
Architectural Design of Adaptive Distributed

Multimedia Systems

Gregor v. Bochmann†, Brigitte Kerhervé‡, Abdelhakim Hafid†,
Petre Dini†, Anne Pons‡,

†Université de Montréal ‡Université du Québec à Montréal
Département IRO Département Informatique

CP 6128, succursale centre ville CP 8888, succursale centre ville
Montréal, H3C 3J7, Canada Montréal, H3C 3P8, Canada

E-mail:{bochmann,hafid,dini}@iro.umontreal.ca
Tel: (514) 343 74 84; Fax: (514) 343 58 34

E-mail:{Kerherve.Brigitte,Pons.Anne}@uqam.ca
Tel: (514) 987 67 16; Fax: (514) 987 84 77

Abstract
In the context of a collaborative research project funded
by the Canadian Institute for Telecommunications
Research (CITR)1, we have developed a prototype
system for remote access to News-on-Demand. This
system allows the user to remotely access a multimedia
database, containing news clips in the form of
multimedia documents,  over ATM and other types of
networks. Special attention is given to quality of service
(QoS) negotiation and adaptation. For instance, a given
document may exist in different versions on different
sites and possibly corresponding to different
presentation qualities, such as video and audio quality,
size of display and cost. A graphical interface is
available for the user to select his preferences and
provides the possibility of obtaining examples of specific
quality features. The QoS negotiation and adaptation
features allow for the selection of the best configuration
for a given user request and for automatic adaptation in
case of changes to the system parameters, such as
network or server congestion.

We present in this paper an abstract architectural design
of our adaptive distributed multimedia system for remote
access to multimedia databases. This design focuses on
the aspects of the system which are essential for QoS
negotiation and adaptation, which is our main concern
in the ongoing CITR research project. The paper gives a
functional overview of the system and details its
structural and behavioral aspects. An abstract
application programming interface (API) is given and
issues related to the transition from the abstract system
design to an implementation are discussed.

                                                
1 This work was supported by a grant from the Canadian Institute for
Telecommunication Research (CITR), under the Network of Centers for
Excellence Program of the Canadian Government.

1. Introduction

Multimedia information systems integrate diverse media
such as text, video and images to enable a range of
multimedia applications including information retrieval.
In the collaborative research project "Broadband
Services" funded by the Canadian Institute for
Telecommunications Research (CITR), we have taken
the "News-on-Demand" application as the target for our
prototype development. This target application embodies
many features that are generally applicable to many
multimedia presentational applications, such as digital
libraries or computer-assisted training.

Our News-on-Demand prototype is an integration of
software components developed by the various sub-
groups of the CITR collaboration [13]. The prototype
consists of the distributed multimedia database (DBMS)
from University of Alberta [10]  , a distributed
continuous media file (CMFS) server from University of
British Columbia [9]  , a synchronization component
from University of Ottawa [7]  , and the QoS
management  module from Université de Montréal [6]  .
Scalable video encoding is studied at INRS
Telecommunications [1]  . With the current prototype, the
user may choose a document in the database for
presentation, and select the desired quality of service
(QoS) including such parameters as video and audio
quality, size of display, and cost. A graphical interface is
available for this purpose which includes the possibility
of obtaining example of specific quality features. The
transmission of the continuous media components of the
document, e.g. video and audio, proceeds in real-time
over ATM or a local network during the presentation of
the document. The system allows for several versions of
a given media component, possibly with different QoS
parameters and accessible over different networks. The
QoS negotiation and adaptation features allow for the



selection of the best configuration for a given user
request and for automatic adaptation in case of changes
of the QoS system parameters, such as in case of
network or server congestion.

We present in this paper a new architectural design of
our system, at a relatively abstract level. As mentioned in
[11]  ,it is sometimes better to describe a high-level
specification of a new system after the experience gained
during the implementation process through the
encounters of various problems and the study of possible
solutions. The architectural design presented here results
of our work with the News-on-Demand prototype, but it
is conceived to be much more general in nature. We
concentrate on those aspects of the system design which
are essential to QoS negotiation and adaptation, which is
our main concern within the CITR project.

The paper is organized as follows. In Section 2, we give
a functional overview of our adaptive distributed
multimedia system. In particular, a few use cases
including QoS negotiation and adaptation are presented.
The architectural design of the system is presented in
Section 3 and 4 in an object-oriented framework. Section
3 contains a presentation of the major objects within the
system, their attributes and operations. The behavioral
aspects of the system  are described in more detail in
Section 4 by considering in more detail the use cases
introduced in Section 2. Some additional objects are
introduced and the role of all objects in the execution
scenarios corresponding to the above use cases is
explained in detail. An abstract application programming
interface (API) is also given, based on the abstract
architectural design. Issues related to the transition from
the abstract system design to an implementation are
discussed in Section 5, in particular aspects related to the
distribution of the different system components, the
implementation of active objects, including objects for
multimedia stream processing, and the mapping of the
abstract API onto a concrete interface in terms of the
programming languages C and C++ used in our
prototype. Some conclusions are given in Section 6.

2. Adaptive Distributed Multimedia
System

Distributed multimedia systems should provide the user
with efficient access to pertinent information with the
required quality. However, since multimedia objects are
voluminous and unstructured, manipulation, transfer and
visualization of such objects can require a lot of resource
and time. It then becomes essential to prevent
unsatisfactory information delivery. For that purpose,
Quality of Service (QoS) management appears as an
essential function to be provided by distributed
multimedia systems [4; 8]   and significant contributions
have been recently made in this field.

Our approach is similar to the one proposed in [8]   where
the architecture uses a brokerage model which

incorporates QoS translation, QoS negotiation and
renegotiation. In contrast to the previous approach where
the system configurations considered are static, we
propose a QoS management architecture that supports
the dynamic choice of a configuration to support the QoS
requirements of the user of a specific application [3] .
We consider different system configurations and select
an optimal one to provide the appropriate QoS support.
Moreover, the service requested may be different from a
data flow service, depending on the particular
application.

The QoS function aims at controlling and guaranteeing
the level of quality that the system is able to offer to the
user. The role of a QoS manager is to determine and
examine the possible alternatives to respond to a user's
request, and among the different possibilities to choose
the one which satisfy the QoS constraints expressed by
the user and those supported by the different components
of the system.

Integrating such a function leads to consider the user’s
requirements regarding the quality of service and the
various constraints supported by the distributed
multimedia system [14]  . The user’s requirements may
concern system performance, the quality of information
provided and the financial costs attached to document
delivery. The system constraints include those attached
to the client machines such as the screen type, to the
server, to the transport systems as well as the
characteristics of the multimedia objects.

In the framework of the CITR Broadband Services major
project, our role is to design and develop methods for
managing the resources needed for QoS adaptation in a
distributed environment. Such methods are dedicated to
support distributed multimedia applications that can
adapt to changing QoS conditions of the underlying
transport service and the remote information servers. In
this section we give a general overview of our adaptive
distributed multimedia system. We first give the general
overview of this system and describe the different actors,
and then, through a set of simple scenarios we give an
intuitive presentation of the system behavior.

2.1. Functional Overview

The adaptive distributed multimedia system runs in a
fully distributed architecture where multimedia data are
stored at various sites, and where users can access from
different places throughout the network. Figure 1
presents the functional view of our system in OMT
object model notation [12]  .

The database is the information provider. It can be
supported by several database servers and stores
multimedia data as well as metadata used to facilitate
searching, transfer and delivery. The multimedia
documents stored in the database are composed of
several monomedia objects, linked together with spatial
and temporal synchronization constraints. Several



physical representations can exist for a monomedia
object, we here use the term of version, which
correspond to a format version. As for example two
versions of a same video sequence could offer different
color qualities. Version 1 could be a super-color version
of the video sequence, while version 2 could be the black
and white version of the same video. A given version is
stored on a specific server machine.

The search is processed on a client machine and the
selected multimedia documents will be delivered there.
The server machine is a machine located in the network
on which the objects that compose multimedia
documents are stored. A server machine can be either a
database server, an image server or a continuous media
server. The network physically links the different
machines together.

QoS 

User

Network

Search

Transfer 
and Display

Access

Database

Set of Documents

Client Machine Qos

Server Machine Qos

Network QoS

Server Machine

Document

Versions

Actor Process

Legend

Data

Data Flow between Processes
Data Name

Client Machine

Figure 1: General Overview

For the multimedia document chosen by the user, the
negotiation protocol is initiated for each composed
monomedia object to select the version that matches the
requirements of the user given by his user profile and the

constraints of all the involved actors. These constraints
are identified for each actor by analyzing its QoS
information. Some of the QoS parameters, such as the
client machine environment are static, while other
parameters are dynamic, such as the load of the server
machine or the available memory ressources. This
information will be detailed in Section 3.

2.2. A Comprehensive Example

In this section we describe the behavior of the system
while searching multimedia documents through three
different scenarios.

Let’s assume that our application is concerned with
cultural multimedia news, and specifically with news
related to movies and actors. A video sequence of the
Clint Eastwood’s movie “A perfect world” is stored in
the database. Two versions of this video sequence exist:
the super-color version is stored on server 1, and the
color version is stored on server 2. Server 1 is connected
to the client machine through network 1 and server 2
through network 2. Network 2 is cheaper than network 1.

Let’s assume that the user’s requirements concerning
QoS for videos are the following: color is the minimum
color-quality requested and cost should not exceed 50
cost-units. Priority between offers is given to those with
lower costs. The user searches in the database for a video
sequence from the Clint Eastwood’s movie “A perfect
world”. Video sequences stored on server 1 and server 2
are relevant to the query. The following scenarios may
occur at different times:

Scenario 1:  QoS manager chooses the less expensive
offer.
Transferring the super-color video sequence from server
1 to the client machine through network 1 is estimated at
45 cost-units. transferring the color video sequence from
server 2 to the client machine through network 2 is
estimated at 37 cost-units. The QoS manager chooses the
second solution which is less expensive. This decision is
made without any interaction with the user and transfer
of version 1 is activated.

Scenario 2 : the two possible offers are too expensive:
negotiation is required.
Transferring the super-color video sequence from server
1 to the client machine through network 1 is estimated at
61 cost-units. Transferring the color video sequence form
server 2 to the client machine through network 2 is
estimated at 58 cost-units. Both offers do not satisfy the
user’s requirements. Thus, negotiation with the user is
initiated. The two possible offers are submitted to the
user who chooses the one he prefers.

Scenario 3: during the transfer, congestion of the
network occurs.
Scenario 1 has been selected, but during the transfer of
version 1 from server 1, a congestion of network 1
appears. The cost of transferring version 2 from server 2



is 45 cost-units and still lower than the user’s
requirement. Thus the system performs an automatic
switch-over to version 2 from server 2. If the cost had
been more than 50 cost-units, a re-negotiation should
have been initiated with the user.

3. Architectural Design

In this section we present the major objects within the
system: the database manager, the profile manager, the
QoS manager and the network monitor. For each of these
objects, we detail attributes and operations.

3.1. Database Manager

The conceptual object model we present now captures
the semantic of a multimedia document used in the QoS
negotiation protocol. We first describe the structure of
the Multimedia and Monomedia entities using the OMT
object model [12] . Later, we explain our choices of
modeling related to the negotiation of the quality.

The multimedia and monomedia document entities that
we have defined express a different semantic than what
is used in classical multimedia models. They refer to
logical objects collaborating in the QoS negotiation for
generating a "displayable" multimedia document with
the required quality.

Audio

AudioQoSParam: TAudioResolution

Image

ImageQoSParam: TVisualResolution

Text

TextQoSParam: TTextQoSParam

SyncText

SyncTextQoSParam: TSyncTextQoSParam

ContinuousMedia

Activate
Play 
Stop 
GetPosition

AudioVideo

AudioVideoQoSParam: 
VisualResolution: TVisualResolution
FrameRate: TFrameRate
AudioQuality: TAudioResolution

Version

Format
Size

Play
Stop
Pause

Streams

UOI

Document

Registration
Description
Price
Play
Stop
Pause

ServerMachine

ServerMachineQoSParam: 
         TServerMachineQoSParam

1+

MonoMedia

1+

1+0+0+

0+

Alternatives
Content: TContentQuality

1+

Multimedia

SpatialOrganisation
TemporalOrganisation

Video

VideoQoSParam: 
VisualResolution: TVisualResolution
FrameRate: TFrameRate

Inheritance

Legend

Agregation

Multiple association 
(many)

Figure 2: Object Model for Multimedia Documents



A document as shown in Figure 2, is either a multimedia
document or a monomedia object. A multimedia
document is composed of several monomedia objects
usually synchronized with each other and possibly
shared by different multimedia documents. In the model
presented in Figure 2, the Multimedia entity is described
by the aggregation link with MonoMedia documents and
by the attributes that depict the spatial and temporal
synchronization relationship between the associated
monomedia.

These relationships are used during the transfer and
display of the document. In addition, a multimedia
document includes a Price and information allowing the
expression of search conditions on the set of multimedia
documents stored in the database. Before displaying a
multimedia document, one has to select, for each
monomedia object, one of its versions, since we assume
that each monomedia may exist in different physical
representations, called Versions, which are used by the
negotiation protocol. A monomedia object is defined in a
particular medium: a text, a still image, an audio
sequence, a graphic, a video sequence or an audio-video
sequence. Its versions are physical objects represented in
the same medium but with different formats and quality.
For instance, a monomedia document which is a video
sequence may exist in MPEG2 format and also in
MJPEG format and under different resolutions.

Each monomedia has different degrees of quality given
by its versions. The negotiation must choose one of them
according to the desires of the user and the constraints of
the client machine. The quality of a given monomedia
document is defined by its price, static parameters
depending on the kind of monomedia medium or
referring to the physical localization of the element. The
parameters give, for instance, the format of the coding,
the size of the file, the color of a video. They are specific
to a version, so they are stored in the version inheritance
hierarchy. The parameters related to the machine where
the file is located are included in the ServerMachine
component of the version. In case of replication of the
version, several server machines are needed that have
specific quality parameters. In addition, a version of a
monomedia object can be decomposed into several
streams. The number of streams of a physical
monomedia is an additional criteria of quality. Each
composition of streams produces a specific Version
object of the monomedia with different QoS levels.

The different qualities of a monomedia document are
associated to physical monomedia elements -versions-
defined on the same medium and holding the same
informative content. The negotiation might fail if the
quality required by a user for a given monomedia is not
available. In this case, the quality of any version doesn't
match the requirements. To offer a means to bypass this
failure, we propose a second level of negotiation
concerning alternatives. This second level affects the

informative content of the presentation. The monomedia
can be substituted in the context of a given multimedia
document by an other monomedia component, called
alternative. This object may represent condensed or
abstracted information and/or another medium in order
to get documents at a lower cost. Such an alternative will
be delivered when the QoS offer is not satisfactory for
the original monomedia component. For instance, an
alternative for a video sequence could be an audio
sequence describing the same event or a portion of text
describing it.

3.2. Profile Manager

In the previous sections, we have seen that the QoS
management consists in providing the user with the offer
which corresponds to his requirements. The profile
manager is in charge of managing the user’s QoS
preferences; that is, helping the user while setting and
modifying his requirements through user profiles. The
following operations of the ProfileManager object may
be called by an application:

OpenProfileWindow: This operation lets the user select
an active profile different from his default profile,
and define new profiles for future use.

GetActiveProfile: This operation returns the active
profile selected by the user.

NegotiateActiveProfile: This operation is called by the
application when the active profile is too restrictive
compared to the services that can be provided.
Therefore the application will provide as parameters
a set of alternative profiles for which services can be
provided. The result of this operation should be the
selection of one of these profiles or a refusal by the
user.

A user profile describes user preferences in terms of  (1)
QoS settings for video, audio, still images and text, (2)
cost he is willing to pay for a given quality, and (3) of
time constraints, such as the maximum delivery time.
The user QoS setting is described in terms of a set of
user-perceived characteristics of the performance of a
service. It is expressed in user-understandable language
and manifests itself as the set of value for the different
QoS parameters.

To avoid repeating the lengthy QoS parameters setting
process, the user should be able to store QoS profiles.
Then, while starting a new session he selects the desired
profile. Furthermore the user can display examples of
varying quality in order to see if the profile is pertinent.
A set of QoS parameters is associated to each type of
monomedia, namely video, audio, text and image.
Furthemore to specify the cost and timing constraints a
number of parameters are required. The profile manager
provides a set of predefined user profiles that help the
user in setting a new profile. A detailed presentation of
the profile manager can be founded in [5]  .



3.3. Quality of Service Manager

The purpose of quality of service negotiation is to
provide a presentation quality that corresponds to the
user's wishes and his financial constraints, as well as
within the constraints imposed by the limitations of
various system components, such as the available
resources at the client's workstation, the bandwidth
limitations of the network and the encoding schemes of
the available multimedia documents [3]  . Therefore this
process is based on various management information
associated with the various system components. Figure 3
shows the objects within the overall system which are
relevant for QoS negotiation. The QoSManager object
corresponds to the "QoS" process in Figure 1. The
Network, ClientMachine, and ServerMachine (including
the continuous media file servers, CMFServer) were also
included in that figure. Figure 3 provides some details
about the QoS parameters of the Network and
ClientMachine that are relevant for the QoS negotiation
process.

ServerMachine

Network

maxSpeed: integer
guarantee:guarantee
Type
cost: networkCost

QoSManager

Document

ClientMachine

screenSize: TscreenSize
screenColor: TscreenColor
speakerAvailable: boolean
speakerQuality: audioQualityType
availableVideoDecoders: set of videodecoders
availableAudioDecoders: set of AudioDecoders
availableImageDecoders: set of ImageDecoders

Database

Figure 3: Objects within the Overall System

At the high level of abstraction considered in this
section, where distribution is not explicitly taken into
account, we associate the management information
directly with the objects. For instance, the network has
the following QoS attributes: maxSpeed: the maximum
throughput of a single connection, guarantee: indicates
whether a throughput guarantee can be provided, and

cost: a tariff table quoting the cost (per minute) for
various throughputs and guarantees. A distinction
between static and dynamic management information is
sometimes made [3]  . The above information is
considered static. Dynamic information, such as the
available network bandwidth or possible database server
congestion, should also be taken into account during
QoS negotiation. We assume that such dynamic
information is taken into account when the system
resources are actually reserved.

The QoS Manager object performs the QoS negotiation
and adaptation by interacting with various system
components, as shown in Figure 4. This diagram
includes the Document and QoSManager objects already
shown in Figure 3, and in addition an object representing
the application program and additional objects that are
involved in the negotiation process.  The ProfileManager
object is described in Section 3.2, and the objects of type
Version  are the same as those shown in Figure 2.  Figure
4 shows the operations that can be involved on each of
the objects. The arrows indicate calling relations between
the objects. Two kinds of calls are considered: (a) a
standard procedure call by a client object on a server
object, denoted by a thin arrow, and (b) the invocation of
a "notification"  by a server object on a client object
(which previously has made a normal call on the server),
denoted by a thick arrow. For example, the application
may call the negotiatePresentation operation of the
QoSManager, whereas the latter may invoke the
notification QoSViolation while the user and application
are possibly searching through the document using the
fastforward, fastbackward and play operations.

A typical scenario of QoS negotiation proceeds as
follows. The application may call the operation
NegotiatePresentation on the QoSManager, providing as
parameter a Document and a userProfile obtained from
the ProfileManager. The objective of this operation is to
establish, if possible, a configuration of suitable versions
of the monomedia in the document that can be presented
with a quality of service within the bounds of the given
user profile.

If such a configuration is found, then the configuration
including the necessary communication links are
established, and the document is ready to be played. If
such a configuration is not found, the operation returns
one or several alternatives of multimedia profiles each
corresponding to a possible configuration, which,
however, does not conform to the given user profile. The
negotiatedPresentation operation may also be called
during an ongoing session when a change of the
presentation quality  or its cost is desired; in this case,
the parameter reneg should be set to true in order to
indicate that this is a case of renegotiation.



7

QoSManager
negotiatePresentation(doc:Document, 
     reneg: boolean, activeProfile: userProfile)

: negotiationResults
terminatePresentation
 

QoSViolation(id:connId, measuredValues:
          connectionParameters)

Document
play (position: integer)
pause
stop
getPosition(): integer

Application

QoSViolation (d:Document, 
    constraints: set ofMMProfiles)

activate(desiredQoS: connectionParameters) : 
       boolean
play (position: integer)
pause
stop
getPosition(): integer

Version

TConnection
connect (dest: address, 
       par: connParameters)
disconnect()

ProfileManager

                   

 getActiveProfile(userId: string): userProfile
 openProfileWindow(activeProfile: userProfile):

                    
userProfile

 negotiateActiveProfile(userId: string, activeProfile: userProfile, 
       constraints:MMProfile): userNegotiationResults

NetworkMonitor
start(duration: integer, frequency: integer, 
         averagingPeriod: integer, 
         thrsholds: connectionParameters)
stop()
getLastMeasurement(): connectionParameters
getMeasurementLog(): 
         sequence of connectionParameters

Figure 4: Interactions for QoS Negotiation

3.4. Network Monitor

In the case that the network does not guarantee the QoS
negotiated during the establishment of a connection, such
as in the context of the Internet, it may be useful to
monitor the quality actually provided by the network for
a given connection. Such monitoring may be useful for
switching automatically to an alternative system
configuration (if available), without the intervention of
the user, when the effective presentation quality does not
conform anymore to the profile which was used for the
original QoS negotiation.

The object NetworkMonitor shown in Figure 4 performs
these monitoring actions. Network monitoring is
triggered by the QoSManager by calling the start
operation. Parameters of this operation indicate the
duration of each measurement period and the frequency
with which such measurements should be performed.
The NetworkMonitor notifies the QoS manager when the
average of the measured values do not satisfy the
threshold values provided in the start operation.
Measurement values may also be directly obtained by
calling operations such as getLastMeasurement or
getMeasurementLog.

4. QoS Negotiation and Adaptation:
Behavior Definitions

After having defined the object types and the operations,
the object-oriented analysis and design methods usually
lead to the definition of the behavior of the objects
involved. Instead of giving a complete definition of the
behavior, we will simply explain informally the behavior
of the objects described in Section 2, by considering
some typical interaction scenarios, which are related to
the use cases discussed in section 2. We will complete
this section with a discussion of an abstract application
programming interface (API).

4.1. Establishing a Presentation Session

A typical application program will begin by determining
the QoS user profile to be used during the session. For
this purpose, it could invoke the GetDefaultProfile
operation of the ProfileManager object. As next step,
The application will then execute a SearchDocument
operation on the Database object with search information
obtained from the user.



In order to select a suitable configuration, the application
calls the operation NegotiatePresentation of the
QoSManager. As further explained in [2]  , the QoS
manager will consult the meta-data of the document and
determine, for each continuous monomedia component,
which of the available versions is the best. For the case
described in Section 2, the QoS manager will select the
version residing on CMFServer 1 for presentation.

For each continuous monomedia component, a real-time
transport connection is established over which the coded
data can be transmitted from the CMFServer containing
the selected version to the client's workstation. The
QoSManager will therefore request these connections
from the network(s) by calling the Connect operation on
a suitable TConnection object. Once a version is
associated with an open transport connection, its
operation Activate may be called. This operation
communicates with the CMFServer and reserves the
necessary resources for the real-time data transfer over
the associated transport connection. The resources
include a synchronization protocol to assure the delivery
of data [7]  . Once a version has been activated for each
monomedia component of the document, the document
may be played by invoking the Play operation.

4.2. Negotiation with the User

In the case that the QoSManager does not find any
satisfying configuration, the NegotiatePresentation
operation returns with a failure status and a set of
MMProfiles which correspond to certain possible
configurations which, however, do not satisfy the active
user profile. The application has essentially three choices
in such a situation: (a) abandon the presentation of this
document, (b) proceed with the presentation according to
one of the configurations proposed by the QoSManager,
or (c) let the user decide. For realizing choice (b), the
application could simply call the Renegotiate operation.
In the case of choice (c), the application could call the
operation NegotiateActiveProfile on the ProfileManager
object and use the resulting UserProfile as the parameter
to a subsequent negotiatePresentation operation called on
the QoS manager object.

4.3. Automatic Adaptation

Let us assume that a presentation session is in progress
and that the network becomes congested, thus leading to
lower QoS parameters for the transport. Let us assume
also that the QoSManager has started network
monitoring for this connection with threshold values
selected to assure the WorstAcceptedQoS values
accepted by the user profile. If the averaged value of the
measurements for one of the QoS parameters goes below
the threshold, the NetworkMonitor object will notify the
QoSManager by calling the QoSNotification operation.
The QoSManager has essentially four choices in such a
situation: (a) to continue the ongoing session with the

present QoS parameters, (b) idem, but also to notify the
application of the reduced QoS invoking the notification
QoSViolation, (c) to automatically select another
configuration, and (d) to call the QoSViolation operation
in giving all possible configurations in order to let the
application decide.

In the case of automatic reconfiguration (choice (c)), the
QoSManager stops the presentation of the document
after having obtained the current position by calling the
GetPosition operation of the document. It then
determines the best alternate configuration, activates this
configuration and restarts the presentation by calling the
play operation with the position parameter set earlier.

4.4. An Abstract Application Programming
Interface

An application programming interface (API) of a given
software module is usually a set of procedures which can
be called by an application program to obtain the
services provided by the software module. In the
following we describe the functionality of the API
provided by the multimedia database and QoS
management software and discuss the interfaces at an
abstract level.

Given the architecture of our system as explained above,
the abstract API is the set of operations that can be called
on the various objects within the distributed system. This
API should include the following objects and operations:

ProfileManager: operations GetActiveProfile,
openProfileWindow, NegotiateActiveProfile

Database: operations Search

Document: operations Play, Stop, Pause, GetPosition

QoSManager: operations negotiatePresentation

Application: the notification QoSViolation could be
called by the underlying system components

5. Implementation Issues

In this section we discuss some of the issues that come
up during the process that leads from an abstract
architectural design, as discussed above, to an
implementation of the system. In particular, we consider
issues related to the distribution aspect of the system and
the binding of the abstract API discussed above into
interface implementations at the level of the operating
system and programming language.

5.1. Communication between Distributed
Components

In the previous sections, we discussed distribution
aspects that are essential for QoS negotiation and
adaptation, such as the location of the application in the
ClientMachine, the documents on ServerMachines and
the presence of networks which provide real-time
transport connections for the transfer of continuous



media streams. We discuss in the following some
additional issues related to the distribution of the objects
introduced earlier.

The database does not reside in the same computer as the
application program. Therefore, the implementation of
an operation call by the application, such as a call of the
search operation, involves a protocol for the remote
invocation of the procedure. Various protocols for
remote procedure call (RPC) exist, including the OSI
standard for "remote operations" (ROSE). One of these
protocols could be selected for implementation.

The same problem of remote access arises for the
QoSManager which needs to access the QoS information
associated with various objects, such as the networks, the
database, and the client machine. While the information
on the client machine is local, the other objects are
remote. While the same RPC protocol mentioned above
could be used for this purpose, it may be desirable to use
specific protocols developed for distributed systems
management, such as SNMP or CMIP, for accessing this
management-oriented information. The remote objects in
question may already provide access to this information
through these protocols independently of our particular
application.

A document is actually a distributed object: the meta-
data and the non-continuous media is stored in the
database server and the continuous media components
are stored in continuous media file servers (of type
CMFServer). Before preparing a session, the QoS
Manager needs to obtain a local copy of at least the
meta-data of the pertinent document.

The transmission of (partial) documents involves the
complex data structures discussed in Section 3.1 to be
coded and transmitted. Some protocol standards have
been designed for handling these complex structures,
such as SGML, HGML, or MHEG. In our first prototype
discussed in Section 5, the document structure following
the HyTime standard, was coded in the form of C++ data
structures stored in an ObjectStore database. The
ObjectStore client software provides access to the server
machine using a proprietary protocol for communication.

The Version object introduced in Section 3.1 and used in
Section 4 may be considered as an object distributed
over the ClientMachine and the CMFServer where its
data is located. The first operation that can be invoked is
the activate operation. Its function is to establish a
connection between the client and the CMFServer
through the related transport connection (see Section
4.1). Once this association is activated, the other
operations, such as play, may be executed through the
collaboration between the client and the server machine.
In fact, the execution of the activate operation of a
Version object assures that a subsystem structure is
established which serves for the real-time processing of
the continuous media stream. This subsystem includes,
in addition to a protocol for stream delivery and

synchronization, allocated system resources for the
decoding and playing of the media stream.

5.2. API at the Implementation Level

An application programming interface (API), in concrete
terms, should be at the implementation level. The
abstract API discussed in Section 4.2 was introduced to
show the implications of the architectural design on the
API that would be provided within the implemented
system. Similarly, the standardized application interfaces
for specific services, such as graphics systems or
communication protocols, are often first defined in
abstract interactions that may then be mapped to
different concrete interfaces, possibly provided in the
context of different programming languages, also called
"language bindings" of the abstract interface.

In the following, we give an overview of the concrete
interfaces that have been implemented in the News-on-
Demand prototype developed within the CITR Major
Project on "Broadband Services". This prototype realizes
most of the functions described in this paper (the
automatic adaptation is only foreseen for March 1996),
although it has not been developed based on the
architecture described here. However, we think that its
concrete interfaces may be easily put in correspondence
with the abstract interfaces described in this paper.

The implementation language of the prototype is C for
the objects Version and TConnection, and C++ for the
other objects. Using the distributed ObjectStore database
software, the access procedures to the database become
local procedure calls. Therefore the interfaces for the
Database, the ProfileManager, the QoSManager and for
access to the meta-data and non-continuous monomedia
components of documents are simply programmed as
C++ procedures. The interface with the NetworkMonitor
is also programmed as C++ procedures, however, their
execution involves inter-process communication for
invoking the corresponding operation on the
NetworkMonitor object (supervisory part) which is
implemented as a separate process.

The local interfaces to the Version and TConnection
objects is implemented in the form of C procedures.
Since C does not directly support the concept of object
instances, a single software module, representing a
Transport entity, supports a large number of transport
connections, identified by a local connection identifier.
The procedures corresponding to the operations of the
TConnection object have one additional parameter which
is the connection identifier of the connection. A similar
approach is taken for the interface with the Versions.

6. Conclusion

We have presented a new architectural design of the
adaptive distributed multimedia system we have
developed for remote access to multimedia databases.
The system is based on a quality of service negotiation



and adaptation protocol allowing the selection of the best
configuration for a given user request and for automatic
adaptation in case of changes to the system parameters.
We have introduced a powerful notion of user profile to
keep the user preferences. To describe the functional
aspect of the system, we have detailed the collaborations
between its main actors. Realistic scenarios are given to
illustrate the system’s behavior. Four managers compose
the system: the database manager, the profile manager,
the QoS manager and the network monitor. We have
described the high-level system structure with an object-
oriented approach and defined the semantic of the
different components by explaining their role within the
context of QoS negotiation and adaptation. Finally an
abstract application programming interface was given
which is believed to be suitable for various multimedia
applications, and can be refined into the actual API used
at the implementation level.

This work is done in the framework of a collaborative
research project funded by the Canadian Institute for
Telecommunication Research. This project resulted in an
integrated prototype that was demonstrated in August
1995. The experience gained in the development of this
first prototype of the NewsOnDemand system leads us to
describe a high-level specification of a general adaptive
distributed multimedia system. A new version of the
prototype is currently being designed and developed. We
think that the architectural design we have presented here
will be helpful for the evolution of the system.

Acknowledgments

This work grew out of the discussions about the
architecture of the NewsOnDemand prototype developed
within the CITR "Broadband Services" project. We
thank all the participants in this project for fruitful
discussions. Special thanks are due to Rolf Velthuys for
his major contribution to the architecture of the
prototype.

References

[1] Dubois, E., Baaziz, N., & Matta, M. (1995). Impact
of Scan Conversion Method on the Performance of
Scalable Video Encoding. In IS&T-SPIE, San Jose,
USA:

[2] Hafid, A., Bochmann, G. v., & Dssouli, R. (1995).
Models for QoS negotiation in distributed
multimedia applications. In Second International
Workshop on Protocols for Distributed Systems,
Salzburg, Austria:

[3] Hafid, A., Bochmann, G. v., Kerhervé, B., Dssouli,
R., & Gecsei, J. (1995). On Quality of Service
Negotiation for Distributed Multimedia Applications
(Technical Report No. 977). Université de Montréal,
Canada.

[4] Hutchinson, D., Coulson, G., Campbell, A., & Blair,
G. (1994). Quality of Service Management in
Distributed Systems. In M. Sloman (Eds.),     Network

  and Distributed Systems Management (pp. 273-
303). Addison-wesley.

[5] Isnard, B. (1995). Gestion des profils de qualité de
service  (Internal Report). Université de Montréal,
Canada.

[6] Kerhervé, B., Vogel, A., Bochmann, G. v., Dssouli,
R., Gecsei, J., & Hafid, A. (1994). On Distributed
Multimedia Applications: Functional and
Computational Architecture and QoS Negociation.
In M. I. G. Neufeld (Ed.), IFIP Fourth International
Workshop on Protocols for High-Speed Networks,
(pp. 21-37). Vancouver, Canada: Chapman & Hall.

[7] Lamont, L., & Georganas, N. (1994).
Synchronisation Architecture and Protocols for a
Multimdia News Service Application . In IEEE
Multimedia  Computing and Systems. Boston:

[8] Nahrsted, K., & Smith, J. (1995). QoS Broker . IEEE
Journal of Multimedia Systems, vol 2 no 1 (spring
1995) , 53-67.

[9] Neufeld, G., Makaroff, D., & Hutchinson, N.
(1994). The design of a file server for scalable VBR
media  (Technical Report No. University of British
Columbia, Vancouver, Canada.

[10] Özsu, T., Szafron, D., El-Medani, G., & Vittal, C.
(1995). An Object-oriented Multimedia Database
System for a News-on-demand Application. ACM
Multimedia Systems, 3 (November 1995) , 182-203.

[11] Parnas, D. L., & Clements, P. C. (1986). A rational
design process: How and why to fake it. IEEE
Transactions on SE, SE-12 (2) , pp. 251-257.

[12] Rambaugh, J., & al. (1991). Object-oriented
Modeling and Design . Prentice Hall.

[13] Velthuys, R., & al, a. (1995). CITR Broadband
Services: the March'95 demo   (Technical Report).
University of Waterloo, Canada.

[14] Vogel, A., Kerhervé, B., Bochmann, G. v., &
Gecsei, J. (1995). Quality of Service Management: a
survey. IEEE Journal of Multimedia Systems, Vol 2
no 2 (Summer 1995) , 10-19.


