ones and not any of the invalid ones. Accordingly,we conclude that all test cases for trace equivalence must be of the following form [20]:De�nition 6 (Test cases for trace equivalence): Given an LTS speci�cation S, a test case Tis said to be a test case for S w.r.t. �, if, for all � 2 Tr(t0) and ftig = t0-after-�, the statelabeling of T satis�es`�(ti) = 8><>: pass if � 2 Tr(s0) ^ init(ti) \ out(s0-after-�) = ;fail � 62 Tr(s0)inconclusive otherwise:A test suite for S w.r.t. � is a set of test cases for S w.r.t. �.From this de�nition, we have the following proposition [20]: Given a test case T for S w.r.t.�, for any LTS M, if M � S, then M passes T.Since in trace semantics test cases for S are represented as valid or invalid traces of S,given a sequence � 2 ��, let � = a1:a2 : : : :an, a test case T for S w.r.t. � can be obtainedby constructing an LTS T = t0�a1! t1 : : : tn�1�an! tn and then labeling T according toDe�nition 6. A sequence that is used to form a test case is also called a test sequence.3.4 Fault Model and Fault CoverageThe goal of conformance testing is to gain con�dence in the correct functioning of the imple-mentation under test. Increased con�dence is normally obtained through time and e�ort spentin testing the implementation, which, however, is limited by practical and economical consid-erations. In order to have a more precise measure of the e�ectiveness of testing, a fault modeland fault coverage criteria [2] are introduced, which usually take the mutation approach [2],that is, a fault model is de�ned as a set of all faulty LTS implementations considered. Herewe consider a particular fault model F(m) which consists of all LTS implementations over thealphabet of the speci�cation S and with at most m multi-states, where m is a known integer.Based on F(m), a test suite with complete fault coverage for a given LTS speci�cation withrespect to the trace equivalence relation can be de�ned as follows.6



s

ss

s

21

0

c
b

a c
b

3

cFigure 2: A corresponding trace observable system of Figure 1De�nition 7 (Complete test suite): Given an LTS speci�cation S and the fault model F(m),a test suite TS for S w.r.t. � is said to be complete, if for any M in F(m), M � S i� M passesTS.We also say that a test suite is m-complete for S if it is complete for S in respect tothe fault model F(m). A complete test suite guarantees that for any implementation M inthe context of the given fault model, if M passes all test cases, it must be a conformingimplementation of the given speci�cation with respect to the given conformance relation, andany faulty implementation in F(m) must be detected by failing at least one test case in thetest suite.4 State Identi�cation in Speci�cationsSimilar to the case of FSMs, in order to identify states in a given LTS speci�cation, at �rst thespeci�cation is required to have certain testability properties, two of which are the so-calledreducibility and observability.4.1 Trace Observable SystemDe�nition 8 (Trace observable system (TOS)): Given an LTS S, a deterministic LTS S issaid to be the trace observable system corresponding to S, if S � S and S is reduced in tracesemantics.From the above de�nition, the TOS S of S is deterministic, reduced and trace-equivalent toS; moreover, the TOS S is unique for all LTSs trace-equivalent to S. There are the algorithmsand tools that transform a given LTS into its TOS form [11, 4]. For the LTS in Figure 1, theTOS is given in Figure 2.In the context of trace semantics, for any LTS, the corresponding TOS models all itsobservable behavior. Therefore, for test generation, any LTS considered can be assumed to bein the TOS form.4.2 State Identi�cation FacilitiesThere are the following facilities of state identi�cation which can be adapted from the FSMmodel to the LTS model. Here we assume that the given LTS speci�cation S is in the TOSform that has n states s0; s1; : : : sn�1, where s0 is the initial state.7



Distinguishing SequenceGiven an LTS S, we say that an observable sequence distinguishes two states if the sequencehas a pre�x that is a trace for one of the two states, but not for both. A distinguishing sequencefor S is an observable sequence that distinguishes any two di�erent states. Formally, � 2 ��is a distinguishing sequence of S if for all si; sj 2 S; i 6= j, there exists �0 2 Pref(�) such that�0 2 Tr(si)� Tr(sj). Given two sets A and B, A�B = (AnB) [ (BnA).There are LTSs in the TOS form without any distinguishing sequence. As an example, theLTS in Figure 2 has no distinguishing sequence.Unique SequencesA unique sequence for a state is an observable sequence that distinguishes the given state fromall others. Formally, �i 2 �� is a unique sequence for si 2 S, if, for all sj 2 S; i 6= j, thereexists �0i 2 Pref(�i) such that �0i 2 Tr(si) � Tr(sj). Let S have n states, a tuple of uniquesequences < �0; �1; : : : ; �n�1 > is said be set of unique sequences for S. If there exists � 2 ��such that �i 2 Pref(�), for 0 � i � n� 1, then � is a distinguishing sequence. The notion ofunique sequences, also called unique event sequences in [4], corresponds to that of FSM-basedUIO sequences [17].For the LTS in Figure 2, we may choose < a; b:a; b:a; c > as its unique sequences. Notethat unique sequences do not always exist. For example, if the transition s2�c!s3 in Figure 2is deleted, then no unique sequence exists for s3 in the resulting LTS.Characterization SetIf a set of observable sequences, instead of a unique distinguishing sequence, is used to distin-guish all the states of S, we have a so-called characterization set for S. A characterization setfor S is a set W � �� such that for all si; sj 2 S; i 6= j, there exists �i 2 Pref(W ) such that�i 2 Tr(si)� Tr(sj).There exists a characterization set W for any S in the TOS form. For the LTS in Figure 2,we may choose W = fa; b:ag.Partial Characterization SetA tuple of sets of observable sequences < W0;W1; : : : ;Wn�1 > is said to be partial characteri-zation sets, if, for all si 2 S; 0 � i � n�1, and for all sj 2 S; i 6= j, there exists �i 2 Pref(Wi)such that �i 2 Tr(si) � Tr(sj). The notion of partial characterization sets correspond to thenotion of partial UIO sequences in [6].Obviously, since the given S is in the TOS form, in other words, none of its two states aretrace-equivalent, there exist partial characterization sets for S. We also note that the union ofall partial characterization sets for S is a characterization set for S. For the LTS in Figure 2,we may choose < fag; fb:ag; fb:ag;fa; bg> as its partial characterization sets.Harmonized State Identi�ersA tuple of sets of observable sequences < H0;H1; : : : ;Hn�1 > is said to be a set of harmonizedstate identi�ers for S, if it is a tuple of partial characterization sets for S and for i; j =0; 1; : : : ; n�1; i 6= j, there exists � 2 Pref(Hi)\Pref(Hj). Hi also is said to be a harmonizedidenti�er for si 2 S. The harmonized identi�er for si captures the following property: for anydi�erent state sj, there exists a sequence �i in Pref(Hi) that distinguishes si from sj and �iis also in Pref(Hj).Harmonized state identi�ers always exist, just as partial characterization sets do. Asan example, for the LTS in Figure 2, we can choose the harmonized state identi�ers H0 =8



fa; bg;H1 = fb:ag;H2 = fb:ag;H3 = fa; bg. Considering H0: a is used to distinguish s0 froms3, so a is also in H3; b is used to distinguish s0 from s1 and s2, so H1 and H2 have b:a whereb is its pre�x.5 State Identi�cation in ImplementationsSimilar to FSM-based testing, we assume that the given implementation is an LTS M whoseset of all possible actions is limited to the set of actions � of the speci�cation S (the correctinterface assumption [2]). We also have a reliable reset, such that the state entered when thisimplementation is started or after the reset is applied is the initial state (the reliable resetassumption [25]). In the case of nondeterminism, it makes no sense to identify single states ofM, so M is also assumed to be a TOS, in which each multi-state consist of a single state. Forthis reason, we require that S is in the TOS form, so that a state identi�cation facility can bedeveloped from S and also can be used to identify the states of M.In order to identify the states of the implementation M, the number of states of M is alsoassumed to be bound by a known integer m. Therefore, M is also a mutant according to thefault model F(m).Similar to FSM-based testing [9], there are also the two phases for LTS-based testing. Inthe �rst phase, the used state identi�cation facility is applied to M to check if it can alsoproperly identify the states in M. Once M passes the �rst phase, we can in the second phasetest whether each transition and its tail state are correctly implemented. We present thestructure of tests for the two phases using harmonized state identi�ers as an example. Inorder to perform the �rst testing phase, proper transfer sequences are needed to bring M fromthe initial state to those particular states in M to which Hi should be applied. Moreover, itshould be guaranteed that all the sequences in Hi are applied to the same particular state inM. Since a reliable reset is assumed, we can guarantee this in a way similar to FSM basedtesting: after a sequence in Hi is applied, the implementation M is reset to the initial state,and brought into the same particular state by the same transfer sequence,and then anothersequence in Hi is applied. This process is repeated until all the sequences are applied.Accordingly, let Q be a state cover for S, i.e. for each state si of S, there exists exactlyone input sequence � in Q such that s0��! si, similar to FSM based testing, we can use< N0; N1; : : : Nn�1 > to cover all states of M (a state cover for M), whereNi = f� 2 Q@(�0 [ �1 [ : : : [ �m�n) j s0=�)sigand construct a set of test sequences to be executed by M from the initial state in the �rsttesting phase as follows: TS1 = n[i=0Ni@HiInituitively, sequences of the sets Ni are used to reach n required states, as well as allpossible (m�n) additional states in M. Harmonized state identi�ersHi are applied to identifyall states in M. In order to execute a given sequence � = a1:a2 : : : ak from the initial statem0, we can convert � into an LTS t0�a1! t2 : : :�ak! tk and then compose this LTS withM in parallel composition t0 k m0. Due to nondeterminism, it is possible that this run ends9



before the �nal action of this sequence is executed. Several runs are needed to exercise all thepossible paths of M that can be traversed by this sequence (the complete testing assumption).Using TS1, we can make test cases for LTS S for the �rst testing phase by transforming thesequences in TS1 into the corresponding LTSs as above and then labeling the LTSs accordingto De�nition 6. In the following, this transforming and labeling process is always implied ifwe say that a test suite is obtained from a given set of test sequences.After TS1 is successfully executed, all the states of M which execute all traces of Hk aregrouped in the same group f(sk), where 0 � k � n � 1.In the second phase of testing, for testing a given de�ned transition si�a! sj in S, it isnecessary to �rst bring M into each state mk 2 f(si), then apply a at this state to see if acan be executed; moreover, let M be in ml after a is executed, it is necessary to check thatml 2 f(sj) which should be veri�ed by Hj. (Note that due to nondeterminism,mk may reallybe a multi-state, the action that is expected to check may not be executed in a time, so theabove process should be tried several times.) On the other hand, we should further check ifany unde�ned transition out of si has been implemented in M, i.e. for each b 2 �, if si 6 �b!,then check that mk = b) does not exist. Because if mk�b! exists, M is surely an invalidimplementation, so it is not necessary to verify the tail state after b is executed.Obviously, Ni may be used to bring M to any state mk 2 f(si). Using this state cover, wecan obtain a valid transition cover < E0; E1; : : : En�1 >, whereEi = f� 2 n�1[k=0(Nk@�) j s0=�)sigwhich covers all transitions that should be present in any conforming implementation, and aninvalid transition cover E,E = f�:a 2 n�1[k=0(Nk@�) j 9si 2 S (s0=�)si 6=a))gwhich covers all transitions that should be absent in any conforming implementation.Next, Hi is used to verify the tail states of reached after each sequence in Ei. Excludingthe transitions that have already been tested in the �rst testing phase, we can construct theset of test sequences for the second testing phase as follows:TS2 = E [ (n�1[i=0(EinNi)@Hi)We conclude that the set of test sequences is expressed as follow, by combining the twosets of test sequences for the �rst and second testing phases:TS = TS1 [ TS2 = (n�1[i=0 Ni@Hi) [ E [ (n�1[i=0(EinNi)@Hi)= E [ (n�1[i=0 Ei@Hi)We have seen that the above checking experiments for the LTS model is an analogue ofthe checking experiments for the FSM model, except that invalid transitions need to be tested10



although their tail states need not to be veri�ed. Similarly, it is expected that a test suite whichis derived from S based on the above process is complete with respect to trace equivalence forthe fault model F(m). In the next section, we present the LTS-based test generation methods,based on various state identi�cation facilities presented in Section 4.2.6 Test Generation6.1 MethodsBased on the existing state identi�cation techniques, we have a number of methods for con-structing a set TS of test sequences for a given LTS speci�cation S and with certain faultcoverage for the fault model F(m). Let S be given in the form of a TOS with n states. Wecan obtain the state cover for implementation < N0; N1; : : :Nn�1 >, the valid transition coverfor implementation < E0; E1; : : :En�1 > and the invalid transition cover for implementationE as presented in the above section. Let E = Sn�1i=0 Ei and N = Sn�1i=0 Ni.The DS-methodSimilar to the FSM-based DS-method [10], we use a distinguishing sequence � for S to forma test suite for S, as follows. TS = E@f�g [ E (1)Theorem 1 Given an LTS speci�cation S in the TOS form and a distinguishing sequence �for S, the test suite obtained from TS as given in (1) is an m-complete test suite for S w.r.t.�. Unlike the traditional FSM-based DS-method, the LTS-based DS-method does not con-struct a single test sequence since a reliable reset exists. It seems that, in case of a deadlock,the reset is the only way to continue test execution.The US-methodLet < �0; �1; : : : ; �n�1 > be a set of unique sequences for S, then a test suite for S, which isan analogue of that derived by the FSM-based UIO-method [17], can be formed asTS = (n�1[i=0 Ei@f�ig) [ E (2)As a speci�c case, unique sequences might be pre�xes of the same (distinguishing) sequence.For the same reason explained in relation with the DS-method, the US-method does notcombine unique sequences using the rural Chinese postman tour algorithm to obtain an optimalsingle test sequence.Since unique sequences do not always exist, the US-method can be improved if partialcharacterization sets are used instead of unique sequences. This corresponds to the improve-ment on the UIO-method in [6]. Although partial characterization sets exist for any LTS inthe form of a TOS, like the US-method, the improvement can not guarantee that a derivedtest suite is m-complete. 11



A similar LTS-based test derivation method borrowing the notion of UIO sequences in theFSM model is proposed in [4], in which unique sequences are called unique event sequences.This method does not check invalid transitions, so it may not cover a fault where an unde�nedtransition has been implemented in the implementation.The Uv-methodIn order to obtain an m-complete test suite, the US-method can be improved such thatTS = N@(n�1[i=0 �i) [ (n�1[i=0(EinNi)@f�ig) [ E (3)Theorem 2 Given an LTS speci�cation S in the TOS form and a set of unique sequences< �0; �1; : : : ; �n�1 > for S, the test suite obtained from TS as given in (3) is an m-completetest suite for S w.r.t. �.The length of a set of test sequences derived by the Uv-method is usually larger thanthat of a set of test sequences derived by the US-method. However, unlike the US-method,it guarantees complete fault coverage. The Uv-method corresponds to the FSM-based UIOv-method [24].The W-methodGiven a characterization set W for S, we form a test suite for S by the following formula. Thisis an LTS-analogue of the FSM-based W-method [5].TS = E@W [ E (4)Theorem 3 Given an LTS speci�cation S in the TOS form and a characterization set W forS, the test suite obtained from TS as given in (4) is an m-complete test suite for S w.r.t. �.We note that in the case that jW j = 1, the W-method is the DS-method.The Wp-methodLet W be a characterization set for S and < W0;W1; : : : ;Wn�1 > be partial characterizationsets for S, similar to the FSM-based Wp-method [9], the Wp-method uses the following testsequences to form a test suite for STS = N@W [ (n�1[i=0(EinNi)@Wi) [ E (5)Theorem 4 Given an LTS speci�cation S in the TOS form, a characterization set W andpartial characterization sets < W0;W1; : : : ;Wn�1 > for S, the test suite obtained from TS asgiven in (5) is an m-complete test suite for S w.r.t. �.Obviously, a test suite derived from the Wp-method is a subset of a test suite derivedby the W-method using the union of the Wi as the W set. We note that the Uv-method isa speci�c case of the Wp-method, in which the union Sn�1i=0 �i is a characterization set and< f�0g; f�1g; : : : ; f�n�1g > are partial characterization sets.12



The HSI-methodLet < H0;H1; : : : ;Hn�1 > be harmonized state identi�ers for S, similar to the FSM-basedHSI-method [14, 13], The HSI-method follows completely the approach presented in the abovesection to form a test suite for S.TS = (n�1[i=0 Ei@Hi) [ E (6)Theorem 5 Given an LTS speci�cation S in the TOS form and harmonized state identi�ers< H0;H1; : : : ;Hn�1 > for S, the test suite obtained from TS as given in (6) is an m-completetest suite for S w.r.t. �.Since the union Sn�1i=0 Hi is a characterization set, the length of a test suite derived by theHSI-method is usually less than that of a test suite derived by the W-method.The Wp-method and the HSI-method are two basic methods; all the other methods arereduced to their speci�c or simpli�ed cases. For example, the DS-method is a speci�c case ofthe W-method, the Uv-method is a speci�c case of the Wp-method, while the Wp-method isan improved case of the W-method. On the other hand, the HSI-method is an improved casenot only of the US-method, but also of the W-method. Thus in order to prove all the abovetheorems, it is enough to prove the Wp-method and the HSI-method.6.2 ExamplesAssuming that the speci�cation is given in Figure 2, with the HSI-method, we can derive a4-complete test suite, which checks trace equivalence with respect to this speci�cation, as wellas to the speci�cation in Figure 1 which has the same traces, as follows.s0 s1 s2 s3State Identi�ers Hi a; b b:a b:a a; bState Cover Q " a c a:cValid Transition Cover Ei "; a:b a c a:c; c:b; c:cInvalid Transition Cover E = fb; a:a; c:a; a:c:a; a:c:b; a:c:cgTS = fb; a:a; c:a; a:b:b; a:b:a; a:c:a; a:c:b; a:c:c; c:b:a; c:b:b; c:c:a; c:c:bg. The correspondingtest cases are shown in Figure 3.Similarly, we could also use the Wp-method to derive a 4-complete test suite for thespeci�cation. s0 s1 s2 s3Wi a b:a b:a a; bQ " a c a:cEi "; a:b a c a:c; c:b; c:cW = fa; b:agE = fb; a:a; c:a; a:c:a; a:c:b; a:c:cg13
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AppendixIn this appendix we give the proof of Theorem 4 and Theorem 5. First we recall the basic assumptionsand introduce several notations to help the proof, then we prove a series of lemmas among whichLemmas 1, 2, 3, 4, 7, 8, 9 and 10 lead to Theorem 5 and Lemmas 1, 2, 4, 5, 6, 7, 8, 9 and 10 lead toTheorem 4.Given an LTS speci�cation S and an LTS implementation M, we assume the following:(1) All states of S and M are reachable from the initial state s0 and m0, respectively.(2) S is the TOS of S and has at most n states with n > 1.(3) M is the TOS of M and has at most m states with m � n.(4) si; sj ; sk; sl and mi; mj ; mk; ml represent the states of S and M, respectively.(5) A tuple of harmonized state identi�ers fH0; H1; : : : ; Hn�1g (for Theorem 5).(6) A characterization set W and a tuple of partial characterization sets fW0;W1; : : : ;Wn�1g(for Theorem 4).(7) Q is a state cover for S (See Section 5).(8) < N0; N1; : : :Nn�1 > is a state cover for M (See Section 5) and N = Sn�1i=0 Ni.(10) TS is a set of test sequences obtained by Theorem 5 or Theorem 4.(11) TS 0 be the test suite that is obtained from TS by converting each a1:a2 : : : ak 2 TS into an LTSt0�a1! t2 : : :�ak! tk and then labeling the LTS according to De�nition 6.De�nition 9 V{equivalence. Given a set V � ��, The V{equivalence relation between two states pand q, written p �V q, holds if and only if for all � 2 Pref(V ), � 2 Tr(p), � 2 Tr(q).Given two LTSs S and M with initial states s0 and m0 respectively, we say that M is V-equivalent toS, written S �V M, if only if s0 �V m0.notation meaning[si; mi]�a! [sj ; mj ] For a 2 �; si�a!sj and mi�a!mj[si; mi]=�) [sj ; mj ] For � 2 ��; si=�)sj and mi=�)mj[si; mi]-after-V given a pair of states [si; mi] 2 S �M , and a set V � ��[si; mi]-after-V = f[sj ; mj ] j 8� 2 Pref(V ) ([si; mi]=�) [sj ; mj ])gD D = [s0; m0]-after-��Dr Dr = f[si; mj ] 2 D j si �Hi mjg (f[si; mj ] 2 D j si �W mjg)�k �k = Ski=0 �iLemma 1 For V � ��, assume j[s0; m0]-after-V j � k. If jDj > k, then j[s0; m0]-after-V:�1j �k + 1; if jDj � k, then [s0; m0]-after-V@�1 = [s0; m0]-after-V .Proof:(I) To prove that the lemma holds when jDj > k.The lemma holds when j[s0; m0]-after-V j > k. Consider the case that j[s0; m0]-after-V j = k.(1) jDj > k and j[s0; m0]-after-V j = k hypothesis(2) [s0; m0]-after-V � D de�nition of D(3) 9[sk ; mk] 2 Dn[s0; m0]-after-V (1),(2)9[si; mi] 2 [s0; m0]-after-V (1)9� 2 Pref(V ) 9�:a 2 ��([s0; m0]=�) [si; mi]�a! [sk; mk ]) (2)(4) [sk; mk ] 2 [s0; m0]-after-V@�1n[s0; m0]-after-V (3)(5) [s0; m0]-after-V@�1 � k + 1 (4).17



(II) To prove that the lemma holds when jDj � k.(1) jDj � k and j[s0; m0]-after-V j = k hypothesis(2) [s0; m0]-after-V � D de�nition of D(3) [s0; m0]-after-V@�1 = [s0; m0]-after-V (1),(2).Lemma 2 Assume s0 �Q m0. If jDj > m, then j[s0; m0]-after-Q@�m�nj � m; and if jDj � m,then [s0; m0]-after-Q@�m�n = D.Proof:(I) To prove that the lemma holds when jDj > m.(1) s0 �Q m0 and jDj > m hypothesis(2) j[s0; m0]-after-Qj � n initially connected S, (1)(3) j[s0; m0]-after-Q@�m�n j � m Lemma 1, (1),(2).(II) It is evident from Lemma 1 when jDj � m.Lemma 3 If si �Hi mk and sj �Hj mk, then i = j.Proof:(1) For V � ��; si �V mk , si �Pref(V ) mk evident(2) si �Hi mk and sj �Hj mk hypothesis(3) si �Pref(Hi) mk and sj �Pref(Hj) mk (1),(2)(4) i 6= j assumption(5) 9� 2 Tr(si)� Tr(sj) \ Pref(Hi)\ Pref(Hj) de�nition of Hi, (4)(6) let � 2 Tr(si), then � 2 Tr(mk) (3)(7) � 2 Tr(sj) (3),(6)(8) i = j (6),(7)6, Tr(si)� Tr(sj):Lemma 4 jDrj � m.Proof:(1) jM j � m hypothesis(2) jDrj > m assumption(3) 9[si; mk ]; [sj ; mk](i 6= j; si �Hi mk ^ sj �Hj mk) (1),(2)(9[si; mk]; [sj ; mk](i 6= j; si �W mk ^ sj �W mk))(4) jDrj � m (3)6,Lemma 3 (de�nition of W ).Lemma 5 If s0 �N@W m0, then 8[si; mk] 2 D (9[sj ; mk] 2 Dr).Proof:(1) s0 �N@W m0 hypothesis(2) s0 �Q m0 (1)(3) not (8[si; mk] 2 D (9[sj ; mk ] 2 Dr)) assumption(4) [s0; m0]-after-Q@�m�n � Dr � D (1),(3)(5) jDj > m (2),(4),Lemma 2(6) [s0; m0]-after-Q:�m�n � m (2),(5),Lemma 2(7) jDrj � m (4),(6)(8) 9[sj ; mk ]; [sl; mk] 2 Dr (j 6= l; sj �W mk ^ sl �W mk)) (7)(9) not (sj �W sl) de�nition of W(10) 8[si; mk] 2 D (9[sj ; mk] 2 Dr) (8)6,(9).18



Lemma 6 If s0 �N@W m0, then 8[si; mk] 2 D (si �Wi mk , si �W mk).Proof:(1) s0 �N@W m0 hypothesis(2) [si; mk ] 2 D; si �Wi mk assumption(3) sj �W mk (1),(2), Lemma 5(4) si �W sj (2),(3), Wi � Pref(W )(5) i = j (4), de�nition of Wi(6) 8[si; mk ] 2 D (si �Wi mk ) si �W mk) (2),(5)(7) 8[si; mk ] 2 D (si �W mk ) si �Wi mk) de�nition of Wi(8) 8[si; mk ] 2 D (si �Wi mk , si �W mk).Lemma 7 If s0 �TS m0, then [s0; m0]-after-Q@�m�n = Dr = D.Proof:(I) To prove that the lemma holds when jDj � m.(1) jDj � m hypothesis(2) s0 �TS m0 hypothesis(3) s0 �Q m0 (2)(4) [s0; m0]-after-Q@�m�n = D (1),(3),Lemma 2(5) 8[si; mj ] 2 [s0; m0]-after-Q@�m�n(si �Hi mj) (2)(8[si; mj ] 2 [s0; m0]-after-Q@�m�n(si �W mj))(6) D = Dr (4),(5),de�nition of Dr.(II) To prove that the lemma holds when jDj > m.(1) jDj > m assumption(2) s0 �K m0 hypothesis(3) [s0; m0]-after-Q@�m�n+1 � D de�nition of D(4) 8[si; mj ] 2 [s0; m0]-after-Q@�m�n+1(si �Hi mj) (2)(8[si; mj ] 2 [s0; m0]-after-Q@�m�n+1(si �W mj))(5) [s0; m0]-after-Q@�m�n+1 � Dr (3),(4),de�nition of Dr(6) j[s0; m0]-after-Q@�m�n+1 j � m+ 1 (1),(2),Lemma 2,Lemma 1(7) jDrj � m+ 1 (3),(4)(8) jDj � m (5)6,Lemma 4(9) [s0; m0]-after-Q@�m�n = Dr = D (6),Lemma 2.Lemma 8 If s0 �TS m0, then s0 � m0.Proof:(1) s0 �TS m0 hypothesis(2) 8[si; mi] 2 D 9� 2 Q@�m�n ([s0; m0]=�) [si; mi]) (1),Lemma 7(3) si �� mi (1)(4) not(s0 � m0) assumption(5) 9a 2 � 9[si; mi] 2 D not(si �fag mi)) (4)(6) s0 � m0 (5)6,(3).Lemma 9 s0 �TS m0 i� s0 � m0. 19



Proof:(1) s0 �TS m0 ) s0 � m0 Lemma 8(2) s0 � m0 ) s0 �TS m0 evident(3) s0 �TS m0 , s0 � m0 (1),(2)(4) s0 � s0; m0 � m0 de�nition of TOS(5) s0 �TS m0 , s0 � m0 (3),(4).Lemma 10 For all M 2 F(m), M passes TS 0 i� S � M.Proof:(I) To prove S � M =) M passes TS 0.(1) S � M hypothesis(2) M fails TS 0, i.e. 9T 2 TS M fails T assumption(3) 9� 2 Obs(T;M) (`(�) = fail) or de�nition 5, (2)9� 2 Tr(t0 (ell(�) = pass ^ � 62 Obs(T;M))(4) 9� 2 Tr(M)nTr(S) or 9� 2 Tr(S)nTr(M) de�nition 6, (3)(5) not (S � M) de�nition 3, (4)(6) M passes TS 0 (5)6,(1).(II) To prove M passes TS 0 =) S � M.(1) 8M 2 F(m) (M passes TS 0) hypothesis(2) 9M 2 F(m) (not (S � M)) assumption(3) 9� 2 TS (� 2 Tr(M)nTr(S) or � 2 Tr(S)nTr(M)) Lemma 9(4) let T 2 TS where � 2 Tr(t0) T made by �(5) `(�) = fail ^ � 2 Obs(T;M) or `(�) = pass ^ � 62 Obs(T;M) de�nition 6, (3)(6) M fails T, i.e. M fails TS 0 de�nition 5 (5)(7) S � M (5)6,(1).�
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