
Automating the process of test derivation from SDL specifications

G. v. Bochmann, A. Petrenko✬, O. Bellal, and S. Maguiraga

Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada,
bochmann@iro.umontreal.ca

✬ CRIM, Centre de Recherche Informatique de Montréal, 1801 Avenue McGill College, Suite
800, Montréal, H3A 2N4, Canada, petrenko@crim.ca

In this paper, we present a set of automated tools for the development of conformance tests
following a methodology based on a partial unfolding of a given SDL specification, describing
the behavior of the system under test. The methodology relies on FSM-based test derivation
methods which focus on the fault coverage aspect of testing. The tool kit offers to the test
designer a number of options for achieving different levels of fault coverage. In particular, it
provides support for partial specifications, grouped transitions and timers. The tests, which are
generated in SDL or in TTCN must be completed by hand concerning certain aspects related to
signal parameters, however, most of these adjustments are relatively straightforward and
certain parts of the original SDL specification can be reused without change. We also report on
our experience of using the tool kit for the development of a test suite for the ATM PNNI
signalling protocol.

1. INTRODUCTION

The specification of a system component or a protocol entity is the basis for any
implementation or testing effort [1]. In order to (at least partially) automate these efforts, it is
necessary that the specification exists in a form which is machine processable. Formal
description techniques, such as SDL, have been developed with essentially two objectives:

(1) encouraging the development of precise specifications which do not allow for any
ambiguities, and

(2) allowing the partial automation of the system development activities, such as the
verification and evaluation of the system design (e.g. protocol specification); the
implementation process, as existing (SDL) tools allow to produce implementation code [2];
and the test development process, in particular semi-automated development of test purposes,
abstract test suites (written in TTCN, SDL or some ad hoc notation, possibly including
sequences of API calls) and their validation and finally automatic translation into executable
tests (Note: the automation of test suite development is most advanced for the FSM-related
aspects of the specifications).

While the use of formal specifications has many advantages, there are also some important
shortcomings:
(a) It takes time to build a formal specification.
(b) The performance of the automatically generated implementation is less than optimal.
(c) The aspect of PDU encoding is often difficult to express in the formal language. Coding
routines written by hand may be used.
(d) Concerning test development, the following observations can be made:

- Most tools only automate part of the test development process.
- The test development process may be more difficult to be controlled by the test designer
because certain decisions are taken by the tool (for instance the choice of a particular
preamble, among several possibilities, for a given test case).
- Most testing tools address the control flow (FSM) aspects only, and neglect the aspects
related to interaction parameters.

In this paper we concentrate on the problem of automatically deriving tests from a given
specification in SDL. We present a tool kit which partially automates the derivation of a test
suite from a specification and shortly describe its use for the development of a test suite for the
ATM PNNI signalling protocol. Our approach to the design of testing tools, further discussed
in Section 2, is based on the automatic extraction of a partially unfolded FSM model from the
given SDL specification and the use of existing test derivation tools for partially specified
FSM specifications. Using a pragmatic approach for the partial unfolding, the FSM model
allows us to exploit the fault coverage guarantees provided by FSM-based test development
methods (in an approximated manner) for the tests obtained from the SDL specification. We
believe that our attention to fault coverage aspects, as compared to code (or transition)
coverage considered by many other testing methods, leads to better test suites. Section 3
describes the proposed test development process and the tools we have developed for this
purpose. Sections 4 and 5 discuss certain tool extensions which concern the efficient testing of
groups of coherent transitions (such as erroneous or unexpected inputs) and the testing of the
behavior of timers. Our experience with the application of the methodology to the ATM PNNI
signalling protocol is described in Section 6, which is followed by the conclusions.

2. OUR APPROACH TO THE DESIGN OF TEST TOOLS FOR SDL

The underlying model of an SDL specification is an Extended Finite State Machine (EFSM).
Its most general form has not only internal (context) variables, but also input parameters such
that a transition can only be executed if its enabling condition (usually in the form of a
predicate depending on input parameters and state variables) is satisfied. It is a well-known
difficult problem to derive a parameterized input sequence which either transfers an EFSM to a
desired state or which distinguishes a pair of states. Compared with the classical FSM model,
the EFSM model may give a very compressed behavioral description of the system, but at the
same time, it is much less tractable for verification and test derivation purposes. If certain
limiting assumptions are made about the form of the predicates and actions, the analysis of the
behavior of the specification and systematic test selection remains decidable [3], but in general,
in particular when the actions may include loops, the question of deciding which input
parameters should be used in order to force the execution of a particular transition becomes
undecidable, like the question of deciding the executability of a given branch of a program in
software testing.

Several researchers have proposed to use dataflow analysis for the systematic selection of
test cases for EFSM, and therefore for SDL specifications. Dataflow analysis involves the
input and output parameters and the additional state variables. By selecting appropriate test
cases involving appropriate transitions, it is possible to satisfy the testing criteria that have
been developed for software testing, such as "all definition-use pairs", etc. [4]. The aspect of
fault detection is, however, not directly addressed within these approaches. An alternative
approach is to view an EFSM as a compressed notation of an FSM. The intention behind this

approach is to retain the applicability of the FSM-based methods to generate tests. In this
approach, at least three solutions exist to obtain a more tractable state-oriented specification:
(1) to derive a pure FSM by ignoring all the extensions (parameters, predicates, and actions) to
basic FSM model;
(2) to unfold the EFSM into an FSM by expanding the values of the input parameters;
(3) to extract an FSM by the partial unfolding of variables of enumerated types, while using
enabling conditions as a part of the corresponding FSM inputs.

The main drawback of the first option is that all the tests derived from the obtained FSM
should be verified for executability. The second option, a straightforward unfolding of an
EFSM, easily leads to an explosion of the number of states and inputs. In our work, we have
decided to follow a compromise solution. The partial unfolding approach is based on the
observation that most real protocols have not so many complicated predicates, a majority of
transitions are not guarded by any predicate at all, while internal variables of enumerative types
can easily be eliminated by unfolding (see also the normalization, as suggested in [5]). This
observation has been reported by a number of researchers. It supports an optimistic view that
“the worst usually does not come to the worst”. More precisely, we approximate the behavior
of the SDL specification by an FSM (called an approximating machine), where an input of the
FSM corresponds to a pair of an input signal and an enabling condition (if any), while states of
the FSM mostly correspond to the control states of the SDL specification, except for unfolded
states which are control states augmented with values of enumerative variables. In Section 3.2,
we present the tool FEX (FSM extractor) which construct such an approximating machine
from a given SDL specification. We believe that this approach has a number of attractive
features:
• the state/transition explosion is alleviated compared with “complete” unfolding;
• the construction of an approximating machine can easily be automated;
• FSM-based methods can be applied to generate tests with high fault coverage;
• a good number of sequences derived from such an approximating machine usually remains

executable with respect to the original SDL specification;
• the number of non-executable sequences and, thus, of human interruptions needed to adjust

them is controlled;
• existing commercial SDL tools can be used to check the executability of sequences

modified by hand;
• once a major part of a test suite with a certain fault coverage (in terms of the FSM-based

fault models) needs no adjustments, the final test suite is expected to have a high fault
detection power, as well.

Of course, the approach becomes less attractive for an EFSM with rather complicated
enabling conditions, when most test sequences should be adjusted by hand. However, it never
becomes inferior to the approach completely neglecting the predicates and parameters.

3. OUR TOOL KIT FOR TEST DERIVATION
3.1. The process of test derivation
A number of different tools have been developed at the University of Montreal for partially
automating the test development process. Most tools use an underlying FSM model, that is, the
behavior of the system to be tested is expressed in terms of a number of states and inputs, and
the outputs and state transitions produced by the arrival of a given input in a given state. These

tools are therefore useful for systems that can be characterized by FSM-oriented specifications,
such as communication protocols.

In the following we focus on a chain of tools for the development of test cases from SDL
specifications, as shown in Figure 1.

SDL Specification

FSM Specification

Test case
(SDL skeleton)

FEX
FSM extractor

Definition files
TAG

automatic test
derivation

USER

Completed Test Case
(SDL)

SDT
Validator

Validated Test Case
(SDL)

Executable Test Case
(C code)

T2CC
(SDL to C
translator)

Figure 1: Test suite development from SDL specifications
The diagram of Figure 1 shows in the middle column the description of objects leading from

the formal specification in SDL of the component to be tested to the executable test cases
written in C code. On the left and on the right are shown the tools that can be used during the
test development process. The first tool, called FEX (FSM Extractor) extracts from the SDL
specification a partial view of the behavior represented in the form of an FSM. At the same
time, files containing SDL declarations of interactions (called "signals") and channels are
created which can be later used for obtaining complete test cases written in SDL. The FEX tool
generates an FSM transition for each branch of each SDL transition in the specification; thus
each branch corresponding to a particular input and particular conditions of the input
parameters gives rise to a separate transition (for each state of the specification). We note that
the resulting FSM model is quite similar to the "test matrix" which is commonly used for the
(manual) development of protocol conformance test suites. The TAG (Automatic Test
Generation) tool [6] is a generic tool for test suite development based on FSM specifications. It
accepts as input a partially specified, deterministic FSM and generates test cases according to
the options provided by the test designer. The options include the following:
(a) Automatic generation of a complete test suite with guaranteed coverage of output and

transfer faults (assuming that the number of states of the implementation under test (IUT) is
not larger than the number of states of the specification);

(b) Generation of tests for a specific transition (corresponding to a given "test purpose")
selected by the test designer;

(c) The use of state identification sequences for checking transfer faults is optional;
(d) Separate generation of test preambles, postambles and state identification sequences;
(e) Generation of tests related to timers (setting, resetting and time-out transitions, further

discussed in Section 5)

(f) Generation of tests for grouped transitions (corresponding to a single SDL transition having
several starting states, or several input signals, further discussed in Section 4).
It is important to note that the TAG tool supports several output formats for the generated

test cases:
(1) I/O sequences: This format is easy to read and relatively condensed.
(2) SDL skeletons: The generated SDL skeletons represent test cases, preambles, postambles
and state identification sequences. They are complete SDL procedures, except that the details
concerning the signal parameters are not included. (Note: If the SDL signals of the
specification have no parameters, the generated SDL skeletons are complete SDL procedures).
(3) TTCN-MP skeletons: The generated skeletons represent test cases, preambles, postambles
and state identification sequences. They are complete TTCN dynamic behavior trees, except
that the details concerning the signal parameters are not included.

The generated test suite (in SDL or in TTCN) must in general be completed by hand (see
below) in order to add the information concerning the signal (interaction) parameters, that is
the checking of the conditions to be satisfied by the input parameters and the determination of
the parameter values of the output signals.

The next development step shown in Figure 1 is the validation of the obtained test cases
against the original SDL specification, using an existing SDL development environment. After
this validation step, the test cases may be compiled into executable C code, thus resulting in
executable test cases. An SDL-to-C translator developed at the University of Montreal has
been enhanced with a facility for automatically generating PDU coding and decoding routines.
It has also been extended to partially automate the variation of parameter values used by the
test cases. This tool, described in Section 3.5, allows the test designer to control the automatic
variation of interaction parameters for obtaining a repeated execution of a given test case with
varying interaction parameters. In the case that the generated test cases should be obtained in
the TTCN language, the TTCN output option of the TAG tool could be used. The resulting test
cases should be completed by hand in a way similar to what is described above. In this case, it
would be profitable to generate the definition files in TTCN-MP, however, this would require
the automatic translation of the declarations from SDL to TTCN.

3.2. Generating an FSM model from an SDL specification: the FEX tool
The FEX tool applies a normalization algorithm on a given SDL1 specification in order to
extract an FSM model from it. One or more transitions in the generated FSM correspond to a
given input at a given state in the SDL specification. This is due to the fact that the tool uses
partial unfolding to preserve constraints on the values of message parameters. In addition, FEX
generates additional files to be included in the SDL skeletons of test cases generated by TAG.
They contain data type declarations, signal declarations, channel and signal route definitions
and related information.

The FSM format used by TAG and generated by FEX is simple and intuitive. It consists of
four sections specifying the FSM states, inputs, outputs and transition lists. Input signals are
usually parameterized as shown in Example 3.1, for input I2. In this case FEX generates
several transitions for the parameterized input using partial unfolding of parameters. Each
transition corresponds to a different value of the parameter as specified in the subsequent
decision statement. In Example 3.1, two transitions are generated for input I2 at state S0;

1 We use a subset of SDL which allows the description of one-process specifications.

corresponding to values 0 and 1 of parameter n. TAG treats I2(n=0) and I2(n=1) as two
different inputs.
Example 3.1
SDL specification:
state S0;

input I1;
output O1;
nextstate S1;

input I2(n);
decision n;

(0): output O2;
 nextstate S2;
(1): output O3;
 nextstate S3;

enddecision;
FSM transitions generated:
S0 ?I1 !O1 >S1;
S0 ?I2(n=0) !O2 >S2;
S0 ?I2(n=1) !O3 >S3;

As mentioned in the introduction, TAG produces SDL skeletons of derived test cases which
are completed manually by the test designer. The information present in the reference SDL
specification related to input/output parameters can be very useful to the user in this sense.
FEX carries this information and reproduces it in the FSM specification, which is then
reproduced by TAG as comments in appropriate places in the generated SDL skeletons of test
cases. This helps the test designer avoid referring to the SDL specification each time he wants
to complete a test case. Example 3.2 shows how assignment statements and timer operations
are gathered and reproduced for a corresponding transition. Assignment task p := 7; and
timer setting set(now+100,T); are associated to the second transition.
Example 3.2
SDL specification:
state S0;

input I1;
output O1;
nextstate S1;

input I2(n);
decision n;

(0): task p := 7;
 set(now+100,T);
 output O2(p);
 nextstate S2;
(1): output O3;
 nextstate S3;

enddecision;
FSM transitions generated:
S0 ?I1 !O1 >S1;
S0 ?I2(n=0) !O2 >S2 {(p := 7), set(now+100,T)};
S0 ?I2(n=1) !O3 >S3;

The main process of the SDL specification may make calls to procedures. These have their
own FSM part. It may also make several calls to the same procedure, however, recursive calls
are not supported. FEX produces one global FSM for the entire specification. FSM parts of
called procedures should be linked to the main process FSM. When FEX encounters a
procedure call, it produces a transition to the start state of this procedure. It then generates all
of its transitions. The states generated for a given procedure must be different for each call of
the procedure. To avoid state name collision, FEX prefixes a procedure state name with two
things: the name of the procedure (to avoid collision with state names of other procedures), and

a call number (to distinguish state names of different calls of the same procedure). For
instance, p_2_S1 denotes state S1 of the second call of procedure p.

The tool only accepts a single-process SDL specifications and does not support recursive
procedures. Besides, some control aspects related to state variables cannot be captured and
preserved in the process of FSM extraction. For instance, the iteration of some transitions
expressed by a counter variable cannot be reflected in the generated FSM. Typically, another
transition is triggered whenever the counter reaches a specified value, i.e. after a number of
iterations on other transitions. The FSM transition which corresponds to this latter case
contains the iteration information only in the form of a condition associated with the input
which cannot be interpreted in the proper way by the TAG tool. Therefore the generated test
case(s) for this transition do not contain the sequence of input/output corresponding to the
iteration part. In such cases, the test designer should be able to add the necessary interactions to
obtain executable test cases. An example is given in [7].

3.3. Test derivation: the TAG tool
TAG implements the so-called transition identification approach for test derivation from an
FSM. In particular, to achieve a particular test purpose which is a certain transition to be tested,
the following steps have to be performed:
- bring the FSM from its initial state to the starting state of the transition under test using the

shortest input sequence possible (called a preamble of the test case);
- execute the transition and check the observed output;
- check a tail state of the transition by observing its reaction to a pre-selected set of state

identification sequences, which can verify the correctness of the tail state (a test body to
achieve the test purpose);

- apply an input sequence to return to the initial state of the FSM (a postamble of the test case).
The user may specify a so-called homing sequence which is expected to take the FSM from

any state back to the initial state. The set of all preambles is called a state cover; the set of
sequences used to execute all specified transitions is called a transition cover. State
identification sequences are input sequences which distinguish states by their output reactions.
Some FSMs may have indistinguishable states for which there exists no sequence which tells
them apart. If this is the case for the given FSM then the tool still produces test cases, however,
certain transfer faults in implementations might not be detected. A reduced or minimal
machine has no indistinguishable states, and the tool produces a test suite for such a machine
with the guaranteed coverage of all output and transfer faults within the specified number of
states. The tool, further described in [6], implements the so-called HSI method [8], [9] which is
similar to the widely known W-method [10] in which a characterization set is used for state
identification. However, the HSI-method uses a tuple of subsets of a W set for the
identification of each state and can be applied to partially specified FSMs. The tool supports
the following two modes of test derivation:
- complete test derivation, when a test suite has to test all transitions specified in the given

FSM (according to the HSI method);
- selective test derivation, when a test case has to test a single transition given as a test purpose.

Before starting the tool, the user must have a text file containing the FSM specification with
suffix ".fsm’’. This file can be produced by transforming an SDL specification through the tool
FEX, or directly by using a text editor. The FSM specification is required to be deterministic
and initially connected, but it may be partially or completely specified.

An FSM description consists of six parts: (1) the state definitions, (2) the input definitions,
(3) the output definitions, (4) the transition definitions, (5) the variable declaration and (6) the
homing sequence definition; parts (5) and (6) are optional.

The user may use keyword "homing’’ to give a sequence of input names as a homing
sequence of the FSM specification, that is, it leads the FSM from any state to the initial state.
The names in the homing sequence may be undefined input names. The principle is that TAG
adds a postamble in a test case, if there is a postamble for a tail state, the postamble is used;
otherwise, if the homing sequence is given, the homing sequence is used. If there is no
postamble and no homing sequence is given, no postamble is included in the test case.

The FSM specification is analyzed, the tool displays the related information, such as
whether or not it is initially connected, it has indistinguishable states, equivalent states, and
states with no postamble. If there are non-deterministic transitions in a certain state in a given
specification, one among these non-deterministic transitions is kept in the compiled FSM and
the others are ignored. Test derivation for an FSM with indistinguishable states is also
possible, though some faults in these states might not be detected. In these two cases the tool
will prompt a warning message. The tool derives preambles and postambles (if required) for all
the states of a given machine. A transition cover is also generated when a complete generation
of tests is chosen.

To obtain a minimal characterization set for a given FSM, as well as minimal harmonized
state identification sets, may be an NP-hard problem. The tool TAG uses, therefore, an
heuristic solution attempting to obtain minimal HSI sets. As the experiments show this method
constructs state identifiers in a nearly polynomial time [6]. The user may select just one
sequence from a state identifier to confirm the tail state of a transition.

We note that the TAG tool supports three different formats in which the tests can be
generated. An easily readable mnemonic format in the form of I/O sequences, SDL skeletons
and TTCN behavior tables. A complete example of the test case generated for a given
transition of the INRES protocol is given in [7].

3.4. Completing the generated test skeletons
SDL skeletons of the generated test cases must be completed by the test designer with respect
to the aspects:

- to supply values for all output signal parameters, where needed;
- to supply variables to store all input signal parameters, where needed;
- to add decision statements after input statements in order to check parameter values,
where needed;
- to supply the necessary declarations of variables and associated type definitions.

The type definitions can be imported from the original SDL protocol specification, however,
the other three aspects must be written by the test designer for each specific test case. As an
example, we consider second FSM transition of Example 3.3 above. Part of the SDL skeleton
generated by TAG is shown below. We note that the test case specifies the behavior of the
tester, therefore the inputs of the FSM specification become the outputs for the tester and vice
versa.

...
/* USER: make n = 0 */
output I2(/* USER: fill parameters */);
nextstate wait_O2_in_S0;

state wait_O2_in_S0;
/* (p := 7), set(now+100,T) */

input O2;
/* USER: Check parameters */
...

Completed by the test designer, this part of the test case may look as follows. Note in
particular the assignment statement (p := 7) is replaced by a decision statement which
checks the assigned value of the parameter P of input O2.

...
task n := 0;
output I2(n);
nextstate wait_for_O2_in_S0;

state wait_for_O2_in_S0;
input O2(P);
decision P;
 (7): RETURN;
 (else): MACRO fail(’param. of O2 expected to be 7’);

 return;
enddecision;
...

Except for the handling of interaction parameters, the test case skeletons generated by TAG
are complete SDL specifications, including all necessary BLOCK, CHANNEL and PROCESS
definitions. A test suite is represented as an SDL process which contains the test preambles,
state identification sequences and postambles as procedures. Each test case is also represented
as a procedure calling, in order, the preamble, the transition under test, optionally the state
identification sequence and the postamble.

3.5. Parameter variation
One of the difficulties encountered during test design is the generation of different tests for the
different values of input parameters to be tested. The Test Parameter Variation tool can be used
to generate such tests with different representative valid and/or invalid values. It first generates
additional representative values for each test parameter according to its declared type, and then
generates tuples of test values possibly varying simultaneously the values of several test
parameters. The scheme of variation can be specified by the test designer in the test script. The
test designer is given the possibility to specify some or all of the representative valid and/or
invalid values for a given test parameter; the Test Parameter Variation tool completes the lists
of valid and invalid values, if left open by the test designer. Tuples of parameter values to be
used in tests are output in files which are used by the generated code during test execution.

Since it is impossible to test an implementation under test with all possible values of test
parameters, a representative set of values has to be chosen. Both normal and abnormal
situations should be applied to the IUT. Therefore test parameter values should include both
representative valid and invalid values. In this respect, two kinds of problems are to be
addressed. The first one is related to the generation of sets of representative values from
determined data types; the second involves the organization of these sets of values in value
tuples, which can be applied in a single execution of a test case.

Most methods for value generation use the idea of dividing the set of values of a given data
type into equivalence classes, where each equivalence class regroups values of the given type
that are considered to lead to the same testing effect. One representative value is then chosen
from each equivalence class. Equivalence classes are determined for invalid values as well.
Some methods use the limit values in types to determine valid and invalid values. In contrast,
other methods rely on the test designer’s intuition. We choose here a combination of these
methods where valid and invalid values are automatically generated and/or determined by the
test designer (see also [11], [12]). Values tuples are then automatically calculated, and the test

designer may suppress some of these value tuples or add others that he believes appropriate for
testing based on his expertise.

After the generation of the possible values (representative "normal" values and "invalid"
values) for each parameter to be selected by a test case, it is important to determine which
combination of values should be applied in a test run. If all parameter values are varied
independently of one another, a combinatorial explosion of test runs could easily occur.
Therefore the test designer should indicate which combination of parameter values should
actually be used in the test runs. The problem here is to generate a set of combinations that
cover all of the valid and invalid representative values. This is not straightforward because
dependencies may exist between some of the parameters, for instance between a string (one
parameter) and its length (another parameter). Moreover, a test designer may want to have
some parameters varied in parallel and others in a dependent way. Three methods of value
variation can be specified: variation in combination, in parallel, and free variation.

4. COHERENT TRANSITIONS RESULTING FROM SDL SPECIFICATIONS

In spite of the fact that state/transition explosion does not usually occur when an approximating
machine is derived from an SDL specification, the number of transitions specified in the
obtained machine can yet be very high. As a result, the total length of tests derived by means of
TAG tool could be quite big, as well. This often happens when a single transition of the given
specification yields in the resulting machine multiple “similar” transitions having the same
output. The basic idea is to test only one (or a few) transition among a set of similar ones. In
the following, we first take a closer look at the source of multiple transitions and then we
describe how these transitions could be handled, involving some pragmatic decisions, in order
to further reduce the number of generated tests.

First, it is well known that a single statement in SDL may be used to describe multiple
transitions. For example, the fragment
state * (s1, s2, s3);

input i1, i2;
output o;
nextstate s4;

corresponds to many transitions from all states, except s1, s2, s3, under input i1 or i2. Each of
these transition has the same output o leads to the same next state s4. We call such a group of
transitions convergent transitions. If the next state is specified as "-" (meaning to remain in the
same state), then the statement describes the set of transitions which we call a group of looping
transitions. In addition, the symbol "*" may be used to describe a set of inputs.

Second, according to the SDL semantics, all unspecified inputs in a given state must be
ignored (the so-called completeness assumption). Speaking formally, any approximating
machine should therefore be completely specified by enumerating all transitions implied the
completeness assumption. An exception could apparently be made for inputs representing
primitives from an upper layer, as they are usually left undefined in standardizing documents.
Extracting a finite state machine from any specification, the “ignored” inputs imply a number
of looping transitions labeled with the dummy “null” output. The test designer may decide to
test whether the (completeness assumption) [4] is correctly implemented by applying a limited
number of inputs (PDU’s) in certain states, leaving the majority of the implied transitions
untested.

Finally, multiple transitions also result from unfolding the parameter values of input signals
and/or the values of control state variables. Such groups of transitions are considered by the
parameter variation tool described in Section 3.5, but are not considered in the following.

In general, we call a group of convergent or looping transitions a group of coherent
transitions. These groups can be distinguished according to the sets of starting states and/or the
sets of inputs; all transitions of a group have the same output. The information about coherent
transitions may either be deduced automatically from a given SDL specification or given by
the test designer in the form of a list of coherent groups (in addition to the list of individual
transitions).

In our extended TAG tool, the following notation is used to specify coherent transitions. “E
!I ?O > -“ represents a group of cycling transitions for the set of states E, labeled with all
inputs of the set I and the output O. A similar notation “E !I ?O > S“ is used for convergent
transitions. The sets E, I can be specified explicitly by enumeration; the expression “*\P” is
used for the complement of P.

The decision to test a single representative among convergent transitions is based on the
following “fault-coupling” hypothesis. In particular, if a single transition has a fault then all
coherent transitions in the group are faulty; all of them have a wrong output or/and wrong tail
state. Testing just one among the group would be sufficient. Theoretically speaking, fault
detection power of the resulting test suite may not always correspond to what is often called
“complete fault coverage” [13]. However, deriving tests only for selected transitions gives a
good tradeoff between the length of tests and the fault coverage. Again, it is up to the user of
the tool to make a proper selection of transitions to be tested. Note that in the case of cycling
transitions, not one, but at least two transitions should be selected. The reason is that, an
implementation error may convert them into convergent transitions leading to the same state
which, by chance, may have been chosen for testing the cycling transition of the specification.

The extended TAG [14] performs such "selective" test generation. However, it does not take
coherence into account for the generation of state identifiers; therefore the same state
identifiers (if requested by the test designer) are used for complete or selective test derivation.

5. HANDLING TIMERS AND RELATED COUNTERS

Error-recovery functions of communication protocols often rely on timers which invoke
limited retransmission of PDU’s. At the expiration of a timer, a specific output is sent and the
timer is restarted if the maximum number of retransmissions is not yet attained. If the
maximum number is reached, usually a different transition with a different output is taken, for
example, to release the current connection. Certain received input messages may stop a running
timer.

The classical model of an FSM has no notion of time, yet it is quite common to use, in state-
oriented specifications, a dummy input T to represent a silent time period which leads to the
expiration of time T. To model the behavior triggered by timers and related counters, one
typically augments FSM transitions between (control) states by internal actions “start T”, “stop
T” and adds transitions guarded by timer expirations (time-outs), as shown in Figure 2.

r s
i1/o, start T

i4/o, stop T
t

i2/o, stop T
i5/o

T&C<max/
o1, start T

p
T&C=max/o2

i3/o

Figure 2: The fragment of a machine with the timer

Here, C represents a counter used by the protocol entity to ensure that the number of timer
expirations never exceeds a given limit max. As this fragment of a specification indicates, an
FSM with timers and related counters is a special case of the model of an extended FSM
(EFSM). The difference from a general case is that the problem of test sequence executability
is alleviated in this case, since the semantics of timers directly enables the derivation of
executable tests, as discussed in the following.

A specification of the timer-regulated behavior should be consistent, in the sense that the
presence of a timer should influence the observable behavior of the protocol and should be
detectable by an external observer. In particular, as the above fragment shows, if timer T can be
active in state s, there should be at least one incoming transition labeled with “start T” as well
as at least one outgoing transition labeled with “stop T”. Once max is reached, a time-out
should cause an output different from the one produced by the previous time-outs, i.e. o1≠o2,
and in general a transition to a different next state. All transitions setting up a timer for the first
time are not cycling, i.e. states r and s (Figure 2) are not equivalent. In addition, to be
consistent, a specification should, in case that several timers can be active at the same state,
have no transition simultaneously starting several timers. Under the above assumptions, our
extended TAG tool [14] provides the automatic derivation of test cases for checking the timing
behavior, as explained below.

The test derivation strategy is based on the following assumptions about implementation
errors related to timers and accompanying counters. First, we suppose that an implementation
under test has successfully passed all tests derived from the “pure” FSM specification. Thus,
testing the timer-related behavior, we may well assume that all the states of the specification
are present, and all transitions not related to timers are correctly implemented. Implemented
time-outs may violate the specification, but the maximal waiting time interval to cause
expiration of any active timer should be known. Once the waiting time elapses, and no
observable output was produced, one assumes that all timers (if any) were not active.

Potential implementation errors related to timers may either change the expected behavior
or cause an unexpected behavior. Faults of the former group may occur in transitions labeled
with start T (expected start); transitions labeled with T and [C=max] (expected max); and
transitions labeled with stop T (expected stop). Faults of the latter group may create
unexpected actions with timers, such as transitions labeled with start T (unexpected start) and
transitions labeled with stop T (expected stop). In the following, we discuss the structure of
test cases which are needed to check the above transitions, using the example in Figure 2.
Expected start: To check whether or not the input i1 sets the timer T, we use the test sequences
defined by the following expression: α[r]. i1. T. W[s], where α[r] is a preamble to bring the
machine from the initial state to the state r; T indicates that the tester should have time-out T,
W[s] is a set of identification sequences for the state s (optional, in case we wish to confirm the

tail state of the transition caused by the first expiration of the timer). Once the IUT passes all
these tests, the following tests could be applied.
Expected max: To check whether or not the implemented counter reaches the specified limit
max, we use the test sequences defined by the following expression: α[r]. i1. T(1). T(2). …
T(max). W[p], where max consecutive signals T indicate that the tester should have its time-
out T expired max times observing repeated output o1 followed by o2. An earlier reception of
o2 indicates that either the related counter was not properly initialized or the implemented
value is less than max. In the case when a timer should expire only once (no counter is used),
an additional time-out may be included into the test to verify if any unforeseen counter is
implemented for this timer.
Expected stop: To check whether or not the input i4 arrived after i1 stops the timer T, we use
the test sequences defined by the following expression: α[r]. i1. i4. T. W[t], where the use of
the state identifier W[s] is optional. Any output produced by the IUT during the time-out period
indicates that the input i2 did not stop the timer T.
Unexpected start: To check whether the input i3, for example, sets the timer T on, we use the
test sequences defined by the following expression: α[r]. i3. T. W[s]. Any output produced by
the IUT during the time-out period indicates that the input i3 unexpectedly set the timer T.
Tests of this type applied to all states at which the specification has no active timers would
reveal an unforeseen timer. Assuming that, in the implementation under test, all timers are
placed at the correct states, one may skip many tests related to unexpected start.
Unexpected stop: To check whether or not the input i5 stops the timer T, we use the test
sequences defined by the following expression: α[r]. i1. i5. T. W[s]. The IUT is expected to
produce the output o1 after the time-out T, the failure to do so signals an error.

6. EXPERIMENTAL RESULTS

We applied the above test development methodology described in Section 3 to the ATM PNNI
signalling protocol (ATM Forum version 1.0, excluding the routing functions). The first step in
our work was the formalization of the PNNI protocol specification. Since a test architecture
involving two PCO’s was selected, as shown in Figure 3, we decided to write a combined
specification for the behavior of the two PNNI entities shown in the figure, one playing the
succeeding role and the other playing the preceding role.

PNNI entity
 succeeding

PNNI entity
 preceding

ATM switch

PCO1 PCO2

Figure 3: The model of an ATM switch

The development of the SDL specification was done in two phases. During the first phase,
we studied the (informal) PNNI signalling protocol specification and developed a state table.
Each state of the combined system shown in Figure 3 consists of a pair of states, one for the
succeeding and one for the preceding PNNI entity. The resulting state table has 8 states (i.e.
pairs of states) and a varying number of inputs including various conditions on the input
parameters. For connection establishment (normal mode of operation), there are 6 table entries,
and 36 for disconnection. Each table entry correspond to a given state, or a group of states, and

an input with conditions. In addition, there are 8 entries concerning timers, 12 concerning
status inquiry, and 71 entries for error handling situations.

During the second phase, we developed a specification in SDL. The information contained
in the state table was easily translated into SDL. However, to obtain a complete specification
of the protocol behavior, the type declarations related to the PDU parameters had to be written
and the conditions associated with the different transitions had to be formalized. Since the
interaction parameters of the PNNI protocol are very complex, this activity was time
consuming. The resulting SDL specification has 8 states, and represents 13681 lines of SDL in
the machine processable format. (This SDL code was generated by the SDT tool from the
graphic SDL representation of the specification using the option of suppressing comments;
with the automatic comment generation option of SDT, one obtains 31481 lines of code. The
verification of the non-mandatory data elements was not included). The main activities for test
derivation were the following:
(1) Generating an FSM model using FEX: The execution time of the tool for the processing
the whole specification was 25 minutes. (As noted above, the tool was improved over time; we
had to do this execution many times). The resulting FSM specification includes 628 inputs
(corresponding largely to the different data conditions associated with the different branches in
the SDL specification) and a total of 1508 transitions (ignoring groupings).
(2) Generating test skeletons in SDL and TTCN using TAG: The test cases were generated
individually for selected test purposes. The processing time by TAG is negligible.
(3) Completing test cases by hand: The completion of the first test cases took more time,
since (a) we had to learn how to do it, and (b) a number of routines had to be written (see
discussion below). We have completed 10 test cases. We estimate that the time to complete the
first 10 test cases is of the order of 4 days, the time for completing the next 100 test cases
would be 10 days, and the time for completing 600 additional test cases would be 30 to 45
days.
(4) Validating the test cases against the SDL specification: We have used the SDT tool for
validating the completed test cases. The time required for validating 10 test cases is about half
a day. (Note: This could be further shortened if certain routine tool commands could be
invoked automatically).

This experiment with PNNI let us to develop a method for completing test skeletons by
hand along the following lines:
(1) The declarations from the protocol specification in SDL can be directly used for the test
cases.
(2) The procedures of the protocol specification which check various conditions of the input
parameters can be directly used in the corresponding test cases. They correspond to TTCN
constraints that are used with input clauses.
(3) A number of procedures have to be written which select appropriate output parameters for
the test cases, at least one procedure for each type of PDU. They correspond to TTCN
constraints that are used with output clauses.
(4) The remaining additions to the skeletons are quite straightforward and some of them could
be automatically generated by an improved TAG tool.

7. CONCLUSIONS

The automatic derivation of a test suite from a given SDL specification of the system under test
is a challenging problem, especially if a certain guarantee of fault coverage is desired. We have

presented a set of automated tools which can be used for the development of conformance tests
following a methodology based on a partial unfolding of the SDL specification. This approach
assures not only that all branches of the SDL specification are covered, but also that transfer
faults are detected. A complementary tool for parameter variation has also been developed. We
note that the tests generated from the SDL specification using our development process are
quite similar to conventional conformance tests which are generated by hand. This test
development is partly automated and leaves much freedom to the test designer to chose various
options of fault coverage. The tests, which are generated in SDL or in TTCN must be
completed by hand concerning certain aspects related to signal parameters, however, most of
these adjustments are relatively straightforward and certain parts of the original SDL
specification (e.g. data type, signal and channel definitions, conditions of DECISION
statements) can be reused without change.

We have applied this methodology and our tools to the development of a test suite for the
ATM PNNI signalling protocol and found that it is quite efficient compared with the
conventional approach of developing the complete test suite by hand. A similar application to
the ATM UNI signalling protocol is described in [15]. The main effort within our development
process is the writing of the SDL specification. However, it is to be noted that this specification
is not only a step towards the generation of the conformance tests, but can also be used to
automatically generate code for a reference implementation of the protocol. We are presently
working on extending our methodology and tools to the testing of systems consisting of several
processes. This includes the case where the implementation under test (IUT) has a specification
consisting of several SDL processes, but also the case of embedded testing where the IUT is
not directly accessible, but only indirectly through other processes [16].

The tests generated from the SDL specification using the development process described
above are quite similar to conventional conformance tests which are generated by hand. The
main effort within this development process is the writing of the SDL specification. However,
it is to be noted that this specification is not only a step towards the generation of the
conformance tests, but can also be used to automatically generate code for a reference
implementation of the protocol.

Acknowledgments. This work was partly supported by the NSERC strategic grant STRGP200
"Methods for the systematic testing of distributed software systems". The PNNI experience
was supported by the Hewlett-Packard - NSERC - CITI Industrial Research Chair on
Communication Protocols at the University of Montreal. The original version of the TAG tool
was developed by Q.M. Tan and the extensions concerning coherent transitions and timers
were implemented by W. Mainvis. The authors would like to thank their colleagues for many
fruitful discussions, in particular, Q.M. Tan, W. Mainvis, D. Ouimet and R. Dssouli.

REFERENCES

1. G. v. Bochmann, Protocol specification for OSI, Computer Networks and ISDN Systems,
18, 1990.
2. G. v. Bochmann, G. Gerber and J.-M. Serre, Semiautomatic implementation of
communication protocols, IEEE Trans., SE-13, No. 9, 1987, pp. 989-1000.
3. T. Higashino and G. v. Bochmann, Automatic analysis and test derivation for a restricted
class of LOTOS expressions with data parameters, IEEE Trans., SE-20, 1, 1994.

4. G. v. Bochmann and A. Petrenko, Protocol testing: Review of methods and relevance for
software testing, in Proc. of the ACM Intl. Sym. on Software Testing and Analysis
(ISSTA’94), USA, 1994.
5. B. Sarikaya, G. v. Bochmann, Obtaining normal form specifications for protocols, in Proc.
COMNET’85, IFIP, North Holland, 1985, pp. 601-613.
6. Q. M. Tan, A. Petrenko, and G. v. Bochmann, A test generation tool for specifications in the
form of state machines, in Proceedings of the International Communications Conference, 1996,
pp.225-229.
7. O. Bellal, Example test cases for the INRES protocol generated by the FEX and TAG tools,
University of Montreal, Technical Report 1997, Web URL
<ftp://ftp.iro.umontreal.ca/pub/teleinfo/TRs/Bell97.ps.gz>
8. A. Petrenko, Checking experiments with protocol machines, in Proceedings of the IFIP 4th
International Workshop on Protocol Test Systems, the Netherlands, 1991, pp. 83-94.
9. G. Luo, A. Petrenko, and G. v. Bochmann, Selecting test sequences for partially-specified
nondeterministic finite state machines, in Proc. of the IFIP IWPTS, Japan, 1994, pp. 95-110.
10. T. S. Chow, Test Design Modeled by Finite-State Machines, IEEE Trans. SE-4, 3, 1978.
11. G. J. Myers, The Art of Software Testing, John Wiley & Sons, 1979, 177p.
12. P. Gamache, Générateur intelligent de tests adapté au domaine des protocoles de
communication, M.Sc. Thesis, Dépt. IRO, Université de Montréal, 1991.
13. A. Petrenko, G. v. Bochmann, and M. Yao, On fault coverage of tests for finite state
specifications, Computer Networks and ISDN Systems, 29, 1996, pp. 81-106.
14. W. Mainvis, Intégration de nouvelles fonctionnalités dans un outil de dérivation de tests
pour les protocoles. DEA Thesis, Université de Montréal (in collaboration with CRIN, Nancy,
France), 1996.
15. D. Hristov et al., Developing tests for the ATM signalling protocol using automated tools,
University of Montreal, submitted for publication.
16. A. Petrenko, N. Yevtushenko, G. v. Bochmann, and R. Dssouli, Testing in context:
framework and test derivation, Computer Communications, 19, 1996.

