
Specification of composite objects based on
the ODP Reference Model

D. Ramazani and G. v. Bochmann
Département d'informatique et de recherche opérationnelle
Université de Montréal
C.P. 6128, Succursalle Centre-Ville
Montréal, Canada H3C 3J7
Phone: (514) 343-7484, fax: (514) 343-5834, e-mails: {bochmann,
ramazani}@iro.umontreal.ca

Abstract
In this paper, we describe our experience in using the RM-ODP to specify composite objects.
The concept of a composite object as defined in RM-ODP does not take into account its dynamic
structure as well as the classification of its properties into inherent, aggregate and emergent
properties. To make this possible, we have to complement the description of composite objects
with explicit contracts involving the composite object and its components.
 This interpretation of composite objects in terms of ODP concepts is technically sound. It
allows a clean definition of the structure, the inherent and aggregate properties of the composite
object. However, this approach is conceptually questionable since its guiding philosophy is based
on ignoring the distinction between composition and interconnection of objects. This observation
is grounded on the usage of contracts for defining significant aspects of object composition. We
come out with the same conclusion when experimenting the description of composite objects
using Darwin. What these experiments show is that we still have to rely on the concept of
interconnection of objects to define the semantics of composition of objects.

Keywords
Composition of objects, Darwin, Distributed Systems, ODP

This work was funded by the Ministry of Industry, Commerce, Science and Technology, Quebec, and the Natural
Sciences and Engineering Research Council of Canada under the IGLOO project organized by the Centre de
Recherche Informatique de Montreal.*

1 INTRODUCTION

Motivation of this work
The Reference Model for Open Distributed Processing (RM-ODP) is based on object-oriented
concepts (ISO-1, ISO-2, ISO-3, ISO-4, 1995). Among these concepts, object composition plays a
key role in the specification of ODP systems. Object composition consists of describing some
objects of a system in terms of other objects of this system. The former objects are called
composite objects, while the latters are component objects. RM-ODP goes further in the usage of
object composition by assuming that any ODP system is a composite object. It proposes the
application of ODP concepts to specify this object. In that sense, the concept of object
composition is used for structuring ODP systems.
 With these considerations in mind, it is fair to assume that the RM-ODP is adequate for
describing composite objects. This assumption is also supported by the fact that a composite
object is distributed among its components, i.e. composite objects are analogous to distributed
systems. In addition, a composite object is a distributed system which needs to be open since it
has to interact with other objects or to be composed with other objects to form more complex
objects. At this point, based on theoretical and practical reasons, it is interesting to assess how
RM-ODP can be used to specify composite objects. From the theoretical point of view, the
analogy between composite objects and distributed systems makes composite objects a good
starting point for assessing the adequacy and accuracy of RM-ODP for the specification of
distributed systems. On the other hand, in practice, complex applications in engineering and
telecommunications often imply composite objects (Ramazani and Bochmann, 1995). These
applications will gain to be specified using RM-ODP. The uniform usage of RM-ODP concepts
at any level of he description of these applications is recommended.

Summary of our experience
In this paper, we describe our experience in using the RM-ODP to specify composite objects.
The concept of object composition used in this work originates from (Ramazani and Bochmann,
1995). In (Ramazani and Bochmann, 1995), composite objects are viewed from a new
perspective which focuses on the linkage between the structure and the behavior of these objects.
Composite objects contrasting with simple objects have three kinds of properties, namely
inherent, aggregate and emergent properties. In addition, they have a structure in terms of
components and interconnections among these components. This is further explained later in this
paper.
 The concept of a composite object as defined by RM-ODP does not take into account its
dynamic structure as well as the classification of its properties into inherent, aggregate and
emergent properties. To make this possible, we have to complement the description of composite
objects with contracts, using RM-ODP parlance, aimed at defining the structure of these objects
and allowing the description of inherent and aggregate properties. The structure of a composite
object is defined as a contract between its components. Inherent properties are specified as
properties of the composite object. The semantics of these properties is defined by contracts
between the composite object and some of its components. Aggregate properties are specified
analogously, except that the contracts relate the composite object and all its components. The
definition of emergent properties does not require the usage of contracts.

 This interpretation of composite objects in terms of ODP concepts is technically sound. It
allows a clean definition of the structure, the inherent and aggregate properties of the composite
object. However, this approach is conceptually questionable since its guiding philosophy is based
on using the concept of interconnections of objects to define the semantics of object composition.
This observation is grounded on the usage of contracts for defining significant aspects of object
composition. A contract is aimed at describing static and dynamic interactions between objects.
 Fortunately, this observation is not specific to RM-ODP. We come out with the same
conclusion when experimenting the description of composite objects using Darwin (Kramer et al,
1992), a specification language for distributed systems. Darwin is one of the most popular
configuration language for the specification of distributed systems using an object-oriented
approach. In Darwin, the concepts of (1) composite component and (2) binding are conjointly
used to define composite objects. Bindings are useful for describing the structure, the inherent
and aggregate properties of composite objects. It appears that the bindings of Darwin are a way
of representing interconnections between objects. Therefore, they can be used to define the
structure as well as inherent and aggregate properties of a composite object. Although the
bindings of Darwin and the contracts of ODP can both be used for defining interconnections
between objects, ODP contracts are more expressive than bindings. A binding allows two or
more objects to synchronize through the properties which are mapped. The constraints related to
the synchronization are distributed among the objects which are bound. In an ODP contract, in
addition to the synchronization of objects, the constraints related to the interaction of these
objects are localized within the contract, and we may define some (local) properties which are
conjointly used by the objects which participate in the contract. In other words, a binding
specification can be replaced by a contract specification while the converse is not necessarily
true.
 What these experiments show is that we still have to rely on the concept of interconnection of
objects to define the semantics of composition of objects. This observation relegates us to the
debate on the distinction between composition and interconnection of objects. We believe that
such a distinction is necessary in the context of complex distributed systems including ODP
systems. In addition, we propose that the linkage between structure and behavior of composite
objects has to be taken into account within RM-ODP.

Organization of this paper
The remainder of this paper is structured as follows. In Section 2, we introduce the concept of
composite objects. Next, we show the analogy between composite objects and distributed
systems. This is followed in Section 3 by the approach which is taken for specifying composite
objects using the RM-ODP. We also discuss advantages and shortcomings of the approach. To
illustrate this approach, we use a small application. The notation used for formulating ODP
specifications is a combination of OMT (Rumbaugh, 1991) and ad hoc texts. After this exercise
in specification, in Section 4, we explain how the same example can be specified using Darwin.
Lessons learned from the two experiments are compared. From this comparison results a
distinction between composition and interconnection of objects. To close this paper, we point out
future directions of this work.

2 COMPOSITE OBJECTS

2.1 The concept

Existing object-oriented methodologies propose many approaches to the specification of
composite objects. These approaches can be classified into four categories as described in
(Ramazani and Bochmann, 1995). For example, the Fusion method (Coleman et al, 1994)
represents composition as the abstraction of a given relationship among component objects. This
way of handling composition shows the interconnections between the component objects. It
focuses on the structure and neglects the behavior of the composite objects. In OMT
(Rumbaugh, 1991), composition of objects is described by means of is-part-of (aggregation)
relationships relating the composite object to its components. This approach has the advantage of
describing, in an hierarchical manner, the structure of an object. In addition, it captures the fact
that the composite object has access to its components. In methods such as Booch’s OODA
(Booch, 1994) and HOOD (Robinson, 1992), composition of objects is represented by
attribution, i.e., component objects are represented by attributes of the composite object.
Attribution captures the hierarchical organization of composite objects. However, it precludes
any distinction between composition and interconnections of objects. There are situations where
composition of objects is modeled by multiple inheritance. Such situations are reported in
(Cargill, 1991), (Rumbaugh, 1993) and (Sakkinen, 1989). Modeling composite objects by
multiple inheritance is appropriate when the identity of component objects is not important and
the focus is on the resulting properties of the composite object. This way of handling
composition, while treating both structural and behavioral aspects of composition, can create
problems when reusing such a specification.
 All these approaches distinguish themselves by focusing on some aspects and neglecting other
aspects of composition. Among these aspects, the contribution of the structure of the composite
object to its behavior is ignored. To alleviate this problem, we propose in (Ramazani and
Bochmann, 1995) a new perspective on composition of objects. In the sequel, we briefly present
this approach.

Definition 1: Composite object
A composite object is an object with an internal structure. It has three kinds of properties, namely
inherent, aggregate and emergent properties. A property may denote an attribute, an operation, a
behavior, a structural relationship, a behavioral interaction or a sequence of interactions. The
structure of a composite object consists of:
• the components (type and number of instances within the composite object);
• the interconnections and/or dynamic interactions between the components of the composite

object.

Definition 2: Inherent property
An inherent property is a property of the composite object such that the semantics of this
property is defined by some component of this composite object. When the component on which
depends this property is absent in the composite object, the inherent property is undefined.

Definition 3: Aggregate property
An aggregate property represents the combination of the properties of all components. The
aggregation mechanisms used for combining these properties are defined at the composite object

level and they depend on the way the components are interconnected.

Definition 4: Emergent property
An emergent property is a property of the composite object which does not directly depend upon
the properties of the components.

What really makes a composite object different from a simple object is the possible presence of
inherent and aggregate properties. As a consequence, a composite object showing only emergent
properties can be treated as a simple object.
 To illustrate the properties of a composite object, consider a door. It may be a component of an
house. It is fixed on a frame which is also a component of the house. It can be used by a person.
We view the door as a composite object consisting of a prefabricated section, a handle, a pair of
hinges and a lock. The lock and the handle are installed on the prefabricated section. The hinges
are fixed on the prefabricated section. They are also fixed on the frame of the house in order to
hold the door.
 Among the inherent properties of a door, we find its attributes size and color. These attributes
are determined by the prefabricated section, i.e. the size and the color of the prefabricated section
are also respectively the size and the color of the door. When the prefabricated section is
substituted by another prefabricated section, the door acquires the color and the size of the new
prefabricated section. The fact that the hinges are fixed on the frame implies that the door on
which these hinges are fixed is also fixed on the same frame. We may say that "fixed on" is an
inherent relationship of the door. There are also inherent operations such as lock and unlock
which are offered by the lock component.
 Two major aggregate properties can be defined for the door, its weight and moving operation.
Its weight results from the aggregation by summation of its component weights. Moving the door
causes its components to move. Therefore, moving the door is the concurrent aggregation of
moving operations of its components. Closing and opening operations of the door are considered
as two distinct refinements of the move operation. Emergent properties of the door include its
price and its inclusion within the house as a component.

2.2 Analogy between composite objects and distributed systems
In the context of the RM-ODP (ISO-1, 1995), distributed systems are characterized by the
following properties.

Remoteness: Components of a distributed system may be spread across space.

Concurrency: Any component of a distributed system can execute in parallel with any other
components.

Lack of global state: The global state of a distributed system may be indeterminate.

Partial failures: Any component of a distributed system may fail independently of any other
components.

Asynchrony: Related changes in a distributed system cannot be assumed to take place at a single
instant.

It is interesting to note that these properties apply for composite objects with respect to their
components. To illustrate this point, we consider a portable cassette player. It is a composite
object which consists of a case and an earphone. The case is located on a table while the
earphone is on the ground. Using the portable cassette player, we may interpret properties of
distributed systems in the context of composite objects as follows.

Remoteness: Components of a composite object may be spread across space. For instance,
consider the case and the earphone, these components are not at the same location. One is on the
table while the other is one the ground.

Concurrency: Any component of a composite object can execute in parallel with any other
components. As an example, while the cassette is moving forward in the case due to the action of
the motor, the earphone delivers some sound to the environment. These functions constitute
concurrent activities of distinct components.

Lack of global state: The global state of a composite object depends upon the state of its
components. For instance, the state of the portable cassette player is a combination of the state of
the case and the state of the earphone. Further, considering the state of the case, it consists of the
combination of the state of its components such as the motor, the amplifier, the head, etc.

Partial failures: Any component of a composite object may fail independently of any other
components. Consider for example that the earphone is scrapped using an hammer. This action
does not preclude the playing of the cassette in the case.

Asynchrony: Related changes in a composite object cannot be assumed to take place at a single
instant. For instance, as soon as the cassette is playing within the case, the earphone will deliver
the sound. This requirement on the behavior of the portable cassette player does not imply that
these events take place at a single instant.

3 INTERPRETATION OF COMPOSITE OBJECTS USING RM-ODP

3.1 The approach

In Section 2, we have described composite objects as objects being characterized by its (1)
structure in terms of components and interconnections among these components, and (2) by its
inherent, aggregate and emergent properties. According to RM-ODP, a composite object is an
object compliant to the object model. RM-ODP recognizes the existence of a static structure for
composite objects in terms of components and static interconnections among these components
since it advocates the usage of configurations of components to describe this static structure. In
addition, RM-ODP says nothing about inherent, aggregate and emergent properties for composite
objects.
 In order to take these aspects into consideration, we propose to complement the definition of
the static structure of composite objects by contracts describing the role of each component as
well as the requirements in terms of interconnections and interactions among these components

(dynamic structure). Within RM-ODP, the concept of contract characterizes and regulates the
cooperation of objects. A contract is an agreement that governs the cooperation among a number
of objects, and it embodies the ideas of obligations and expectations associated with cooperating
objects. In this study, we restrict the concept of contract to the roles of objects and the obligations
required for these roles. The concepts of quality of service and kind of behavior invalidating the
contract are ignored. These restrictions have no impact upon the results of this experiment.
 The structure of the composite object is defined by a contract between its components. We
define inherent properties of composite objects by first defining these properties as properties of
the composite since a composite object is an object compliant to the object model, then by
specifying a contract including the composite and the component which provides this property.
The obligation embedded in this contract consists of defining the inherent property of the
composite in terms of some property of the component.
 The representation of aggregate properties is similar to that of inherent properties, except that
the contract includes the composite and all its components. The obligations of this contract
specify the semantics of aggregation mechanisms which are used for combining the component
properties. Emergent properties, since they have no direct relation with the component properties,
are defined as usual properties of objects.
 As it shall be exemplified later, the specification of a composite object requires one or many
contracts for its structure, one or many contracts for its inherent properties, and one or many
contracts for its aggregate properties. These contracts define the semantics of interactions
between (1) the components, and (2) the components and the composite. According to RM-ODP,
objects and composite objects are specified by class templates. In our approach, in addition to the
class templates, we use a set of contracts for composite objects. These contracts are definitional,
i.e. they contribute to the definition of the composite object.
 This interpretation of the concept of composite object using two concepts of RM-ODP is not
regarded as unique. However, to the best of our knowledge, it is optimal since it uses a minimum
number of RM-ODP concepts and takes advantage of the semantics of these concepts. In
addition, the approach takes care that an ODP specification has plausible intuitive interpretation.
Besides all these advantages, this approach has disadvantages: (1) the definition of a composite
object is spread across many pieces of the specification. (2) The specifications are verbose. (3)
When it comes times to relate the different pieces of a composite object specification, care must
be taken to avoid confusion. However, this is the price we have to pay to have accurate and
precise specifications of composite objects in the context of RM-ODP.

3.2 An example

An ODP system is anything including some peripheral device. Due to lack of space, we consider
in this paper a simpler example, namely the specification of a printer in terms of ODP concepts.
The printer is described as a composite object. This example is a simplification and incomplete
description of a real laser printer. However, it provides interesting insights into the use of RM-
ODP for the specification of composite objects.
 A laser printer is a peripheral device used for printing files. Printing consists of transcribing the
output of a computer in the correct layout onto paper. The printer is connected to a host computer
which provides data and control signals. For sake of brevity, we consider the following
components of the printer:
• the paper tray which holds the paper;

• the paper control circuit which monitors the paper tray;
• the electrophotographic cartridge (EP cartridge) which contains the toner;
• the control panel which allows the user to maintain the printer by selecting appropriate printing

options, operating modes as well as allowing the functions of turning the printer on and off;
• the controller, which is the heart of the printer. It has circuitry that operates the printer and it is

responsible for controlling the paper control circuit, the EP cartridge and the control panel. In
addition, the controller has a memory of some given capacity.

The RM-ODP object model is fairly general and it makes a minimum number of assumptions.
Therefore, we may use the notation of OMT to represent ODP specifications, as advocated in
(ISO-1, 1995). However, there is no corresponding concept of OMT for representing ODP
contracts. To overcome this shortcoming, we use an ad hoc textual convention for representing
ODP contracts using the OMT notation. This convention is illustrated in Figure 1. In this ad hoc
notation, the utility of a contract can be twofold. It can be used to specify the semantics of
interactions between objects. In this case <utility> is the name of the association abstracting these
interactions. It can be used to define the properties of a composite object in terms of properties of
its components. In this latter case, <utility> is "composition".

contract <number> for <utility>
participants
 <role(i): component-type>
 ...
 <role(n): component-type>
obligations
 <set of assertions>

contract <number> for <utility>

 <role(i): component-type>
 ...
 <role(n): component-type>

 <set of assertions>

contract 1 for u-v

 role_u: type-u
 role_v: type-v

 role_u. a > role_v.b

Textual notation Graphical notation Example

Figure 1 RM-ODP Contracts in OMT.

In a contract, an assertion can be any predicate allowed in OMT specifications as well as a
behavior predicate involving operators like ≡ for the definition of an operation in terms of other
operations or || for parallel execution of operations.

The printer, as a composite object, can be described in terms of its structure, inherent, aggregate
and emergent properties as follows (see Figure 2).

Printer

Structure
Components

paper tray, paper control circuit, controller, EPcartridge, control panel
Interconnections and interactions among components

• the paper control circuit monitors the status of the paper tray;
• the controller operates the paper control circuit;
• the controller monitors the level of toner of the EPcartridge;
• the controller controls the control panel in the sense that each function offered by
 the control panel is in fact executed by the controller. The control panel acts as
 an interface of the controller to the user for management purposes.

Inherent properties [From]
memory [controller]
supplytraystatus [controller]
leveloftoner [controller]
printoptions [controller]
operatingmodes [controller]
set-printoptions [controlpanel]
set-operatingmodes [controlpanel]
set-printoptions [controlpanel]
set-operatingmodes [controlpanel]
turn-on [controlpanel]
turn-off [controlpanel]
print(file, options) [controller]

Aggregate properties [Aggregation mechanism]
location [spatial aggregation]
weight [summing]
move(newlocation) [parallel execution]

Emergent properties
printspeed
resolution
identification
remove-papertray
insert-papertray
remove-cartridge
insertcartridge

Figure 2 The laser printer as a composite object.

There is another composite object within the printer, namely the controller which has a memory
as a component. The controller is described as follows (see Figure 3).

Controller
Structure

Components
memory

Inherent properties [From]
memorycapacity [memory]

Aggregate properties [Aggregation mechanism]
location [spatial aggregation]
weight [summing]
move(newlocation) [parallel execution]

Emergent properties
supplytraystatus
leveloftoner
printoptions
operatingmodes
change-printoptions
change-operatingmodes
turn-on-the-printer
turn-off-the-printer
print(file, options)

Figure 3 The controller as a composite object.

These composite objects are interpreted using RM-ODP concepts as described in the sequel. The
specification of the information viewpoint of the printer is expressed using an OMT object model
as shown in Figure 4. The object model shows the classes and their relationships to each other.
Classes are described in terms of operation signatures and attributes. Among the relationships
between classes, the object model portrays composition of objects (aggregation relationships),
object configurations in terms of associations between objects, and class and subclass hierarchies
(generalization relationships).

Host
computer

Printer User

Control
panel

Paper
tray

Paper
control
circuit

Controller EPcartridge

Memory

connectedto maintain

monitor operate control

monitor

Figure 4 The printer information viewpoint: Composition and interconnection of objects.

In Figure 4, we focus on the general structure of the printer in terms of composition and

interconnections among its components. Composition is indicated by aggregation relationships.
Aggregation is indicated in the OMT notation by placing a diamond at one end of the line
relating two classes. The diamond is attached to the composite object class. Interconnections are
indicated by associations between classes. An association is drawn as a line between two classes.
As an example, in Figure 4, the printer consists of a certain number of components like the
controller and the paper control circuit to name few of them. This is indicated by an aggregation
relationship relating the printer to the paper control circuit and the controller. In addition, these
two components are interconnected. This is indicated by an association represented as a line
between paper control circuit and controller. The line is labeled with the name of the association,
which is “operate” in this case. The multiplicity of associations is indicated with no marker at the
end of the line for a multiplicity of 1, a hollow ball for a multiplicity of 0 or 1 and a solid ball for
a multiplicity of 0 or many. In Figure 4, the multiplicity of paper control circuit in the
association “operate” is 1 and also 1 for the controller. This means that only one paper control
circuit may be operated by only one controller. In the association “maintain”, the multiplicity is
many for user and also many for printer. This means that the user may maintain many printers
and each printer can be maintained by many users.

Memory

capacity

EPcartridge

leveloftoner

Paper tray

status
insert-paper()
remove-paper()

Paper control
circuit

papertraystatus
getpaper()

Controller
memorycapacity
supplytraystatus
leveloftoner
printoptions
operatingmodes
change-printoptions()
change-operatingmodes()
turn-on-the-printer()
turn-off-the-printer()
print(file, options)

Controlpanel

printoptions
operatingmodes
set-printoptions()
set-operatingmodes()
set-printoptions()
set-operatingmodes()
turn-on()
turn-off()

Printer

printspeed
resolution
identification
memory
supplytraystatus
leveloftoner
printoptions
operatingmodes
set-printoptions()
set-operatingmodes()
set-printoptions()
set-operatingmodes()
turn-on()
turn-off()
print(file, options)
remove-papertray()
insert-papertray()
remove-cartridge()
insert-cartridge()

Figure 5 The printer information viewpoint: Class description.

In OMT, a class is drawn as a 3-part box, with the class name in the top part, a list of attributes
(with optional types) in the middle part, and a list of operations (with optional argument lists and
return types) in the bottom part. For instance, the paper control circuit class as pictured in Figure
5 has an attribute papertraystatus and an operation getpaper(). After having described each class
in terms of attributes and operations, these can be omitted to reduce detail on other parts of the
object model. In addition all the classes are subclasses of Physical object. A Physical object has a
location, a weight and it can be moved from one location to another.
 In the sequel, the computational viewpoint is described in terms of contracts as illustrated in

the Figures 6, 7 and 8. The contracts which define the structure of the printer in terms of
interactions between its components are numbered 1, 2, 3 and 5. The contract 4 defines the
semantics of the inherent property memorycapacity of the controller.

Contract 1 for monitor
pt: papertray; pc: papercontrolcircuit
pt.status = pc.papertraystatus

Contract 2 for operate
pc: papercontrolcircuit; c: controller
pc.papertraystatus = c.supplytraystatus

Contract 3 for monitor
c: controller; ep: EPcartridge
c.leveloftoner = ep.leveloftoner

Contract 4 for composition
c: controller; m: memory
c.memorycapacity ≡ m.capacity

Contract 5 for control
c: controller; cp: controlpanel
cp.turn-on() = c.turn-on-the-printer()
cp.turn-off() = c.turn-off-the-printer()

cp.set-printoptions() = c.change-printoptions()
cp.set-operatingmodes() = c.change-operatingmodes()

cp.printoptions = c.printoptions
cp.operatingmodes = c.operatingmodes

Figure 6 The contracts 1, 2, 3, 4 and 5.

The contract 6 and 7 define in turn the semantics of the inherent properties of the composite
object printer. Finally, the contract 8 defines the aggregation mechanisms used for determining
the semantics of aggregate properties of the printer. Location is defined as a function f of printer
component locations. Weight is defined by summation of component weights and move by
parallel execution of corresponding component operations. Note that in a contract when the
names of the properties coincide, this does not means that these properties have to be conjoined.
There is a distinction between a ≡ b and a = b. The first is an assertion stating that a is defined in
terms of b. It is like aliasing in programming languages. The latter assertion equates a and b. It is
like stating that a ³ b and b ³ a which is quite different from aliasing. In addition, the first
assertion a ≡ b states that a can not exist without b, while the latter assertion distinguishes the
existence of a from that of b. It imposes a constraint on their respective values.

Contract 7 for composition
p: printer; c: controller
p.supplytraystatus ≡ c.supplytraystatus
p.leveloftoner ≡ c.leveloftoner

p.memory ≡ c.memorycapacity
p.print() ≡ c.print()
p.printoptions ≡ c.printoptions

p.operatingmodes ≡ c.operatingmodes

Contract 6 for composition
p: printer; cp: controlpanel
p.turn-on() ≡ cp.turn-on()

p.turn-off() ≡ cp.turn-off()
p.set-printoptions() ≡ cp.set-printoptions()
p.set-operatingmodes() ≡ cp.set-operatingmodes()

p.set-printoptions() ≡ cp.set-printoptions()
p.set-operatingmodes() ≡ cp.set-operatingmodes()

Figure 7 The contracts 6 and 7 define the semantics of the inherent properties.

For example, (1) p.turn-on() ≡ cp.turn-on() and (2) cp.turn-on() = c.turn-on-the-printer() do not
have the same meaning. In (1), the property turn-on() for the printer is defined in terms of the
property turn-on() of the control panel. The effects of these properties are the same and the

property turn-on() of the printer is undefined when the control panel is absent. In (2), the property
turn-on() for the control panel is simply equated to the property turn-on-the-printer() of the
controller.

Contract 8 for composition
p: printer; pt: papertray; pc: papercontrolcircuit; c: controller; ep: EPcartridge; cp: controlpanel
p.location ≡ f(pt.location, pc.location, c.location, ep.location, cp.location)
p.weight ≡ (pt.weight, pc.weight, c.weight, ep.weight, cp.weight)
p.move() ≡ pt.move()|| pc.move()|| c.move()|| ep.move()||cp.move()

Figure 8 The contract 8 defines the semantics of the aggregate properties of the printer.

4 INTERPRETATION OF COMPOSITE OBJECTS USING DARWIN

Darwin is a specification language for distributed systems (Kramer et al, 1992). It is based on the
definition of the program structure as a set of active objects (components) with explicit interfaces
and bindings. The behavior of an object is defined in terms of services it provides to its
environment and services it requires from its environment. The set of provided and required
services constitutes the interface of the object. Interconnections between objects consist of
bindings between required and provided interfaces. A binding matches a provided service to a
required service of distinct objects. The bindings are type-checked.
 Darwin is also based on the use of hierarchical composition to define composite objects.
Composite objects are defined analogously to simple objects, except that the provided services
(respectively the required services) of the composite object are bound to provided services
(respectively required services) of its components.
 In order to make the presentation concise, we made some simplifications to the printer
example. We consider that the printer consists of only two components, the controller and the
control panel. It has two inherent properties, memory and turn-on; two aggregate properties
weight and move; and one emergent property, resolution. In spite of these simplifications, the
example still provides sufficient insights in the interpretation of composite objects in terms of
Darwin concepts.

Printer

Controller

Control panel

Pr
in

te
r c

or
e

resolution

weight printoptions
turn-on

memory

memorycapacity

move

weight’

resolution

weight

weight

weight

printoptions

turn-on

move

move

Figure 9 Darwin specification of the printer.

As illustrated in Figure 9, within Darwin specifications, a component is represented by a
rectangle. Its provided services are represented by solid balls while the required services are

represented by hollow balls. Bindings between component services are indicated by lines linking
the bound services. Component composition is graphically represented by rectangle inclusion.
 The structure of a composite object is defined by rectangle inclusion of its components and
possibly bindings between the components when these interact. Inherent properties are
represented by provided services (respectively required services) of the composite which are
bound to component services. For example, the printer memory and the function turn-on are
inherent properties since their are bound to component services.
 Aggregate properties can be represented in many ways. For instance, the function move which
requires the moving of all the components can be represented as the parallel execution of
corresponding component functions. This is represented by binding the move service of the
composite object to move services of the controller and the control panel. However, in the case
of the aggregate property weight, as this property requires the summation of corresponding
component weights, we need to define at which level this summation shall be executed. In
Darwin, all the services provided (respectively services required) by a composite object have to
be implemented in terms of component services. This means that the summing of the weights
have to be done at the component level. This requires the introduction of a dummy component,
here called printer core. The dummy component is responsible for collecting the weights of the
other components and summing these weights in order to obtain the overall weight of the
printer. As a consequence, the dummy component provides the service “weight” to the printer.
This looks like an implementation bias, but we have no choice since the composite object is not
allowed to achieve any processing except the processing defined by its components. Emergent
properties are represented as properties of the dummy component for the same reason. This
further justifies the introduction of the dummy component printer core.
 As one may see with this example, only the structure and the inherent properties of a composite
object can be nicely represented in Darwin. This is done by using component inclusion and
bindings. Aggregate and emergent properties require the introduction of a dummy component as
well as a judicious usage of bindings. However, in this representation, the concept of binding is
key for representing the structure, inherent, aggregate and emergent properties of a composite
object. The dummy component which is introduced to handle aggregate and emergent properties
is similar to the concept of a dominant object in OMT. According to Rumbaugh (Rumbaugh,
1994), the dominant object in a composite object is a component which holds information
common to the entire composite object.

5 DISCUSSION AND CONCLUSIONS

The lesson of this experience is that the concepts of (1) structure and (2) inherent and aggregate
properties of a composite object can be represented using the same artifact. In the context of RM-
ODP, we use the concept of contract and in Darwin we use the concept of binding. These two
concepts represent (structural or behavioral) interconnections between objects. In fact, this
observation shows how we may interpret significant aspects of composition of objects in terms of
interconnections of objects.
 This raises the question whether a distinction should be made between composition and
interconnection of objects. A quick tour of related literature leads to the conclusion that this
distinction is hard to establish (Johnson and Opdyke, 1993), (Rumbaugh, 1995) and (Cook and
Daniels, 1994). To quote Cook and Daniels: “Composition of objects is a concept which is

unhelpfully vague” (Cook and Daniels, 1994). Furthermore, in (Rumbaugh, 1995), Rumbaugh
states that the semantic usage of aggregation (composition) is in recursive data structures, where
it can be used to forbid cycles among the instances. In general, if you are not sure when to use
aggregation, Rumbaugh proposes to ignore it and use association in place of composition.
 Another aspect of the confusion between composition and interconnection of objects is the
question on the semantics of composition. To what extent composition of objects affects the way
we build distributed systems? This is an interesting question. Exploring the issues related to this
question is out of the scope of this short paper. However, we may restrict the question to "Is the
concept of hierarchical composition analogous to that of dynamic interactions between objects?"
We believe that composition of objects embeds hierarchical composition as well as dynamic
interactions. This is reflected in the definition of a composite object as consisting of a structure in
terms of components and interactions among these components. These interactions are also
reflected in aggregate properties of the composite object. As a consequence, we suggest design
practices where hierarchical composition is distinct from dynamic interactions. Hierarchical
composition implies the abstraction of the set of components. These components form a new
object which may have properties which are different from those of its components (e.g.
aggregate and emergent properties). In addition, in the context of hierarchical composition, we
may make some of the components visible and hide the others while in an interconnection of
objects all the objects remain visible.
 In fact, it is up to the specifier to determine which aspect of composition will prevail in the
modeling of an application or if both are required. Next to this, he has to make the appropriate
interpretations in terms of the specification framework. It is also noted that one may view object
composition as the combination of interconnection of objects and abstraction. In general, when
we want to establish a linkage between properties which are defined at adjacent levels of
abstraction, we need an abstraction function (Liskov and Wing, 1993). The abstraction function
allows the translation of properties of a given level of abstraction into properties of another level
of abstraction. This is the role played by the concepts of inherent and aggregate properties. These
concepts relate composite object properties to component properties. The appropriateness of
abstraction, i.e. viewing the component objects as a unit (the composite) determines whether we
may consider a set of interconnected objects as a composite object.
 In RM-ODP and Darwin the linkage between the structure and the behavior of composite
objects is implicit and incomplete. These frameworks do not emphasize this linkage which is an
important aspect of object composition. Composites have no additional semantics but are
merely specification artifacts which do not necessarily exist in the application being modeled.

In this paper, we have shown the analogy between composite objects and distributed systems.
Grounded on this analogy, we use the concept of a composite object as the starting point for
assessing the accuracy and the adequacy of two frameworks for the description of distributed
systems, namely RM-ODP and Darwin. The experience with the interpretation of composite
objects using these frameworks teaches us that there is still a confusion between composition and
interconnection of objects. This is caused by the fact that the semantics of object composition
includes the concept of interconnection of objects. Finally, we propose that these frameworks
have to be enhanced to explicitly take advantage of the linkage between structure and behavior of
composite objects. This can be achieved by including the concepts of inherent, aggregate and
emergent properties within these frameworks and considering that an object may have an internal
structure in terms of components and interactions among these components.

6 REFERENCES

Booch, G. (1994) Object-Oriented Analysis and Design with Applications. The
Benjamin/Cummings Publishing Co. Inc.

Cargill, T. (1991) A Case Against Multiple Inheritance in C++. Proceedings of USENIX
Conference.

Coleman et al. (1994) Object-oriented Development, THE FUSION METHOD. Prentice-Hall.
ISO-1 (1995) Information technology -- Basic reference model of Open Distributed Processing,

Part 1: Overview, ISO/IEC DIS 10746-1, International Organization for Standardization.
ISO-2 (1995) Information technology -- Basic reference model of Open Distributed Processing,

Part 2: Foundations, ISO/IEC DIS 10746-2, International Organization for Standardization.
ISO-3 (1995) Information technology -- Basic reference model of Open Distributed Processing,

Part 3: Architecture, ISO/IEC DIS 10746-3, International Organization for Standardization.
ISO-4 (1995) Information technology -- Basic reference model of Open Distributed Processing,

Part 4: Architectural Semantics, ISO/IEC DIS 10746-4, International Organization for
Standardization.

Johnson, R. and Opdyke, W. (1993) Refactoring and Aggregation. Proceedings of Object
Technologies for Advanced Software, Nishio, S. and Yonezawa, A. (Eds.) LNCS 742, 264-78.

Kramer, J., Magee, J., Sloman, M. and Dulay, N. (1992) Configuring object-based distributed
programs in REX. Software Engineering Journal, 139-49.

Liskov, B. and Wing, J. (1993) A new definition of subtyping. OOPSLA’93.
Ramazani, D. and Bochmann, G.v. (1995) A Conceptual Framework For Object Composition

and Dynamic Behavior Description. Publication départementale #949, DIRO, Université de
Montréal, Montréal, Canada.

Robinson, P. (1992) Hierarchical Object-oriented Design. Chapman & Hall.
Rumbaugh, J. et al. (1991) Object-oriented Modeling and design. Prentice Hall.
Rumbaugh, J. (1993) Disinherited! Examples of misuse of inheritance. JOOP Vol. 5, No. 9, 22-

4.
Rumbaugh, J. (1994) Building Boxes: Composite Objects. JOOP Vol. 7, No. 7, 12-22.
Rumbaugh, J. (1995) OMT: The object model. JOOP Vol. 7, No. 8, 21-7.
Sakkinen, M. (1989) Disciplined Inheritance. Proceedings of ECOOP Conference, 39-56.
Cook, S. and Daniels, J. (1994) Designing Object Systems: Software isn’t the real world. JOOP

May, 22-8.

