
Extending OMT for the Specification of Composite Objects

Dunia Ramazani
Gregor v. Bochmann

Département d'informatique et de recherche opérationnelle
Université de Montréal

C.P. 6128, Succursalle Centre-Ville
Montréal, Canada H3C 3J7

Abstract:
In engineering and telecommunication applications,
it is common to have composite objects. Existing
object-oriented methods propose many approaches
for modeling these objects. However, these
approaches fail to capture the linkage between the
structure and the behavior of composite objects. In
[Ramazani 95a], a conceptual framework for the
description of composite objects prescribes how this
linkage can be established by means of a set of
fundamental concepts. In order to make this
framework more usable in practice, this paper shows
how OMT can be adapted and extended to describe
composite objects according to this framework. A
great deal of these adaptations and extensions require
only minor notational and semantic changes to the
method. This work also shows how more
requirements in connection with composite objects
can be captured, made explicit, and precisely stated
using an extended OMT.

Keywords: Composite objects, Object-oriented
methods, Object-oriented specifications.

This work was funded by the Ministry of Industry,
Commerce, Science and Technology, Quebec, and
the Natural Sciences and Engineering Research
Council of Canada under the IGLOO project
organized by the Centre de Recherche Informatique
de Montreal.

1. Introduction

The object-oriented approach describes applications

by means of objects which collaborate to provide

functionality of the application [Askit 92]. Some of

these objects are defined in terms of other objects.

Former objects are called composite objects, and the

latter are component objects. Experience in the

specification of engineering and telecommunication

applications has shown that the linkage between the

structure and the behavior of composite objects plays

a key role for understanding the semantics of these

applications [Guttapalle 92, Ramazani 95b].

As a matter of fact, in engineering applications, we

find objects consisting of physical assemblies of

other objects. Such assemblies form composite

objects. The behavior of these assemblies can be

expressed in terms of the behavior of their

components. Since, the behavior of components

depend upon their environment, connections among

the components affect their behavior. These

connections follow principles of engineering and

physics which can be complex [Ramazani 95b]. In

order to understand the behavior of a given

composite object, one has to understand the behavior

of each component along with their connections.

These two form the structure of composite objects.

As a consequence, in engineering applications, the

behavior of physical assemblies depends upon their

structure. In telecommunication applications, the

reasoning is similar, except that the connections

among components follow protocols. In addition,

applications are explicitly structured using

containment relationships [Guttapalle 92]. A

containment relationship localizes an object inside

another object. It allows the description of the

containing object behavior in terms of that of the

contained object, since the former object has access

to the latter object.

Existing object-oriented methodologies propose

many approaches to the specification of composite

objects. These approaches can be classified into four

categories as described in [Ramazani 95b]. For

example, the Fusion method [Coleman 94] represents

composition as the abstraction of a given relationship

among component objects. This way of handling

composition shows the interconnections between the

component objects. It focuses on the structure and

neglects the behavior of the composite objects. In

OMT [Rumbaugh 91], composition of objects is

described by means of is-part-of (aggregation)

relationships relating the composite object to its

components. This approach has the advantage of

describing, in an hierarchical manner, the structure of

an object. In addition, it captures the fact that the

composite object has access to its components. In

methods such as Booch’s OODA [Booch 94] and

HOOD [Robinson 92], composition of objects is

represented by attribution, i.e., component objects

are represented by attributes of the composite object.

Attribution captures the hierarchical organization of

composite objects. However, it precludes any

distinction between composition and interconnection

of objects. There are situations where composition of

objects is modeled by multiple inheritance. Such

situations are reported in [Cargill 92, Rumbaugh 93,

Sakkinen 89]. Modeling composite objects by

multiple inheritance is appropriate when the identity

of component objects is not important and the focus

is on the resulting properties of the composite object.

This way of handling composition, while treating

both structural and behavioral aspects of

composition, can create problems when reusing such

a specification. For more details on these problems,

the reader is refered to [Cargill 91, Cargill 92,

Rumbaugh 93, Sakkinen 89]. All these approaches

distinguish themselves by focusing on some aspects

and neglecting other aspects of composition. Among

these aspects, the contribution of the structure of the

composite object to its behavior is ignored. To

alleviate this problem, we propose in [Ramazani 95a]

a new perspective on composition of objects. In the

sequel, we briefly present this approach.

The approach focuses on the linkage between the

structure and the behavior of these objects. Among

the mechanisms which allow this linkage, we find (1)

visibility of components, (2) promotion of component

properties to the status of composite properties

(inherent properties), and (3) aggregation of

component properties in order to form properties of

the composite object (aggregate properties). These

mechanisms determine the way requirements placed

upon structure and behavior of composite objects

relate. Approaches to the description of composite

objects which neglect these aspects will fail to

capture the connection between the structure and the

behavior of these objects. This failure may have an

impact upon reusability and modifiability of

composite object descriptions.

This approach combines features of object-oriented

methods and it adds to these the concepts and

mechanisms necessary for relating structure and

behavior of composite objects. Many of these

concepts and mechanisms forming this approach

already exist within object-oriented methods or they

are allowed by the object paradigm. It is the way they

are organized and utilized in the framework which is

novel. As a consequence, object-oriented methods

can be adapted to describe composite objects in

accordance with the approach. The amount of

changes and extensions required depends upon the

selected method. In this paper, we show how the

OMT [Rumbaugh 91] can be used and extended in

order to describe composite objects according to the

approach.

In OMT, structural aspects of an application are

described apart from its dynamic aspects. Structural

aspects are described using object models. An object

model is a diagrammatic representation of classes

portraying their attributes, operation signatures, and

associations. Dynamic aspects are described by

means of dynamic models. A dynamic model

describes the temporal evolution of the objects in an

application in terms of the changes they undergo in

response to interactions with the other objects inside

or outside the application. The dynamic model is

defined by statecharts, each of which describes the

behavior of a class. Features of object and dynamic

models allow the description of a great deal of

aspects of composite objects in accordance with the

framework proposed by our approach as shown in the

following table.

OMT models Features Aspects of composite objects

Object model Class
- Component classes
- Composite class

Association
- Associations between components
- Aggregation association

Dynamic model Statechart

- Behavior of components
- Communication by event sending between the

components
- Behavior of composite objects using the dominant object
- Communication between the composite and its

components through the dominant object

Table 1: Coverage of the framework by features of object and dynamic models

Step Observation Remarks

Components
and

interactions between
the components

Could be
extended

• Communication between components is restricted to
explicit sending of events between objects. This is
inadequate for expressing more abstract interactions like
constraints between behaviors.

Inherent
and

aggregate properties

Inadequate

• Not covered, except the is-part-of (aggregation)
association
• Extensions are required for:
- Visibility/hiding of components
- Promotion of components properties
- Aggregation mechanisms for component properties
- Explicit distinction between inherent and aggregate
properties

Emergent properties Adequate
• However, OMT should be extended in order to distinguish
between emergent and other properties of the composite.

Table 2: Evaluation of OMT with respect to the framework

The table 2 summarizes our evaluation of OMT with

respect to steps of the conceptual framework.

Extensions required can be achieved using

appropriate notational and semantic changes to

OMT, except for visibility/hiding of components.

The notion of visibility/hiding of components

requires fundamental changes to the object paradigm

itself, since it is related to aliasing, identification,

reference, and typing of objects. Such changes to the

paradigm are out of the scope of this paper.

The structure of this paper is as it follows. We begin

by describing an application example which is used

throughout the paper. It consists of a portable

cassette player. This device has features which help

to illustrate significant aspects of the approach. Next,

we present our three step process for the description

of composite objects. This is followed by the

description, using OMT, of the portable cassette

player according to our approach. Throughout the

description, we describe how to represent

characteristics of composite objects and we also

reveal shortcomings of OMT. As a consequence, we

propose extensions to OMT. Finally, a summary of

our contributions closes the paper.

2. The Portable Cassette Player

We assume that the reader is familiar with cassette

players. We omit certain details which do not

contribute to the essential points of this paper. A

portable cassette player consists of two parts, a case

and a earphone, as shown in Figure 1. It offers

functions for managing the playing of cassettes. In

the context of our presentation, the earphone can be

considered as a simple object. The case is a

composition consisting of the following components:

- a cassette compartment into which a cassette

may be placed;

- a motor which moves the tape of the cassette;

- a head which reads the content of the tape and

produces the corresponding sound;

- an amplifier controlled by a volume controller.

It regulates the volume level of the sound

produced by the head which is then sent to the

earphone;

- a control panel for managing the play function.

It consists of five buttons, namely play,

forward, rewind, pause and stop.

Control Panel
Cassette compartment

Case
Earphone

Figure 1: A portable cassette player

The normal operation of the cassette player is as

follows. When a cassette is present in the

compartment, the user may activate the play

function. This is done by pushing the button play.

This action turns on the motor and causes the motor

to move at normal speed. This action also activates

the head. It sets the head to operate in read mode.

Then, the sound produced by the head is transmitted

to the amplifier which regulates this sound according

to the level of volume determined by the volume

controller, and transmits it to the earphone. The user

may move forward a cassette by pushing the forward

button. This action turns on the motor and causes the

tape to move forward at fast speed. He may also

move backward a cassette by pushing the rewind

button. This function is similar to forward except that

the tape moves backward. To stop these functions,

the user has to press the stop button. The pause

button is used to temporarily disable the playing

function by turning off the motor. To resume the play

function, the user has to deactivate the pause function

by pushing one more time on the button.

Each part of the portable cassette player and the

player itself are considered as physical objects. As

such, they have a weight and a position in space. The

portable cassette player has also other properties such

as a price which the owner may want to change. The

panel consists of five buttons namely, forward, play,

rewind, pause, and stop. Each button can only be in

two states "On" or "Off". The play, forward, and

rewind buttons are mutually exclusive in the sense

that two of these buttons can not be in the "On" state

at the same time. In addition, when the stop button is

"On", forward, play, and rewind buttons must be

"Off". We also assume that the control panel has a

part number which serves for its identification.

3. Aspects of Composite Objects

Among the aspects which characterize composite

objects, our experience has shown that three distinct

aspects are important [Ramazani 95a]. These aspects

are: (1) its structure; (2) its inherent and aggregate

properties; (3) its emergent properties. We may

define a composite object as follows.

Definition 1: Composite object

A composite object is an object with an internal

structure. It has three kinds of properties, namely

inherent, aggregate and emergent properties. A

property may denote an attribute, an operation, a

behavior, a structural relationship, a behavioral

interaction or a sequence of interactions. The

structure of a composite object consists of:

• the components (type and number of instances

within the composite object);

• the interconnections and/or dynamic interactions

between the components of the composite object.

Definition 2: Inherent property

An inherent property is a property of the composite

object such that the semantics of this property is

given by a property of some component of the

composite object. When the component on which

depends this property is absent in the composite

object, the inherent property is undefined.

Definition 3: Aggregate property

An aggregate property is obtained by a combination

of corresponding properties of all components. The

aggregation mechanisms used for combining these

properties are defined at the composite object level

and they depend on the way the components are

interconnected.

Definition 4: Emergent property

An emergent property is a property of the composite

object which does not directly depend upon the

properties of the components.

What really makes a composite object different from

a simple object is the possible presence of inherent

and aggregate properties. As a consequence, a

composite object showing only emergent properties

can be treated as a simple object. The requirements

in connection with each of these aspects may lead to

complex specifications. Separation of concerns is

used in the description of composite objects by

subdividing the description into three distinct steps,

each focusing on a specific aspect. These steps are

the following.

Step 1: Structure of composite objects

In the process of specifying composite objects, we

first begin by describing the structure of these objects

in terms of components and interactions among these

components. The step consists of three activities

which are as follows.

(1) Identification of the components : Here, we

specify the number of components and the names or

identifiers which shall be used to address these

components within the specification of the composite

object.

(2) Description of individual properties of

components : Individual properties of components

consist of requirements in terms of attributes,

operations, and behavior that these objects must

support in order to be components of the composite.

(3) Description of collective properties of

components : Collective properties of components

consist of structural relationships (object

relationships or associations) and behavioral

interactions among components. We mean by a

behavioral interaction a constraint between two or

more behaviors. It affects the behavior of the

involved objects. This constraint can be described in

terms of dependencies between operations, states,

and sequences of operations and states of the

involved objects.

Step 2: Inherent and aggregate properties

Next, we have to describe how component properties

relate to composite properties through inherent and

aggregate properties. This step consists of the

following activities:

(1) Definition of the characteristics of the is-part-of

relationship binding components to the composite :

This includes determining visibility and hiding of

component objects. Here visibility is taken in the

sense of controlling access to an object. An object x

is visible to an object y if and only if y has a

reference to x and y can access x using this reference.

An object x is invisible to an object y if and only if

(1) y has no reference to x, or (2) y has a reference to

x, but y is not allowed to access x using this

reference.

(2) Description of inherent properties : Note that

properties of visible components are automatically

considered as inherent properties since they are

available to clients of the composite object.

(3) Definition of aggregate properties : Care should

be taken when defining how component properties

compose to form aggregate properties. The

composition mechanism applied on these properties

needs to be compatible with the composed properties.

When composing component properties, the

collective properties of the components may conflict

with the composition mechanism. As an example,

when we use concurrent aggregation of component

behaviors, if the components have dependencies, care

should be taken to avoid deadlock situations.

Step 3: Emergent properties

Finally, we describe the emergent properties by

extending the inherent and aggregate properties

through the definition of new properties. This is a

case of specialization. These new properties must be

compatible with inherent and aggregate properties.

Property extension follows subtyping rules, and

consistency checking in relation to existing

properties is done according to these rules. Emergent

properties are described as usual properties of simple

objects.

4. Using OMT to describe composite objects

Before illustrating how OMT can be used to describe

composite objects in accordance with the approach as

described in Section 3, we shall present how concepts

of OMT, in connection with composite objects,

relate to those of our approach. Among these

concepts, notion of composite object, semantics of

aggregation relationship, behavior of composite

objects, and associations involving composite objects

are compared. The material of this section comes

from [Rumbaugh 94, Rumbaugh 95a, Rumbaugh

95b, Rumbaugh 95c, Rumbaugh 95d and Rumbaugh

95e] which describe the second generation of OMT.

4.1. OMT versus our approach

What is a composite object?

In OMT, a composite object is an extended form of

aggregation where the composite is viewed at a

higher level of abstraction than the parts. The whole

and its parts are at the same semantic level and can

coexist at runtime. According to Rumbaugh

[Rumbaugh 94], Composites have no additional

semantics but instead serve to organize your

understanding of a model. An aggregate (or

composite object) is a set of objects taken together

that is viewed as a single high-level object. The

dominant object in a composite object is an object

which holds information common to the entire

composite. Also, the composite is distinguishable

from its dominant object.

We view a composite object as an object formed by

the superposition of three kinds of properties namely

inherent, aggregate, and emergent. A composite is

distinct from its components. But components are

indiscernible from the composite, i.e. when the

components are involved in interactions which are

triggered by objects outside the composite, these

interactions also involve the composite. Composite

objects represent concrete or abstract things of the

world which can be described in terms of other

things. Special attention is given to relationships and

interactions among components.

The concept of composite objects proposed by OMT

is appropriate for describing objects which, when

associated with one another may form a conceptual

entity for analysis, design, and implementation

purposes. These conceptual entities may not

necessarily exist in the situation represented. This

approach contrasts with our approach, since the

concept of composite object in our approach can be

used to model both existing composite objects and/or

composite objects created by the specifier, like in

OMT.

Comments on the is-part-of relationship

In OMT, the terms is-part-of and aggregation are

used indistinctly to denote composition of objects. Is-

part-of relationships are represented by aggregation

which is a special form of association. Aggregation is

anti symmetric and transitive. There are two kinds of

aggregation namely physical aggregation, i.e.

aggregation with multiplicity of one, and catalog

aggregation, i.e. aggregation with multiplicity of

many. The main distinction between these forms is

the possibility of sharing components.

In our opinion, in addition to the properties

introduced by OMT, is-part-of relationships are non-

reflexive at the instance level. There are many forms

of is-part-of relationships. These forms are

characterized by seven aspects namely dependency,

sharing, physicality, visibility, functionality,

homogeneity, and separability. More on these

characteristics of is-part-of relationships can be

found in [Ramazani 95a]. Special attention is given

to visibility of components due to its intricate

interaction with aliasing, identification, reference,

and typing of objects. In the presence of physical (or

concrete) composite objects, some of its clients may

have a partial view of the composite by interacting

only through its visible components. In order to have

an accurate description of such situations, we need to

consider the visibility of components. That is why in

our approach the emphasis is on this aspect.

Behavior of composite objects

In OMT, the behavior of a composite is similar to the

behavior of simple objects. It is described by means

of the statechart of its dominant object. There is

implicit concurrency between the components.

Behavioral interactions are expressed using:

(1) informal text companion to the object, dynamic,

and functional models. This can give rise to human

interpretation errors during later stages of the

development;

(2) operational restrictions by controlling the

execution of actions through preconditions and

sending of events.

We recognize three kinds of behavior for composite

objects namely inherent, aggregate and emergent

behaviors. A composite object is logically distributed

among its components, therefore there is concurrency

in a composite.

Associations involving composite objects

In OMT, there are implicit and explicit associations

for composite objects. Implicit associations involve

the components, while explicit associations involve

only the dominant object. Our approach introduces

three kinds of associations. These associations are

distinguished by the participating objects which can

be the components and/or the composite. Inherent

associations are associations which involve some of

the components. Aggregate associations involve all

the components and the composite. Finally,

emergent associations involve only the composite.

To summarize, the main differences between OMT

and our approach lie in:

a) raison d'être of composite objects. In OMT,

composite objects are analysis, design, and

implementation artifacts. This contrasts with our

approach where the concept is in addition also

used to represent composite objects existing in

hypothetical and/or real-world situations.

b) properties that characterize composite objects. In

OMT, composite objects are indistinguishable

from non-composite objects. We distinguish

between composites from non-composites through

the presence of inherent and aggregate properties

in composite objects.

c) linkage between structure and behavior of

composite objects. This aspect is neglected by

OMT.

4.2. Description of composite objects

In order to show how OMT can be used to describe

composite objects in accordance with our approach,

we shall follow the process defined in Section 3. For

each step, we describe how OMT can be used and

what are the adaptations and extensions required. In

addition, we use the portable cassette player to

illustrate the ideas.

Step 1: Structure of composite objects

Individual properties of components are adequately

represented using the concept of class of OMT in

conjunction with statecharts associated to classes.

The class captures attributes and operations of

components, while the statechart captures the

behavior of components. Structural properties are

represented by means of OMT associations. In OMT,

behavioral interactions are represented by explicit

communication between the statecharts or by using

the state of one class in the guard of transitions of

another class as proposed by Rumbaugh [Rumbaugh

95b]. This way of representing behavioral

interactions is harmful to reusability and

modifiability. The problem is that at analysis phase,

behavioral interactions have to be expressed in a

more abstract way so that the description does not

introduce implementation bias. One way to achieve

this is to describe these interactions by constraining

the behavior of the involved objects. This is done by

using predicates which constrain features of various

statecharts. The way the conditions imposed by these

predicates are realized are left for other phases of the

development.

Structures of composite objects are represented by

(1) object models describing attributes and

operations of components, and structural

relationships between components; and by (2)

dynamic models describing behavior of components

and behavioral interactions among the components.

The objects outside the composite object are

separated from the components by a dashed rectangle

surrounding the latter objects. For illustration,

consider a control panel. Its structure is presented in

the next figures. Each type of button is represented

by a distinct class in order to facilitate the

presentation of structural relationships and

behavioral interactions among the components. A

distinction is made between configurational and

external relationships. Configurational relationships

are associations among components, while external

relationships are associations between components

and objects outside the composite.

AutoButton

release()

RewindForward

Stop

Pause

move(newloc)

weight
position

PhysicalObjectPushButton

Button

Play

state

push()

Attributes and operations of components

Pushbutton

RewindForward

Stop

Pause Play

mutual exclusion

disable

Configurational relationships

RewindForward

Stop

Pause Play

External relationships

Compartment

Motor

Head

The difference between PushButton and AutoButton

is that in an AutoButton, the button automatically

comes back to the state "Off" at the completion of

the push operation.

PhysicalObject

move

PushButton

pushOff

On

PhysicalObject

AutoButton

PhysicalObject

Off

On

push

PhysicalObject

release

Off

On

push

Button

In OMT, we have two alternatives for representing

the constraints among the buttons. Consider for

example the mutual exclusion between Play,

Forward, and Rewind buttons. One way is to

introduce a release operation which will be triggered

when another button is On. This makes the statechart

of the Play button to look like the statechart Sending

events. The other alternative which is illustrated in

the statechart Guards on transition consists of

introducing a spontaneous transition with a guard

using the states of the mutual exclusive buttons. The

notation object.in(state) is used in OMT to denote the

predicate which is true when the object is in the state

"state" and false otherwise. According to Cook and

Daniels [Cook 94], descriptions of message sending

confuse specification issues with implementation

tactics. It appears that the approach Sending events

over-specifies the interactions between the buttons

since it introduces unnecessary sequencing between

the transitions of the buttons.

PhysicalObject

release

Off

On

push

Play

^{f,r}.release

With f:Forward, r:Rewind
suchthat (self ,f,r) is an instance of
the association mutual exclusion

Sending events

PhysicalObject

Off

On

push

[p.in(on) ∨
 r.in(on)]

Guards on transition

Play

With f:Forward, r:Rewind
suchthat (self ,f,r) is an instance of
the association mutual exclusion

Instead of using this approach, we propose an

extension to the notation which consists to describe

interactions between classes by means of contracts.

The concept of a contract is similar to the Contract

technique introduced by Helm and Holland [Helm

90, Holland 92, Holland 93]. In our approach, we

represent contracts using the ad hoc textual

convention illustrated below. In this ad hoc notation,

<utility> is the name of the association abstracting

the interactions between the classes.

contract for <utility>

 <role(i): component-type>
 ...
 <role(n): component-type>

 <set of assertions>

Contracts in OMT

In a contract, an assertion can be any predicate

allowed in OMT specifications. For instance, the

contracts describing the associations "mutual

exclusion" and "disable" are represented by the

following diagrams.

(I)

Contract for mutual exclusion
p:Play; f:Forward; r:Rewind

(p,f,r) is a instance of the association mutual exclusion

p.in(on) → f.in(off) ∧ r.in(off)
f.in(on) → p.in(off) ∧ r.in(off)

r.in(on) → f.in(off) ∧ p.in(off)

p:Play ; f:Forward; r:Rewind; s:Stop

(p,f,r, s) is a instance of the association disable
s.in(on) → p.in(off) ∧ f.in(off) ∧ r.in(off)

(II)

Contract for disable

A contract represents the concurrent composition of

its participant statecharts such that the behavior of

the participants conforms to the constraints

explicitly stated in the contract. AND-composition of

statecharts corresponds to concurrent composition of

statecharts as defined in [Rumbaugh 95b]. The

composed objects can interact explicitly by sending

events. They can interact implicitly if one object has

a guard condition that depends on the state of another

object. In our contract notation, the interactions

between the statecharts are expressed in an abstract

manner using predicate logic as well as OMT

constraints. The global statechart represented by the

contract may have less states than the statechart

obtained using only AND-composition without

communication between the member statecharts.

This is due to its set of assertions (i.e. the

constraints). For instance, the statechart (I) has 4

states while the AND-composition without

communication between Play, Forward, and Rewind

buttons has 8 states. The statechart (II) has also 4

states compared to the AND-composition of its

member statecharts which has 16 states.

Step 2: Inherent and aggregate properties

We found that the notation used in OMT for

representing aggregation relationships is adequate.

This is done by graphically including the component

classes within the composite class. Multiplicity of

components is indicated by a number at the right

corner of the class. However, the notation does not

cover visibility of components. Therefore, we extend

OMT as follows. Within a composite, visible

components are represented by using double

rectangles and hidden components by simple

rectangles.

OMT does not distinguish between inherent and

aggregate properties of a composite object.

Therefore, we need also extensions to the notation.

Concerning attributes, operations, and behavior due

to visibility of components, the notation proposed for

visible components implicitly conveys the idea that

properties of visible components are also properties

of the composite. For attributes, operations, and

behavior which originate from the hidden

components of the composite, we require a specific

box and statechart to represent these. Inherent

relationships which involve visible components are

represented by lines which cross the composite

object boundary and end up at the visible component.

Inherent relationships which involve hidden

components are represented by lines ending up at the

composite boundary. The mapping with the

corresponding component is achieved by drawing a

dashed line within the composite from the

component to the end point of the relationship at

composite boundary. An end point is represented by

a small rectangle at the composite object boundary.

Keep in mind that aggregate properties may imply

constraint propagation, as described in [Rumbaugh

88, Mili 90], from the composite to its components.

Aggregate attributes, operations, and behavior are

represented like inherent properties originating from

the hidden components, except that these attributes

and operations are annotated with aggregation

assertions explaining how the component properties

are combined. Aggregate relationships are

represented by lines ending up at the composite

boundary. At this end point, the annotation {A}

indicates that it is an aggregate relationship. In OMT

a dominant object can be used to represent aggregate

attributes, operations, and behavior. However, the

notation does not distinguish between aggregate and

inherent properties.

For illustration, consider again the control panel. All

its components are visible. Therefore, the properties

of the buttons become inherent properties of the

control panel. Its weight and position constitute

aggregate attributes. It has only one aggregate

operation which is "move". In the definition of these

aggregate properties "component" stands for any

component of the control panel, i.e. the "component"

may be Pause, Play, Forward, Rewind or Stop. We

may also use contracts to define the semantics of

these properties.

Control Panel

Aggregate

move

Control Panel
(Aggregate)

weight = Σ component.weight
position = P(component.position)

move = || component.move

Compartment

Motor

Head

1

Stop
1

Play
1

Pause
1

Forward
1

Rewind
1

Control Panel

move(newloc)

weight
position

PhysicalObject

Step 3: Emergent properties

In OMT, emergent attributes, operations, and

behavior can be represented by attributes, operations,

and behavior of the dominant object. Using this

artifact, the distinction between aggregate and

emergent properties is not clear. Instead, we propose

to extend the method.

We use a diagrammatic notation similar to the one

proposed for aggregate properties with an indication

that these properties represent emergent properties.

For the control panel, when considering its

identification number and the operation used for

updating this number, this looks like illustrated

below. Unfortunately, in this case, there is no

emergent relationship.

 Control Panel

Emergent

IdNumber

changeId(newID) changeID

Control Panel
(Emergent)

Behavior of composite objects

In our approach, the behavior of composite objects is

split into three parts namely inherent, aggregate, and

emergent behaviors. The behavior of the composite

object is represented by the statechart resulting from

concurrent-composition of the behavior of its visible

components, inherent behavior, aggregate behavior,

and emergent behavior. For the control panel, this

looks like illustrated below.

Play
Forward
Rewind

Stop

Pause

Control Panel
(Aggregate)

(Emergent)
Control Panel

Control Panel

Other composite objects in the context of the

portable cassette player

For sake of brevity, we make some simplifications in

the presentation. The case has six components,

namely the control panel, the motor, the

compartment, the head, the amplifier, and the volume

controller. There are a lot of behavioral interactions

between the components of the composite objects

case and cassette player which require an explicit

contract. However, due to lack of space, we only

indicate in the figures the associations which require

a contract. This is done by labeling with a "*"

symbol the line representing the association.

Compartment

Motor

Head

Amplifier

Speaker

Volume
controller

Control
Panel

Cassette

su
pp

ly

read

contain

*

*

*

*

*

Motor

speed

turn-on(speed)
turn-off()

volume

amplify(vol)

Amplifier

content

open()
close()
insert(cassette)

Compartment

read-on()
cancel()

Head

volume
minima
maxima

volume-Up()
volume-Down()

Volume
controller

I: Structure of the case

su
pp

lymove(newloc)

weight
position

PhysicalObject

Compartment

Motor

Head
Amplifier

Speaker

Volume
controller

Control
Panel

Cassette
read

contain

Case

11

1
1

1

1

Case

Aggregate

weight
position

move(newloc)

Case

Emergent
SerialNumber

II: Inherent, aggregate and emergent properties of the case

Cassette Case Speakersupply

contain

read

*

III: Structure of the cassette player

move(newloc)

weight
position

PhysicalObject

1

Cassette Case Speaker
supply

contain

read

1 1

CassettePlayer

Aggregate

weight
position

move(newloc)

CassettePlayer

IV: Inherent and aggregate properties of the cassette

player

Emergent

price

changePrice()

CassettePlayer

1

Cassette Case Speaker
supply

contain

read

1 1

CassettePlayer

Owner

own{E}

V: Emergent properties of the cassette player

Only the control panel, the compartment, and the

volume controller are visible components of the case.

As in the case of the control panel description, the

properties of these visible components become

inherent properties of the case. Therefore, the case

has three inherent relationships, namely contain,

read, and supply. The association "contain" links the

visible component compartment to a cassette. In

addition, the head is allowed to read the cassette and

the amplifier to supply the earphone with sound.

These properties of hidden components are mediated

by the case and become inherent properties of the

case. Using the consideration that all parts of the

cassette player are physical objects, we may define

the weight, the position, and its change as aggregate

properties of the case. We consider only one

emergent attribute for the case, which is its serial

number. The overall behavior of the case is defined

by superposing the behavior of its visible

components (control panel, compartment, and

volume controller), its inherent behavior realized

using hidden components (head and amplifier), as

well as its behavior as a physical object (aggregate

properties). We omit the statechart representing this

behavior since it is similar to the statechart of the

control panel.

The cassette player has two components, the case and

the earphone. They are related by the fact that the

case provides the earphone with the sound. Both the

case and the earphone are visible components of the

cassette player, therefore the properties of these

visible components become inherent properties of the

cassette player. Aggregate properties are similar to

those defined for the case. We have chosen to model

the ownership of the cassette player as an emergent

property. Besides this property, we may consider the

price attributed to the cassette player and to allow

updating this price when necessary. These constitute

additional emergent properties of the cassette player.

The overall behavior of the cassette player is defined

by superposing the behavior of its visible

components (case and earphone), its behavior as a

physical object (aggregate properties), as well as the

possibility of owning the cassette player and defining

its price.

More on visibility of components

The concept of visibility of components, as

introduced by our approach, has much to do with

subtyping and it should not be confused with

visibility of class features proposed for object-

oriented programming languages. In our approach,

when a component is visible, this means that its

substitution by a more specialized one allows the

composite to offer more properties. This contrasts

with visibility of class features which introduces

three kinds of visibility namely public, protected, and

private. Public features are accessible to clients and

can be used in derived classes. Protected features are

inaccessible to clients but can be used in derived

classes. Private features are only accessible within

the class. Visible components are public features of

composite classes while hidden components may be

protected or private features of composite classes.

Visibility of class features does not convey the idea

that the composite shares its interface with its visible

components and that the latter objects are

substitutable by the former object.

We may draw an analogy between visibility of

components and subtyping (inheritance). The

composite class is a subtype of all its visible

component classes since they have common

properties and in most of the cases the composite

offers all the properties of its visible components.

When a composite class defines more than one

visible component, this situation is similar to

multiple inheritance. However, a composite object

created by multiple inheritance can not have multiple

instances of the same class as its components. In

addition, the components can not be replaced. As a

consequence, we do not recommend the modeling of

visibility of components using visibility of class

features or subtyping (inheritance). The concept of

visibility of components has to be further examined

and suitable concepts, mechanisms, and principles

have to be defined.

5. Conclusion

Various aspects of composite objects are explicitly

captured using an extension of OMT. This allows to

envision their usage in the specification of

requirements with respect to composite objects.

Returning to the purpose of this paper, the

contributions are twofold:

 (1) On the one hand, OMT is extended with:

- a concept of composite object which encompasses

both concrete objects of an application, and

abstractions in the form of aggregations created

for analysis, design, and implementation

purposes;

- an explicit linkage between structure and behavior

of composite objects by means of a set of

fundamental concepts;

- an understanding of the major differences

between composite and non-composite objects

according to structural and behavioral

characteristics of these objects;

- more abstract forms of communication between

objects;

- a new concept of visibility/hiding of component

objects; etc.

(2) On the other hand, our approach to the

description of composite objects described earlier

[Ramazani 95a] is made more usable in practice

through its integration within OMT.

In the literature, the work done by Mili and

colleagues [Mili 90] is close to the conceptual

framework. In [Mili 90], there is an in depth study of

how the structure of composite objects may affect or

influence their behavior. In particular, they assume

that some behavioral and functional relationships

between objects are the consequences of the structure

relationships. Structure relationships include the

aggregation relationship and the connections between

the components. We may relate this approach to our

conceptual framework as follows. In [Mili 90], the

concept of change propagation between related

objects is key to the specification of constraints

between the composite and its components and it

implicitly indicates the connection between the

structure and the behavior of composite objects.

Considering our conceptual framework, we may

classify the properties of a composite object into two

classes. The first class involves properties for which

change propagation is necessary from the composite

to its components. The second class involves

properties for which there is no change propagation.

This latter class of properties corresponds to

emergent properties in our framework. The former

class of properties can be further subdivided into two

categories. One for which the change propagation are

limited to one component, corresponding to inherent

properties, and one for which the change

propagation affects all components. This latter

category corresponds to aggregate properties. While

the two approaches, ours and [Mili 90] can be

reconciled, there is an important difference between

the two approaches. In [Mili 90], the structure of an

object is not visible to outside objects such that an

outside object can not request operations that directly

manipulate the component objects. In our approach,

we allow that certain components may be visible;

these components may be accessed and manipulated

from the objects outside of the composition.

Our experience with engineering and

telecommunication applications has shown that

extended OMT allows to capture explicitly more

requirements in connection with composite objects. It

has also shown that the extended OMT improves

reusability and modifiability of composite object

descriptions due to the application of (1) separation

of concerns and (2) superposition through

concurrent-composition of component behaviors. In

the future, we plan to look at other object-oriented

methods, such as the Fusion method [Coleman 94],

and Object Oriented Design with Applications

[Booch 94]; and also to update an existing tool

supporting OMT in order to provide means for using

the approach proposed in this paper. We shall also

further examine the implications of visibility/hiding

of components upon the object paradigm and how

these concepts can be fully integrated within object-

oriented methods and programming languages.

References

Askit, M., Bergmans, L., Obstacles in Object-

Oriented Software Development, Proceedings of

OOPSLA’92, SIGPLAN Notices Vol. 27, No. 10, pp.

341-358, October 1992.

Booch, G., Object-Oriented Analysis and Design

with Applications, Second Edition, The

Benjamin/Cummings Publishing Co. Inc., 1994.

Cargill, T., A Case Against Multiple Inheritance in

C++, Proceedings of USENIX Conference, 1991.

Cargill, T., C++ Programming Style, Addison-

Wesley, 1992.

Coleman et al., Object-oriented Development, THE

FUSION METHOD, Prentice-Hall, 1994.

Cook, S. and Daniels, J. Object communication,

JOOP, September 1994.

Guttapalle, N., Kilov, H., and Morabito, J., The

Materials: A Generic Object Class Library for

Analysis. Information Modeling Concepts and

Guidelines, Science and Technology Series, ST-

OPT-002010, Issue 1, October 1992, BellCore.

Helm, R., Holland, I. M., and Gangopadhyay, D.

Contracts: Specifying Behavioral Compositions in

Object-Oriented Systems, Proceedings of

ECOOP/OOPSLA’90, Ottawa 1990, pp. 169-180.

Holland, I.M. Specifying Reusable Components

Using Contracts, Proceedings of European

Conference on Object-Oriented Programming 1992

(ECOOP’92), LNCS 615 Springer-Verlag, pp. 287-

308.

Holland, I. M. The Design and Representation of

Object-Oriented Components, Ph.D. Thesis from

Northeastern University, Boston, 1993.

Mili, H., Sibert, J., Intrator, Y., An Object-Oriented

Model Based on relations, Journal of Systems

Software, No 12 pp. 139-155, 1990.

Ramazani, D., Bochmann, G.v., A Conceptual

Framework For Object Composition and Dynamic

Behavior Description, Publication départementale

#949, DIRO, Université de Montréal, Montréal,

Canada, 1995.

Ramazani, D., Contribution of Object-Oriented

Methodologies to the Specification of Complex

Systems, Proceedings of Fifth Complex Systems

Engineering Synthesis and Assessment Technology

Workshop (CSESAW'95).

Robinson, P., Hierarchical Object-oriented Design,

Chapman & Hall, 1992.

Rumbaugh, J., Controlling Propagation of Operations

using Attributes on Relations. Proceedings of

OOPSLA’88 Conference, September 1988.

Rumbaugh, J. et al. Object-oriented Modeling and

design, Prentice Hall, 1991.

Rumbaugh, J., Disinherited! Examples of misuse of

inheritance, JOOP Vol. 5, No. 9, pp. 22-24, February

1993.

Rumbaugh, J., Building Boxes: Composite Objects,

JOOP Vol. 7, No. 7, pp. 12-22, November/December,

1994.

Rumbaugh, J., OMT: The object model, JOOP Vol.

7, No. 8, pp. 21-27, January, 1995.

Rumbaugh, J., OMT: The dynamic model, JOOP

Vol. 7, No. 9, pp. 6-12, February, 1995.

Rumbaugh, J., OMT: The functional model, JOOP

Vol. 8, No. 1, pp. 10-14, March/April, 1995.

Rumbaugh, J., OMT: The development process,

JOOP Vol. 8, No. 1, pp. 8-16, May, 1995.

Rumbaugh, J., Taking things in context: Using

composites to build models, JOOP Vol. 8, No. 7, pp.

6-11, November-December, 1995.

Sakkinen, M., Disciplined Inheritance, Proceedings

of ECOOP Conference, 1989, pp. 39-56.

