
Application Design for Cooperative QoS Management1

Stefan Fischer, Mohamed-Vall O. M. Salem and Gregor von Bochmann
University of Montréal, Département IRO

C.P. 6128, Succ. Centre-Ville, Montréal (PQ) H3C 3J7, CANADA

1. This work was supported by the CITR Major Project “Broadband Services”.

1

Abstract
QoS management for distributed multimedia applications becomes
more complex when a huge number of users are participating, as for
instance in broadcasts of major sports events or in teleteaching ap-
plications. On the other hand, such an application offers a variety of
options to improve resource usage and system performance while
decreasing the overall communication cost. We developed a new
QoS management scheme called Cooperative QoS management
which handles both increased complexity and options. In this paper,
we show how this new scheme influences the design of applications
based on it, especially concerning the QoS user interface. As an ex-
ample, we present a teleteaching application developed in the
framework of our project “Broadband Services”.
Keywords: QoS management, MM application design, multicast

1 Introduction

The design of distributed multimedia applications, such as systems for access to remote multi-
media databases or teleconferencing, requires carful consideration of quality of service (QoS) is-
sues, because the presentation quality of live media, especially video, requires relatively high
utilisation of networking bandwidth and processing power in the end systems. For applications
running in a shared environment, the allocation and management of these resources is an important
question, although most existing systems are based on a best-effort approach.

In general, best-effort approaches are not suitable for distributed multimedia systems, because
some users may be ready to pay some higher price for obtaining a maximum quality, while others
may prefer low-cost presentations with lower quality. In addition, for a teleconferencing applica-
tion involving many users, a single quality of service level may not be appropriate for all partici-
pating users, since some users may participate with a very limited local workstation which cannot
provide for the quality which is adopted by the majority of the conference participants. We there-
fore adopt the premise that different levels of quality, often corresponding to different levels of
cost, must be provided in the context of distributed multimedia applications.

Much work on QoS has been done in the context of high-speed networks in order to provide for



2

some guarantee of quality for the provided communication service, which is characterized by the
bandwidth of the media stream and the delay, jitter and loss rate provided by the network. More
recently, QoS have been considered in a more global context, including also the end systems, such
as the user’s workstations and database servers. Various global QoS architectures have been devel-
oped (for a recent overview see [1]), which include also functions for performance monitoring, re-
source allocation and QoS management. For instance, in previous work [6], we have developed a
framework for QoS management of distributed multimedia applications which stresses two points:
(a) the user should define (through a suitable user interface for QoS negotiation) the criteria which
are used by the system to select the “best” system configuration for the application at hand, and (b)
the selection of an appropriate system configuration is the first step of the QoS management proc-
ess, followed by resource reservation and commitment, which is performed during the initializa-
tion of the multimedia application and each time a QoS renegotiation is required. Renegotiation
may be initiated by the user if his/her preferences change, or by the application when some system
component does not satisfy the initially agreed QoS characteristics.

A prototype system has been developed which implemented the above ideas for the application
of remote access to multimedia databases [5]. In this context, it was assumed that, for a given mon-
omedia component of a multimedia document, such as a video clip, there may be several variants
with identical “content”, but with different QoS characteristics, possibly stored in different contin-
uous-media file servers. During the initial access to the document, the QoS manager would select
the most suitable variant to be presented to the user, and in case of network congestion, for in-
stance, with the video server in question, another variant may be selected which resides in a differ-
ent server. The negotiation process which leads to the selection of a variant involves three parties:
(1) the database server, which contains the meta-information of the documents including all exist-
ing variants, (2) the network and (3) the user workstation, which knows the user’s preferences and
may also impose certain QoS restrictions.

In multimedia applications including multicasting to many users, such as teleconferencing or ed-
ucational applications, this global QoS management approach which involves a few system com-
ponents, as e.g. for remote database access [5] of single users, is not workable any more, because
the number of users involved is too large for a global management approach. For instance, negoti-
ation of QoS parameters between the sender and every single receiver becomes impossible, since
(1) the system would quickly become overloaded and (2) it would have to take into account (and
possibly provide) many different qualities requested by users. Instead, a more decentralized ap-
proach seems suitable, where QoS management functions such as QoS negotiation, adaptation or
renegotiation are distributed over the network. We developed such an approach calledCooperative
QoS Management [4], where so-calledQoS agents are installed on the routers and end systems par-
ticipating in an applications. These agents cooperate with each other in order to provide the QoS
levels requested by the application. An interesting new feature, compared to other QoS manage-
ment schemes, which becomes possible due to this decentralized approach, is the possibility of
communication between users resp. their local QoS agents, allowing for a cooperative selection of
desired qualities. If users cooperate and decide to request a service in the same quality, less resourc-
es have to be reserved, which in turn leads to lower communication costs and higher resource avail-
ability for other applications.

In this paper, we show how the design of applications is affected when based on Cooperative
QoS Management. We concentrate on the user/QoS interface and the interaction between applica-
tion and the end system QoS agent. The rest of the paper is organized as follows: in Section 2, we
give an introduction into the principles of Cooperative QoS Management. Then, in Section 3, we



3

compare the functionality of the new scheme with the one we described in [6,7] for presentational
applications and show how the differences influence the design of an application resp. the end sys-
tem QoS agent. Section 4 presents as an example the teleteaching education we develop in the
framework of our project “Broadband Services”. Section 5 finally concludes the paper.

2 Principles of cooperative QoS management

Cooperative QoS management has been developed with multimedia applications in mind, in
which many users participate at the same time, such as teleeducation systems or life video trans-
missions of major sports events. We assume that single data streams are multicast to many users
and that senders offer the same media stream in several qualities, e.g. a high, a medium and a low
quality video stream. There are no individual QoS negotiations between senders and receivers;
rather, receivers have to select among the qualities offered by the senders.

The basic idea of our new scheme is to install an application-oriented QoS agent on each router
of the underlying network and on every end system participating in an application. These QoS
agents are able to communicate with their neighboring agents, informing them e.g. about current
QoS values supported in their local area or about possible QoS problems. This knowledge is basi-
cally application-oriented, i.e. the agents know about QoS requirements and negotiated values for
users as well as relationships between streams. This constitutes a main difference of our approach
compared to existing QoS management functions on network nodes which deal with lower-layer
QoS, such as ATM cell loss priority etc., and which do not have any information about relation-
ships between streams and applications.

In our approach, however, not every agent may contact any other agent. Rather, communication
depends on the existing multicast trees, leading to a hierarchical communication structure. For each
multicast tree in which a given router is involved, the QoS agent knows its upstream and all down-
stream neighbors. If the neighboring node is an end system, the agent knows all receivers on this
end system. A receiver’s QoS agent knows only its upstream QoS agent(s), and a sender’s agent
its downstream neighbors. The information about neighbors may be easily set up during the estab-
lishment of the multicast tree, resp. when a member leaves or a new member joins.

As an example, consider the situation displayed in Figure 1 where one sender is multicasting one
high-quality video (the regular arrows) and one low-quality video (the dashed arrows) to a group
of receivers.

Figure 1. Multicasting streams of different qualities.

s a1

a2

a3

r1 r2

r3

r4

r5

a4

r6



4

Every router in the network has to forward all the streams which are requested by users connect-
ed via this router. The QoS agent a2 knows its downstream agents r4 and r5 as well as its upstream
agent a1. It also has information about the available resources on its router and the cost associated
with reserving them. Finally, it knows all streams available for this application and has access to
the multicast routing and resource reservation protocol running on this router. Note that our tech-
niques are independent of underlying protocols and mechanisms and work for different coding and
routing techniques, such as hierarchical video encoding [13], multicast routing already including
resource reservations as discussed e.g. in [10], traditional MBone routing techniques [3] or video
selection using group management protocols [12]. Our initial considerations were based on the
multicast routing protocol core-based tree routing (CBT) [2]1 and the resource reservation protocol
RSVP [14].

A QoS agent provides the following QoS functions:
• QoS negotiation

It occurs when a new user requests to become part of the application and receive some of its
streams. The multicast routing scheme will forward its request until it arrives at a router that
is already participating in the requested application, i.e., supporting its multicast tree. The
agent of this router then contacts the new user’s agent and sends the information about all
available streams (quality and cost). Note that there is no central instance providing quality
and cost information, since the cost for available qualities may differ significantly from one
region to another. The user may select the streams he desires. Connections are set up by the
underlying protocols; the QoS agents update their information about supported streams. We
developed protocols to fulfill these tasks [4].

• QoS adaptation
This functions becomes active when a component is no longer able to support the currently
negotiated QoS, e.g. due to overload, failure or other stochastic situations. The QoS man-
agement system then tries to find a way to continue providing the service, either by select-
ing another component or by lowering the service quality within the boundaries negotiated
with the client. In the framework of Cooperative QoS Management, we developed a proto-
col between QoS agents that helps to detect QoS violations and locate their source; further-
more, QoS agents can initiate the adaptation process by several means, one of them being to
request the partial reconfiguration of the multicast tree in the area where the problem
occurred. More details on the adaptation protocols can be found in [4].

• QoS renegotiation
Traditionally, there are two types of QoS renegotiation, namely system-initiated and user-
initiated. The former occurs when a negotiated QoS was violated and the QoS adaptation
was not able to fix the problem. Then the system proposes the user to negotiate a lower
quality. The latter happens when users are no longer content with the quality they negoti-
ated. In such a case, they start a new negotiation process to switch to another quality.
Within Cooperative QoS Management, system-initiated renegotiation may also occur when
the management detects an unsatisfying situation concerning resource usage as described in
Section 1. Consider again the example in Figure 1. Receiver r1 is the only one on its subtree
that receives the high-quality video, i.e., he is the exclusive user of the resources reserved
for this stream. QoS agent a3 realizes this, and after checking several other parameters, it

1. In Core-Based Tree routing, there is only one multicast tree per receiver group. All streams are first unicast to the
root of this tree (the core) and from there multicast to the receivers. Several optimizations are possible.



5

decides to propose to r1 to switch to the lower quality. If it already has the necessary infor-
mation, r1’s agent may take the decision on its own, but it may also contact the user and ask
if he would like to switch. Certainly, users may forbid their agents to forward any such
requests to them, in order to not be disturbed in their session.
If r1 considers to switch to the lower quality, resources for the high-quality video on a3’s
router could be freed and the communication service cost would be much lower for receiver
r1 which would be the motivation for him to switch. Assume that he pays 10 money units
for the high-quality stream. If the system is able to offer him the low-quality stream, which
is black&white instead of colored, for 1 money unit, it would probably be very tempting to
switch.
If r1 finally switches, a new situation for the other agents occurs. Consider agent a1 now. It
realizes that only the subtree of agent a3 receives the high-quality video. It may now try to
persuade a3 to switch the quality which in turn could lead to a3 sending a switch proposal to
r5.

3 Design Considerations for Cooperating Applications

In [7], we developed a framework for QoS management in the context ofpresentational multi-
media applications. A set of components that are involved in the QoS provision has been identified,
namely the user, the database server, the continuous media file server, the transport entities, the
end-systems entities, the network, etc. In this architecture, the QoS manager has the ability to con-
trol and monitor each individual component. In order to do so, a QoS interface is defined at each
component. It allows the QoS manager and other system components to inquire and control the
QoS features of the service provided by the component.

The QoS negotiation process is split into three phases: first, the user specifies his QoS require-
ments via user profiles. These files can be produced offline and stored for different users or appli-
cations. Figure 2 shows the QoS user profile interface in the context of our news-on-demand
application [5]. At application startup time, such a profile is passed to the QoS manager which in
turn tries to find those audio and video stream, image and text variants of the application that best
satisfy the stated requirements. Second, it produces a functional configuration which is necessary
to support the transmission and display of all monomedia components of the selected document
variant. For an MPEG video, for instance, the functional configuration will include an MPEG en-
coding function on the end system. Third, this functional configuration is mapped onto a physical
configuration. In case of the MPEG movie, the manager could use a software or a hardware decod-
er to provide the decoding function, depending on availability and required quality. Then, the QoS
manager takes the necessary steps to set up the session. If the selected variant cannot be supported
due to dynamic overload situations, the QoS manager repeats steps two and three with the second-
best variant.

Once a session is established, the QoS manager has to monitor the overall system in order to de-
tect any QoS violations and to notify the appropriate entity in time. The Qos adaptation function is
used when the user specified requirement can not be supported or when temporary difficulties rise
during a session. The QoS manager in this case, should be able to find alternative solutions to main-
tain the session ongoing. The QoS manager also provides the user with the ability to dynamically
renegotiate the initially specified QoS.



6

Figure 2. The QoS User Interface for presentational applications

The multicast nature of manyconversationalapplications, the participation of a huge number of
users and the use of Cooperative QoS Management calls for a revision of this framework. We iden-
tified a number of major changes which mainly affect two application components: a user-visible
part, namely the QoS interface, and an invisible part, namely the QoS agent.

• QoS user interface
In our framework for presentational multimedia applications, users resp. QoS managers do
not have the information on all existing multimedia document variants, and they access
multimedia documents in individual sessions. The QoS user graphical interface was then
designed to give users the ability to specify the desired quality of service for each media
type (audio, video, etc.) and thus to limit the number of document variants to be checked
and offered by the QoS manager. As we already said at the beginning, we believe that in
multicast applications, only a limited number of qualities should be offered for a given
media type. Using Cooperative QoS Management, the information about all available
media types and qualities is available from the network QoS agents. Thus, we do not ask the
user to specify his requirements is advance, but offer him all available qualities for the ses-
sion components. He then simply selects the ones desired. The new QoS graphical interface
(see Figure 5) will then be more user-friendly as in the approach for presentational applica-
tions (Figure 2).
As a result, step one of the negotiation process described above is completely eliminated.
In addition, new interactive possibilities are added to the interface in order to support the
new possibilities offered by our QoS management scheme, namely the QoS renegotiation in



7

case of the arrival of aPERSUADE message from the network. If the user checks the respec-
tive box on the interface, he allows his local agent to forward such requests.

• QoS agent
As described above, the QoS manager in presentational multimedia applications goes
through several consecutive operations to implement the negotiation process between a cli-
ent and a server. This process involves different interactions between the QoS manager and
the user on one hand, and the QoS manager and the remote service providers on the other.
When the number of users becomes large, as in our teleteaching target application, this
process becomes too heavy for the whole system, since every single component would be in
steady negotiation processes with new users. Due to the multicast nature of the application
and the characteristics of Cooperative QoS Management, however, the design of the QoS
manager can be simplified by far. If a certain stream is already supported in the area of the
new user, then the QoS negotiation process need not be carried out; rather, the stream is
simply multicast to the new user. Thus, an end system QoS agent has only to deal with QoS
management on its own system. All issues concerning negotiations with, resource reserva-
tions at and adaptation of remote components are part of the work of the network QoS
agents. End system QoS agents simply send messages to their upstream agents, stating the
types and qualities of documents/media they would like to receive.

The remaining components of what we assume to be the application part of a system (s. also Fig-
ure 4) - the application itself and the QoS monitor - remain basically unchanged.

4 An Example: Teleteaching

The teleteaching application we use as an example supports the delivery of a lecture from a given
site to students located in several remote locations. The delivery consists of video and audio from
the lecturer. In addition, the lecturer may present multimedia documents stored locally or in some
other locations. Students have the possibility to ask questions, but they first have to get permission
to do so. In this prototype, we allow only one student to talk at a time. The lecturer is always al-
lowed to talk. In addition, it is possible to record a whole session and store it as a multimedia doc-
ument in the multimedia databases. Thus, lectures may be later reviewed by students when
preparing for exams. The overall structure of this application is visualized in Figure 3.

Our implementation environment consists of several heterogeneously equipped machines con-
nected via Ethernet and ATM and communicating via TCP/IP and the MBone multicast and group
management protocols. We do not develop a completely new application environment, but use in-
stead the existing MBone tools [11]vic for video,vat for audio,wb for the whiteboard and the
MBone VCR [8] to record the sessions. These tools are combined with our QoS interface devel-
oped for presentational applications, which has however been modified in order to be suitable for
multicast applications and Cooperative QoS management. We transfer at most one stream to a giv-
en multicast address, which allows for a finer grained management. The software architecture
within an end system is shown in Figure 4.



8

Figure 3. Structure of the remote teaching application.

Figure 4. Software architecture in an end system.

We describe the software architecture of the application by describing the functions of its com-
ponents during typical phases in the application’s lifetime, namely application start, normal oper-
ation, QoS adaptation and QoS renegotiation.

Start of the application:
1. After being informed by the user about which application to join, the QoS agent collects

information about available streams from the QoS agents in the network (Details on this
process and the QoS protocols to be used are described in [4]).

Network
(possibly consisting of

several subnetworks)

Lecturer

Document
Base

Document
Base

Student

Student

Student

Student

Interface
QoS User

MBone Tools

QoS agent

QoS
moni-

tor

O
pe

ra
tin

g 
Sy

st
em

Communication System

Application

data information

vic

wb

vat

vcr

TCP/IPMBone, RSVP, IP

stops
starts

QoS management
protocols



9

2. Based on the answers from the network QoS agents, it assembles a list of available media
streams, their qualities and the associated cost and sends it to the user. The list is displayed
in the new QoS user interface (see Figure 5).

Figure 5. The new QoS user interface at startup time.

3. The user selects the streams he would like to receive and sends this information back to the
QoS agent. As a way of specifying a QoS degradation path, the user may also indicate dif-
ferent qualities for a given stream he is also ready to accept. Thus, if during an adaptation
process the quality has to be lowered, a renegotiation can be avoided.

4. The QoS agent knows the multicast group address for each of the selected streams. It starts
the respective tools, at the same time informing them at which multicast address to listen. If
the user selected the local session recording option in the user interface, the MBone VCR is
also started. As a result, incoming data streams are not only sent to the display tools, but are
also forked to the VCR. Usually, however, there will be a special multimedia document
server which records the session. Then, there is no need for a local recording. In order to
start session recording and to allow for a comfortable search for and playback of recorded
sessions, we plan to employ a new technology described in [9], also including the MBone
VCR.

Normal operation:
During normal operation, the quality of all streams is constantly monitored by the QoS monitor

component. It checks the the incoming packets as well as the ability of the operating system to dis-
play the data in time. If a QoS violation occurs, the monitor informs the QoS agent. The QoS user
interface remains functional in order to allow for renegotiation. It only consists of a renegotiation
button. If the user is no longer satisfied with the quality of a stream he receives, he simply initiates
a renegotiation process by pressing the button. Then the interface shown in Figure 5 is re-assem-



10

bled by the QoS agent and put on the screen.
QoS adaptation:
In case the QoS monitor detected a violation and informed the QoS agent, the latter will start the

QoS adaptation process. If the problem occurred on the end system, it will try to fix it by informing
the operating system. If a real-time operating system is available (which is not the case in our im-
plementation), it could for instance require stronger scheduling bounds for the thread(s) running
the violated stream. If, on the other hand, the problem is located somewhere in the net, the QoS
agent sends out a violation message and thus initiates the cooperative adaptation process with the
network QoS agents. The following outcomes are possible:

• The network is able to adapt, e.g. by selecting a different or modified multicast tree that is
able to support the desired quality. Then the quality will improve and the monitor will
remove the violation flag set before. Operation continues normally.

• The network is not able to adapt. Then, the QoS agent receives a control message telling
him so. In this case, or when the operating system cannot adapt, the agent has two options:
(1) If the stream in question is still available in another lower quality, which has earlier been
specified as acceptable by the user, it can select this quality. This implies switching to
another multicast address. In our implementation, the respective tool is stopped (in terms of
the operating system, the process is killed) and is restarted with the new multicast address. It
now receives and displays packets of the lower quality stream. (2) If there is no further
lower quality which is acceptable, the agent informs the user via the QoS interface and
offers him to switch to one of the currently supportable qualities.

Please note that the user is not informed about the ongoing adaptation process as long as the
quality remains within the specified bounds.

QoS renegotiation:
Renegotiation has to be initiated in case one of the following events occurs:
• The user is no longer satisfied with the delivered quality of a certain stream. He indicates

this by pressing the “renegotiate” button on the QoS interface.
• The agent detects that it cannot provide the currently negotiated quality anymore. Also,

there is no lower quality which has been marked as acceptable by the user.
• The agent receives aPERSUADE message from one of its upstream QoS agents asking to

switch to another quality in order to optimize system operation and decrease communica-
tion cost. Renegotiation is only initiated if (1) the quality to be switched to has not been
marked as acceptable by the user and (2) the user did not indicate that he does not want to
receive such suggestions. If (2) is not true, the QoS agent simply ignores thePERSUADE
message, while if (1) is not true, it is allowed to switch to the new quality without user inter-
action.

When the user has asked for or decided to accept a new quality for a given stream, the agent
again stops the respective tool and restarts it with the new multicast address.

5 Conclusions and Outlook

In this paper, we discussed design issues of conversational multimedia applications which are
based on our new Cooperative QoS management. We concentrated on the QoS agent and user in-
terface it provides and compared it to our earlier approach which was developed for presentational
multimedia applications. An example - a teleteaching application - showed how these general de-
sign issues can be implemented in a concrete application.



11

Most of the teleteaching application prototype is based on existing code from our news-on-de-
mand application and the existing MBone tools. Since we are interested in a more wide-spread use
of our approach, we are currently working on the design of a Web- and Java-based implementation
of both the QoS agent user interface and the QoS agents inside the network. This will allow for a
more flexible distribution and an enhanced mobility of QoS agents, i.e., there won’t be any pre-
installed QoS agents on routers. Rather, they will be distributed “on demand” and only run on those
routers that provide communication service for the given application.

We are also interested in the technique of hierarchical video encoding [13]. We plan to use the
code of one of the existing MBone video tools likevic and modify it in order to support this tech-
nique. The final goal is to get a flexible implementation which is able to switch between qualities
by processing more resp. fewer incoming data streams making up the video. Compared to our cur-
rent solution with several independent streams broadcast simultaneously, we will no longer have
to stop a runningvic process and start a new one when we switch qualities. Rather, the QoS agent
has to direct the respective streams to the newvic implementation. This implies that the tool can
no longer work directly on a single multicast address, since every single hierarchically encoded
data stream will be sent to its own multicast address as described in [12]. The multicast address
management will therefore be done by the end system’s QoS agent.

References

[1] C. Aurrecoechea, A. Campbell, and L. Hauw. A Survey of QOS Architectures.Multimedia
Systems Journal, Special Issue on QoS Architectures, 1997. To appear.

[2] A. Ballardie, J. Crowcroft, and P. Francis. Core based trees (CBT) – An Architecture for
Scalable Inter-Domain Multicast Routing. InACM SIGCOMM ’93, pages 85–95, 1993.

[3] S. Deering.Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford University,
1991.

[4] S. Fischer, A. Hafid, G. v. Bochmann, and H. de Meer. Cooperative Qos Management in
Multimedia Applications. In N. Georganas, editor,IEEE International Conference on Mul-
timedia Computing and Systems (ICMCS’97), Ottawa, Canada. IEEE Computer Society
Press, June 1997. To appear.

[5] A. Hafid and G. v. Bochmann. Quality of Service Negotiation in News-on-Demand Sys-
tems: An Implementation. In A. Azcorra, T. D. Miguel, E. Pastor, and E. Vazquez, editors,
Proceedings of the Third International Workshop on Protocols for Multimedia Systems, Ma-
drid, Spain, pages 221–240, Oct. 1996.

[6] A. Hafid, G. v. Bochmann, B. Kerherve, R. Dssouli, and J. Gecsei. On Quality of Service
Negotiation in Distributed Multimedia Applications. Technical Report #977, University of
Montreal, Montreal, Canada, 1995. (submitted to IEEE JSAC).

[7] A. Hafid and G. von Bochmann. A General Framework for Quality of Service Management.
Submitted to Computer Communications, Special Issue on Building Quality of Service into
Distributed Systems, 1997.

[8] W. Holfelder. MBONE VCR – Video Conference Recording on the MBONE. In
P. Zellweger, editor,ACM Multimedia ’95 (Proceedings), pages 237–238, New York, Nov.
1995. ACM.



12

[9] W. Holfelder. Interactive remote recording and playback of multicast videoconferences.
Submitted to 4th European Workshop on Interactive Distributed Multimedia Systems and
Telecommunication Services (IDMS’97), Darmstadt., 1997.

[10] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing for multimedia com-
munication.IEEE/ACM Transactions on Networking, 1(3):286–292, June 1993.

[11] V. Kumar.MBone – Interactive Multimedia on the Internet. New Riders Publishing, Indian-
apolis, Indiana, 1996.

[12] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered multicast. InACM SIG-
COMM’96, Stanford, CA, Aug. 1996.

[13] N. Shacham. Multipoint communication by hierarchically encoded data. InIEEE Info-
com’92, pages 2107–2114, 1992.

[14] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New Resource Res-
ervation Protocol.IEEE Network, 7(5), Sept. 1993.


