
ramework for Conformance Testing of Systems Communicating through
Rendezvous

Q. M. Tan, A. Petrenko and G. v. Bochmann
Ddpartement d’ IRO, Universitd de Montreal

C.P. 6128, Succ. Centre-ville, Montrkal, H3C 3J7, Canada
e-mail:{ tanq,petrenko,bochmann} @iro.umontreal.ca Fax:(5 14)343-5834

Abstract

In this papel; a formal framework is first proposed for
conformance testing of communication systems, which are
modeled by labeled transition systems (LTSs), in a system-
atic andoperational approach. In thisframework, test cases
are limited to deterministic processes with finite behavior
and state labels: testing is afinite set of experiments where
every test case is parallelly composed with an implementa-
tion under test; observations are action sequences, executed
during the testing, from which the test verdict is drawn di-
rectly. The fault model and fault coverage criteria are intro-
duced to measure the effectiveness of testing. Afrerwards,
based on this framework, for several common conformance
relations, we present corresponding functions for the state
labeling of test cases and upper bounds on the necessary
sizes of test suites for obtaining complete fault coverage.

One of the important issues in conformance testing
of communication systems is to define a conceptual test-
ing framework for systems communicating by rendezvous.
Rendezvous does not distinguish explicitly between inputs
and outputs, and communication between two processes oc-
curs if both processes offer to interact on a particular action,
and if the interaction takes place it occurs synchronously
in both participating processes. One of the specification
formalisms for such systems is labeled transition systems
(LTSs); it also serves as a semantic model for various speci-
fication languages, e.g., LOTOS [21, CCS 1141, and CSP [91.
Since there are various criteria for conformance of LTSs,
from which a dozen of conformance relations are intro-
duced [20], in order to facilitate test generation, a formal
testing framework should be defined to answer the follow-
ing questions: how are test cases structured for a given con-
formance relation, what constitute observations in testing

and how is the verdict assigned? Moreover, this frame-
work should also take into account the current practice, that
is, conformance testing as a finite activity which should
provide a well-defined confidence that the implementation
under test conforms to its specification.

Theories of conformance testing and methods for test
derivation from LTSs have been developed in [3,4,20, 17,
21, 15, 19, 11, 7, 16, 181. A fundamental framework was
introduced in [41. In this framework, theretum status of test-
ing (successful or fail exit, deadlock, etc.) are considered as
observations, and the verdict obtained from a given test case
depends only on whether or not the observations obtained
during testing of the IUT are a subset of the observations
expected from the specification. However, intuitively, it is
clear that the interaction sequences observed during testing
may be important for defining the verdict, and should in gen-
eral not be ignored. In fact, it is difficult for the framework
of [4] to define the verdict for certain conformance relations,
such as trace equivalence, nondeterminism reduction (conf
plus trace equivalence) [6], and failure equivalence. Fur-
thermore, since test cases with infinite and nondeterministic
behavior are allowed, no attempt is made in this framework
to describe how to obtain the verdict in an operational way
through finite experiments.

Another similar framework for conformance testing in
the LTS formalism is drawn in [19] from the OS1 Confor-
mance Testing Methodology and Framework. In this frame-
work, states of test cases are directly labeled with verdicts,
and the verdict assignment is obtained from the verdicts re-
tumed during testing. Although this framework considers
the action sequences observed during testing as observa-
tions, except for the conf relation, this framework does not
answer how to structure test cases and assign the verdict
for a given relation. Like the above framework, testing is
treated as a correctness-proving process with respect to the
given conformance relation. Therefore infinite testing is
allowed and no fault coverage is considered. As a result,
no estimation can be given for complexity of testing with
guaranteed fault coverage.

0731-3071/96 $5.00 0 1996 IEEE
Proceedings of FTCS-26

230

Authorized licensed use limited to: University of Ottawa. Downloaded on July 15, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

In this paper, we propose a formal testing framework
for the purpose of testing systems comnunicating through
rendezvous in a systematic and operational approach. In
our framework, test cases are limited to be deterministic
and finite processes with state labels, and furthermore ac-
tion sequences executed during testing: are considered as
observations. This results in a unified verdict assignment
for several common conformance relations. Since testing is
a finite set of experiments, the notions of fault model and
fault coverage are introduced to measure the effectiveness of
testing. Afterward, based on this framework, for each of the:
conformance relations, we present a state labeling procedure:
by which test cases in respect to the relation are formed, ancl
an upper bound that guarantees full fault coverage, provided
that the number of multi-states of any implementation is not
more than a known integer.

In Section 2, we review basic definitions and notations.
In Section 3, we give the testing framework. In Section
4, we present the state labeling functioins. In Section 5, we
discuss upper bounds of test suites for different conformance
relations.

2. Basic Definitions and Notations of Confor-
mance Testing

The starting point for conformance testing is a specifical-
tion in some (formal) notation, an impkmentation under test
given in the form of a black box, and a set of conformance
requirements the implementation should satisfy. In this pa-
per, a formal notation, which is called labeled transifion
systems (LTSs), is considered for specifications; implemen-
tations are also assumed to be described in the same model;
the conformance requirements of a given specification is
supposed to be defined by a specific conformance relation.

2.1. Labeled Bansition Systems

Definition 1 (Labeled transition system (LTS)): A labeled
transition system is a 4-tuple < S, Z, A, SO >, where

0

0

0

S is a finite set of states, SO E S, is the initial state.
I; is a finite set of labels, called observable actions;
7 +! Z is called an intemal action.
A C S x (Z U { T }) x S is a transitions set.
(p, 1.1, q) E A is denoted by p - p + q.

An LTS is said to be nondeterministic if it has some tram-
sition labeled with T or there exist p-a+ p ~ , p - a j p z E A
and pl # p2. A deterministic LTS has no intemal actions
and the outgoing transitions of each state are uniquely la-
beled.

An LTS can also be represented by a directed graph where:
nodes are states and labeled edges are transitions. An IXS
graph is shown in Figure 1.

s4

Figure 1. An LTS graph

The notations shown in Table 1 are relevant to a given
LTS. In this paper we use M, P, S, . . . to represent LTss;
M, P, Q, . . ., for sets of states; a, b, c, . . ., for actions; and
i, p , q , s . . ., for states. Tr(s0) is called the set of truces of S
and Ref(s0, U) the set of refusals of S after the observable
action sequence a.

We note that the R e f (p , a) includes all the sets of actions
that may be refused by some state in p-after-a. If a set
A is refused, obviously, each B E A is refused as well.
Thus, we may consider a minimal representation of arefusal
set, denoted by [Ref@, a) l , by deleting each element in
Ref(p, a) that is a subset of another. Generally, for any
refusal set R, [RI = R\{A I 3B E R (A c B) } . A set in
[R e f (p , a)1 is a maximal set of actions that may be refused
at p after u.

In the case of nondeterminism, after an observable action
sequence, an LTS may enter a number of different states. In
order to consider all these possibilities, a state subset (multi-
state [SI), which contains all the states reachable by the LTS
after this action sequence, is used.

Definition 2 (Multi-state set): The multi-state set of LTS S
is a set lls = {Si E S 1 3a E Tr(so) (so-after-a = Si)}.

Note that the empty sequence E is supposed to be in C' .
Therefore SO = so-after-& is in the multi-state set, and is
called the initial multi-state. The multi-state set can be
obtained by a known algorithm which performs the deter-
ministic transformation of a nondeterministic automata with
trace-equivalence [lo]. For Figure 1, the multi-state set is
{{SO, s i } , {sz, s3}, {sz), {so, s i , ~ 4 , s 5) , (~ 5)) . Obvio~sly,
each LTS has one and only one multi-state set.

Notations used for multi-states are shown in Table 2. In
this table, P, Q 5 S, where S is the state set of the LTS
S. Using the extended notations, it is easy to show that
Tr(so) = Tr(So) and so-after-a = So-after-a.

2.2. Conformance relations

There are different criteria for determining whether an
implementation conforms to a specification. Such crite-
ria can be formalized as conformance relations. Different

23 1

Authorized licensed use limited to: University of Ottawa. Downloaded on July 15, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

meaning
set of sequences over I;; a or ~1 . . . a, denotes such a sequence
thereexistspl . . .pn-l such thatp-pl+pl.. .p,-l-~(,-+q
p - r " + q (1 5 n) orp = q (note: T" means n times T)

there exist p1, p2 such that pl = E ~ p l - Q+ pz = E + q
there exists pl . . .pn-l such that p = a1 +p1 . . .pn-l = Q, e- q
there exists q such that p = a 3 q
no q exists such that p = a * q

p-after-a = { q E S I p = a
Tr(p) = { a E C' I p = a + } ; Tr(S) = Tr(so)
R e f (p , a) = { A C C I 3q E p-after-a Va E A (q#a=+) }

out(p) = { a E C I p=a*}
q } ; S-after-a = so-after-a

= R e f (p , €1; R e f 6 a) = Ref(so ,n)

Table 1. Basic notations for labeled transition systems

Table 2. Additional notations for labeled tran-
sition systems

conformance relations have been proposed for comparing
labeled transition systems [20]. We say that an implemen-
tation M conforms to a specification S if the chosen con-
formance relation holds between M and S. The following
conformance relations are considered in this paper.

Definition 3 (Conformance relations):

Trace reduction (st): M st S iff Tr(mo) E Tr(so).
Trace equivalence (M~): M Rt S iff Tr(mo) = Tr(s0).

Failure reduction (5j): M S iff V u E I;'

Nondeterminism reduction (5,): M S iff M rzt S
and M < j S.
Failure equivalence (a!): M = j S iff M 51 S and

Ref(m0 > U) E Ref(so,a) .

S < j M .

The trace reduction relation allows that the implementa-
tion M has the same or less traces than the specification S,
whereas the trace equivalence relation requires that M has
the same traces as S. The failure reduction relation further
requires that everything of M is allowed by S, not only the

232

traces but also the actions refused after any observable ac-
tion sequence (deadlock). The failure equivalence not only
states that everything that M does must be allowed by S,
but also requires that everything prescribed by S sh~uld be
implemented by M. The n o n d e t e r m i n i s m m i u c t k "
accepts M if M is less nondeterministicthan S, thatis, M b a c
the same traces as S, and equal or less deadlocks than S after
any given trace. We note that for deterministic systems, the
trace equivalence relation is the failure equivalence relation.
Nondeterminism differentiates the two relations, so nonde-
terminism reduction corresponds to implementation choices
for anondeterininistic specification. The trace reduction and
equivalence relations belong to trace semantics [9], while
the other three relations belong to failure semantics [5]. The
trace and failure semantics only require a simple testing sce-
nario in which a testing process is a communication process
between the tester and the implementation under test.

The following relationships hold among these confor-
mance relations: a!*<,; Ln=+.f; <,+at; +Kt;
M t j l t .

3. Conformance Testing as Experiments

Conformance testing is a finite set of experiments, in
which a set of test cases, derived from a given specifica-
tion according to a given conformance relation, is applied
by a tester or experimenter to the implementation under test
(IUT). From the results of the execution of the test cases, it
can be concluded whether or not the implementation con-
forms to the specification.

The behavior of the tester during a test experiment is
defined by the test case used in this experiment. Thus a
test case is a specification of behavior, which, like other
specifications, can be represented as an LTS. An experiment

Authorized licensed use limited to: University of Ottawa. Downloaded on July 15, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

should last for a finite time, so a test case should have no
infinite behavior. Moreover, the tester should have certain
control over the testing process, so nondeterminism in a test
case is undesirable.

Definition 4 (Test cases and test suite): Given an LTS spec-
ification S =< s, Z, A, SO >, a test case T of S is a 5-tuple
< T , % , A T , t O , t > where:

C r C Z ;
0 < T, & , AT, t o > is a deterministic, tree-structured

LTS such that for each p E T there exists exactly
one U E withto=a+p;

function.
0 : T + {pass, fail, inconclusive} is a state labeling

A test suite for S is a finite set of test cases.

From this definition, the behavior of a test case T is finite,
since T and I; are finite. Moreover, a trace of T uniquely
determines a single state in T, so we can define [(U) = [(t)
for {t} = to-after-a.

The rendezvous interactions between a test case T and the
IUT M can be formalized by the synchronization operator
‘‘(1’’ of LOTOS, that is, t o 11 mo. When t o 11 nzo after an
observable action sequence U reaches a deadlock, that is,
there exists state p E T x M such that for all actions a E Z,
(t o 11 no) = U + p and p # a =+, we say that this experiment
completes a test run. In the light of the tester, each state of
the test case T is characterized by the set of actions out of
this state which are offered by the tester to the IUT. If this
set is empty, we say that the test case has reached an inactive
state; the other states are called active. The completion of a
test run means that an inactive state is reached or the set of
actions offered as next interactions is refused by the IUT.

Each test run produces an observable action sequence a ,
which is a trace of both T and M; from T a unique label a(U)

is determined by a , which is called the verdict of the test
run. We call a (or U and [(a) together) an observation. (We
do not treat deadlock as observation since each test run ends
as deadlock.)

Usually, a test case is designed to check some particular
conformance requirement, sometimes called test purpose.
We define here the test purpose of a test case T, written
Pur(T), tobe Pur(T) = {a E Tr(t0) I [(U) = pass}.
If Pur(T) = 0, then T should have at least one fail label
and its purpose is to check that the IUT does not implement
specific unexpected behavior.

Usually, LTSs are supposed to be nondeterministic. In
order to test nondeterministic implementations, one usually
makes the so-called complete-testing assumption which says
that it is possible, by applying a given test case to the imple-
mentation a finite number of times, to exercise all possible
execution paths of the implementation that can be traversed
by the test case [8,13, 121. Without such an assumption, no

test suite can guarantee full fault coverage (in terms of con-
formance relations) for nondeterministic implementations.
Therefore any experiment, in which M is tested by T, should
include several test runs and lead to a complete set of obser-
vations:

Based on O~S(T,M), which are the results of testing with
the test case T, the success or failure of the testing needs to
be concluded. The way a verdict is drawn from O~S(T,M)
is the “verdict assignment” for T Obs(T,M) {pass, fail}.
The verdict pass means success, which, intuitively, should
mean that no unexpected behavior is observed and the test
purpose has been achieved. From this, the conclusion can
be drawn as follows.

Definition 5 (Verdict assignment U): Given an imple-
mentation under test M, a test case T, let Obsjail =
{ U E O~S(T,M) 1 t (u) = fail} and Obspa,, = {U E
O ~ ~ (T , M) I [(b) = pass),

~ O ~ S (T , M)) =
pass if Obsfair = 0 A

Obspass = Pur(T) { fail otherwise.

The goal of conformance testing is to gain confidence
in the correct functioning of the implementation under test.
Increased confidence is normally obtained through time and
effort spent in testing the implementation, which, however,
is limited by practical and economical considerations. In
order to have a more precise measure of the effectiveness
of testing, a fault model and fault coverage criteria [l] are
introduced. We here take the mutation approach [ll, that
is, we define the fault model to be a set 3 of all faulty LTS
implementations considered. Based on 3, a test suite with
complete fault coverage for a given LTS specification with
respect to a given conformance relation can be defined as
follows.

Definition 6 (Complete test suite): Given an LTS specifi-
cation S, a fault model 3 and a conformance relation r , a
test suite 23‘ for S with respect to r is said to be complete,
if for any M in 3, r holds between M and S if and only if M
passes T for each T in 2 3 .

In the following, we consider a particular fault model of
the form 3 (m) which consists of all LTS implementations
over the alphabet of the specification S and with at most m
multi-states, where m is a known integer. We say that a test
suite is m-complete for a given specification if it is complete
in respect to the fault model 7(m).

A complete test suite guarantees that for any implementa-
tion M in 3, if M passes all test cases, it must beaconfoming

233

Authorized licensed use limited to: University of Ottawa. Downloaded on July 15, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

implementation of the given specification with respect to the
given conformance relation, and any faulty implementation
in F must be detected by failing at least one test case in the
test suite.

4. State Labelings of Test Cases

Given a specification S and a conformance relation r ,
the state labeling function of test cases T must be "sound",
that is, for any implementation M, if r holds between M and
S, then M passes T. In the following, we present the state
labeling functions for the conformance relations discussed
in this paper.

4.1. Trace equivalence

In the context of trace equivalence, a conforming imple-
mentation should have the same traces as a given specifi-
cation. Therefore each test case specifies certain sequences
of actions, which are either valid or invalid traces of the
specification. The purpose of a test case is to verify that
an IUT has implemented the valid ones and not any of the
invalid ones. If such a sequence specified in a test case is
implemented in the IUT, then there must exist a test run such
that the sequence is observed. If the observed sequence is a
valid trace, a pass verdict should be assigned to this test run,
which implies that the state after the sequence in the test
case should be labeled with pass; no conclusion could be
made if a test run completes before the end of the sequence,
so the tail states of all the proper prefixes of the sequence
should be labeled with inconclusive. On the other hand,
if the observed sequence is an invalid trace, a fail verdict
should be assigned to this test run, which implies that the
state after the sequence in the test case should be labeled
with fail. Based on this reasoning, we conclude that all test
cases for trace equivalence must be of the following form:

Definition 7 (Test casesfor trace equivalence): Given an
LTS specification S, a test case T is said to be a test case for
S wr.t. mt , if, for all U E Tr(t0) and { t i } = to-after-c, the
state labeling of T satisfies

if u E Tr(s0) A
out(t i) n out(s0-after-u) = 0
U $ W s o)

& (t i) = fail i inconclusive pass otherwise.

A test suite for S w.r.t. at is a set of test cases for S w.r.t.
W t .

Note that in T, U leading to a state with pass is not a
prefix of any other sequence in T r (so) n T r (t o) .

Proposition 1 Given a test case T for S wxt. X t , for any
LTS M, if M at S, then M passes T.

A test case for the LTS given in Figure 1 in respect to
trace equivalence is shown in Figure 2 (b).

4.2. Trace Reduction

For the trace reduction relation, a conforming implemen-
tation may contain any part of valid traces of its specification
but no invalid traces. Thus for this relation the state labeling
of test cases should be fail for the tail states of the sequences
that are invalid traces of the specification; the other states
are labeled with inconclusive.

Definition 8 (Test cases for trace reduction): Given an LTS
specification S, a test case T is said to be a test case for S
w.r.t. st , if, for all c E Tr(t0) and { t i } = to-after-a, the
state labeling of T, satisfies

fail if c $ Tr(so)
inconclusive otherwise. ! , (t i) =

A test suite for S w.r.t. st is a set of test cases for S w.r.t.
Lt .
Proposition 2 Given a test case T for S wxt. st, for any
LTS M, if M Lt S, then M passes T.

trace reduction is shown in Figure 2 (a).
A test case for the LTS given in Figure 1 in respect to

4.3. Failure Equivalence

In the context of failure equivalence, a conforming imple-
mentation and its specification should have the same refusal
set after any observable action sequence. Therefore each
test case for this relation should be designed such that out
of each of its states a certain set of actions is specified as
the set of actions offered by the tester in the corresponding
testing interaction. (Note that an empty set is assumed in
an inactive state.) It is expected that, in any interaction, the
IUT may refuse the offered set if and only if the offered
set may also be refused by the specification after the same
sequence.

If the TUT implements any sequence in a test case, there
must exist a test run such that this sequence is observed;
furthermore if the set of actions offered in the last interaction
of this test run is a set in the refusal set of the specification
after the sequence, then a pass verdict should be assigned to
this test run, which implies that the state after the sequence in
the test case should be labeled with pass. On the other hand,
if the offered set of actions is not in the refusal set of the
specification after the sequence, then a fail verdict should
be given to this test run, that is, the state after the sequence
in the test case should be labeled with fail. Based on this
reasoning, we conclude all test cases for failure equivalence
must be of the following form:

234

Authorized licensed use limited to: University of Ottawa. Downloaded on July 15, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

incon

incon i
incon P
incon F Pfail

Ifai*

I b

Figure 2. Test cases for (a) < I tu (b) M t , (c) 5 f , (d) sn and (e) M

Definition 9 (Test cases forfailure equivalence): Given an
LTS specification S, a test case T is said: to be a test case foir
S w.r.t. =j, if, for all U E Tr(t0) and { t i } = to-after-a,
the state labeling of T satisfies

S w.r.t. sf, if, for all a E Tr(t0) and { t i } = to-after-a,
the state labeling of T satisfies

if out(t;) 41 Ref(s0-after-a)
= { Eonclusive otherwise.

pass if out(t i) E Ref(r;o-after-a)
(t i) = { fail otherwise. A test suite for S w.r.t. < j is a set of test cases for S w.r.t.

< j *

A test suite for S w.r.t. =f is a set of test cases for S w.r.1.
"f.

Proposition 4 Given a test case Tfor S w.~t. S j , for any
LTS M, i f M S, then M passes T.

A test case for the LTS given in Figure 1 in respect to Note that if a is not a valid trace of S, then
Ref(so-after-a) is an empty set, and from this t i is labeled
with fail because no matter whether out(t;) is an empty set trace reduction is shown in Figure (cl.

. , _ -
or not, out(t;) is not in the empty set E;lef(so-after-a). 4.5. Nondeterminism Reduction

Since nondeterminism reduction is the combination of
failure reduction and trace equivalence, the state labeling of
test cases for nondeterminism reduction can be obtained by
combining the corresponding state labeling functions of test
cases for these two relations.

Proposition 3 Given a test case Tfor S w r t . mf, for any
LTS M, if M "f S, then M pusses T.

A test case for the LTs given in Fi'gure
failure equivalence is shown in Figure 2 (e).

in respect to

4.4. Failure Reduction Definition 11 (Test cases for nondeterminism reduction):
Given an LTS specification S, a test case T is said to be a

For the failure reduction relation, ;i conforming imple- test m e for s w-r-t- <n 9 if, for all E T"(t0) and { t i } =
mentation may be any implementation whose refusal set, the state labeling Of satisfies

pass if out(t ;) E Ref(s0-a&r-a) A
outjt;) n out(s0-after-a) = 0

fail if out(t;) Ref(s0-after-a)
inconclusive otherwise.

after a given action sequence, is a &set of the refusal set
of its specification after the same seqiience. Thus for this
relation, we only need to check the unspecified deadlocks in
a given implementation. For a test case for this relation, a
state should be labeled with fail if the ?;et of actions out of it

&j (t i) =

Definition 10 (Tesr cases for failure i-eduction): Given LUI
LTS specification S, a test case T is said to be a test case for

From the above definition, we can note that label pass
is designated to check trace equivalence, while label fail

235

Authorized licensed use limited to: University of Ottawa. Downloaded on July 15, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

to check the failure reduction. out(ti) E Ref(s0-after-a)
implies U E Tr(s0) and out(ti) n out(s0-after-a) = 0
implies that sequence U is not a prefix of another sequence
in Tr(so) n Tr(t0).

Proposition 5 Given a test case T for S w ~ t . In, for any
LTS M, if M In S, then M passes T.

A test case for the LTS given in Figure 1 in respect to
nondeterminism reduction is shown in Figure 2 (d). We note
that in this case the five test cases in Figure 2 to have the
same underlying LTS, but clearly they have different state
labelings.

5. Complexity of Testing

In this section, we discuss how to estimate the complexity
of testing with complete fault coverage in the class of LTS
implementations with at most m multi-states from a given
LTS specification, using our testing framework, with respect
to any of the conformance relations considered in this paper.

We use "." to represent the concatenation of two sets
of sequences. Formally, assuming V I , V2 C Z', the con-
catenation of sets, Vl.V2, is defined as a set (~ 1 . 6 2 I 61 E

A U E h}. Wealso Write V" = V.V"-' for n > Oand

Given a set of sequences V E C*, we use the notation
P r e f (V) to represent all prefixes of sequences in V . For-
mally, P r e f (V) = {cq 102 E z* A u1.u2 E b'}.

In order to perform testing, we assume that the underlying
LTS of each test case is a T-system, which is formed from
a sequence of observable actions U and a set of observable
actions B. The sequence U may bring the IUT to a desired
multi-state from the initial state, so that the transitions or
refusals from that multi-state could be checked using the set
B.

Definition 12 (T-system): A T-system is an LTS formed
from a sequence U = ala2. . .a, E C* anda set B C C ac-
cording to the LOTOS expression al; 132;. . .; anO(bjEB)bj,
written [U 0 B].

A T-system [U 0 B] is a deterministic and tree-structured
LTS. Note that U may be the empty sequence E and B may
be the empty set 0, for example, we have [E 0 {a}] = [U 0 01.
In Figure 2, the underlying LTS of all the test cases is the
T-system [a.b 0 {a, b, c }] .

Given a multi-state P of the specification, we
also denote blk(P) = C\out(P) and Acc(P) =
powerset(C)\Ref(P). Any action in blk(P) must be
blocked at P, while for any set of actions in Acc(P) there
exists at least one action in it that must be accepted at P.
Similar to the minimal representation of refusal sets intro-
duced in Section 2.1, we also consider a minimal represen-
tation of Acc(P), denoted by [Act(P) J , since for any two

vo = { E } .

sets of actions A and B in Acc(P), if A _> B then the
fact that an action in B must be accepted implies that an
action in A must also be accepted. Generally, for any set R,
LRJ = R\{A I3B E R (A 3 B)}.

We present in the following a set of propositions which
explain how to select a set of LTSs in a worst-case sce-
nario and make it an m-complete test suites for a given LTS
specification S and for each of the implementation relations
presented in this paper. These propositions make use of sev-
eral sets of T-systems which are defined for given integers
m and n as follows.

TSI = {[U. {a}] I U E Pref(Cmn-') A So=u+Si
A U E blk(Si)}

73'11 = { [u o { a }] I ~ E p ~ e f (z ~ " - ') A \ o = a ~ S i
A a E Out(Si)}

XSIII = {[U A] I U E Pref(Zmn-') A So=U+Si
A A f LAcc(Si)J}

XSw = {[U. A] I U E Pref(C""-') A So=U*Si
A A E [R e f (s i) l }

Proposition 6 Given an LTS specification S with n multi-
states, the set TSI with the state labeling & forms an m-
complete test suite for S with respect to st.
Proposition 7 Given an LTS specifcation S with n multi-
states, the set TSI U TSII with the state labeling !, forms
an m-complete test suite for S with respect to q.

Proposition 8 Given an LTS specification S with n multi-
states, the set TSI U TSIII with the state labeling !g forms
an m-complete test suite for S with respect to S J .

Proposition 9 Given an LTS specification S with n multi-
states, the set TSI U TSII U 5'3'111 with the state labeling !,
forms an m-complete test suite for S with respect to In.
Proposition 10 Given an LTS specification S with n multi-
states, the set 75'111 U TSw with the state labeling forms
an m-complete test suite for S with respect to M J .

The derivation of the above test suites only takes into
account the alphabet, the number of multi-states and the
properties prescripted by the corresponding relations. If we
consider the length of a test case as the total length of all the
sequences from the initial state to an inactive state and the
length of a test suite is the total length of all its test cases,
then we can give an upper bound mnlCl"' for the length of
the smallest m-complete test suite for an LTS specification
with n multi-states in trace semantics, and an upper bound
m n 2 1 4 (~ 1 ~ ~ - l in failure semantics.

It is possible to derive complete test suites far below the
upperbounds, if theconcept of state identification is applied:

236

Authorized licensed use limited to: University of Ottawa. Downloaded on July 15, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

leading the IUT to a multi-state, checking a transition or
deadlock and verifying the tail state of the transition with a
pre-selected set of state identifiers. Such a test generation
method has been proposed in [161 for trace equivalence. We
will explore the other relations in future work.

Unlike some existing methods [15, 17, 183, in which
infinite behavior is approximated by finite behavior, our ap-
proach provides a fixed fault coverage' for the confidence in
the correct functioning of an implementation in conformity
with its specification.

6. Conclusion

LTSs are the basic semantics for the LOTOS Language
and other specification formalisms. A testing framework has
been presented for conforman& testing of communication
systems in theLTS formalism. In this framework, testing is a
finite set of experiments that ensures a certain fault coverage.
A test experiment is run by observing all possible traces of
synchronous interactions between an implementation under
test and a test case which is a finite and deterministic process
with state labeling, and a verdict assignment function is used
to draw a conclusion from the observed results.

For several common conformance relations, such as trace
reduction, trace equivalence, failure reduction, nondeter-
minism reduction and failure equivalence, we have given
the corresponding functions for the state labeling of test
cases. Moreover, under the assumption that the number of
multi-states in any implementation is bound by a known
integer, we have established upper bounds on the necessary
sizes of test suites to obtain full fault coverage for these
relations, which give an idea on how complex testing can be
in worst-case situations. However, for practical purposes,
more optimized test derivation methods with guaranteed
fault coverage, such as [16], have yet to be established for
most of these conformance relations.

Acknowledgments:

This work was supported by a Strategic Research Grant
from theNatural Science and Engineering Research Council
of Canada.

Appendix

In this appendix we give the proof of all the propositions
presented in this paper.
Proposition 1 Proof: According to Definition 7, if there
exists U E O b s p , ~) and & (U) = fail then U E
Tr(mo)\Tr(so); if there exists U E P u r (T) but U $!
Obs(T,M), then U E Tr(so)\Tr(mo). The both cases con-
tradict M s=+ S . So M passes T with respect to q.

Proposition 2 Proof: Similar to the proof of Proposition 1.

Proposition 3 Proof: According to Definition 9, if
there exists U E O ~ S (T , M) and &J(u) = fail, then
out(t0-after-u) E Ref(m0, u)\Ref(so, U) ; if there exists
U E Pur(T) but U $! Obs(T,M), then out(t0-after-a) E
Ref(m0, a)\Ref(so, U) . The both cases contradict M
S. So M passes T w.r.t. mj.

Proposition 4 Proof: Similar to the proof of Proposition 3.

Proposition 5 Proof: Similar to the proof of Proposition 3.

Proposition 6 Proof: 3 Proposition 2.
e Since any LTS implementation M is assumed to have
no more than m multi-states, and S has exactly n multi-
states, there are no more than mn different pairs of multi-
states for M and S. If M has a trace that is not in Tr(so) ,
that is, M st S, then there must exist u;.a E C' such
that ui E Tr(m0) n Tr(so) , ui.a E Tr(mo)\Tr(so) and
(u , (< m n - 1 . L e t S o = u , i S ; , t h e n n E b l k (S i) . Thus
we have [ui 0 {a}] E 231 such that t,(u;.a) = fail and
ui.a E Obs(T,M). This implies Obsfail # 0. According to
the verdict U, M fails T.

Proposition 7 Proof: 3 Proposition 1.
e There are no more than mn different pairs of multi-
states for M and S. If M gt S, then there must exist
u;.a E Z* such that ui E Tr(m0) n Tr(so), u;.a is in
Tr(mo)\Tr(so) or Tr(so)\Tr(mo), and Iuil 5 m n - 1.
Thus we have T = [U; 0 { a }] E 231 U 2311. If u;.a E
Tr(mo)\Tr(so), then bi .a E ObsT M and &t(ui.a) =
fail; if u;.a E Tr(so)\Tr(mo), thin u;.a 6 o ~ s (T , M)
and &(ui.a) = pass. This implies that Obsjai1 # 0,
or Obspass # Pur(T) . According to the verdict v , M fails
T.

Proposition 8 Proof: j Proposition 4.
e If M $, S, that is, there exists U E Z* such that
Ref(m0, U) e R e f (s 0 , U) , then U E Tr(mo)\Tr(so) or
U E Tr(m0) n Tr(so), because Ref(m0, U) G Ref(so , U)

otherwise. Note that for any LTS P, R e f (P , u) = 0 if
U $! Tr(P). For U E Tr(mo)\Tr(so). similar to the proof
of Proposition 6, there must exist T = [ui { a }] E l31
such that ui.a E O ~ S T M and &j(u;.a) = fail. For
u E ~ r (m o) n ~ r (s o) , knce there are no more than m n
different pairs of multi-states for M and S, there exists ui of
length 5 mn - 1 such that if (M O , SO) = U =+ (M i , Si)
then (MO,&) = U; + (Mi ,S i) . Since Ref(mo,u) (Z
R e f (s 0 , U) , there exists A C Z, A # 0 such that A E
Ref(M;)\Ref(S;). Obviously A E Acc(Si), so there ex-
ists B E lAcc(Si)J such that B C A. B C_ A also implies
B E R e f (M ;) . Thus there exists T = [ui 0 B] E

237

Authorized licensed use limited to: University of Ottawa. Downloaded on July 15, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

such that k!,(ui) = fail and U; E O~S(T,M). In the both
cases, M fails T.

Proposition 9 Proof: j Proposition 5 .
e M gn S implies that.M $1 S or M st S and M S. If
M . $ j S, similar to Proposition 8, we can prove that there
exitsT E TSI U55111 such that Obsj,;l # 0. If M Lt S and
M < j S, similar to Proposition 7, we can prove that there
existsT E WIUWII suchthatObs,,,, # Pur(T) . Inthe
both cases, M fails T.

Proposition 10 Proof: + Proposition 3.
e= If M $j S, then there exists U E C' such that
Ref(mo,u) # Ref(so,a) , that is, there exists A
C such that A E Ref(mo,u)\Ref(so,u) or A E
Ref(so,a)\Ref(mo,a). Since there are no more than
mn different pairs of multi-states for M and S, there ex-
ists ui of length < mn - 1 such that (1) if (M O , SO) =
u+(Mi ,S;) then(Mo,So)=ui+(Mi,Si),or(2)ifu @
Tr(mo)nTr(so) then,letaj.a E Pref(u) suchthatuj.u $2
Tr(mo)nTr(so) butuj E Tr(mo)nTr(so),if(Mo,S~)=
uj + (Mi , Si) then (M O , SO) = ui + (M i , Si). At lirst let us
consider the case (1). If A E Ref(Mi)\Ref(S;), similar
to the proof of Proposition 8, there exists T E TSIII such
that Obsjail # 0. If A E Ref(S;) \Ref(M;) , then there
must exist B E [Ref(S;) l such that E _> A. Thus there
exists T = [ui 0 B] E 2 3 ' ~ such that &(a;) = pass.
Since A $! R e f (M i) , B $! R e f (M j) and furthermore
ui $! 0 b s (~ , ~) . This is Obspass # Pur(T). Secondly
we consider the case (2). If a E out(Mi)\out(Si), then
{a} E Ref(S;) , and from this there exists A E [R e f ($)]
such that {a} C A. Therefore we have T = [U; .A] E 5 5 ~ .
Since a @ out(S;), Ref (s0 ,u i .a) = 0 and from this
&(a;.a) = fail. Furthermore since U E out (M;) , u.u E
O ~ S (T , M) . This is Obsja;l # 0. If a E out(S;)\out(M;),
then there must exist { U } E Ref($) or { U } E A c c (S ;) ,
and from this there exists A E [Ref (S;) l such that
{a} g A or A E [A c c (S i)] such that A = { U } . There-
fore we have T = [.; 0 A] € ~ I I I U TSW such that
&j(ui..a) = pass. Since a @ out (M;) , ui.u $! Obs(T,M).
This is Obspass # Pur(T) . Therefore, M fails T.

References

[I] 6. v. Bochmann and A. Petrenko. Protocol testing: Review of
methods and relevance for software testing. In Proceeding of
the ACM 1994 International Symposium on Sofiware Testing
andAnalysis, 109-124,1994.

[2] T. Bolognesi and E. Brinksma. Introduction to the IS0 spec-
ification language LOTOS. Computer Networks and ISDN
Systems, 14(1):25-59, 1987.

[3] E. Brinksma. A theory for the derivation of tests. In IFIP
Prorocol Specification, Testing, and verification VIII, 63-74,
1988.

[4] E. Brinksma and et al. A formal approach to conformance
testing. In IFIP 2th International Workshop on Protocol Test
Systems, 349-363,1990.

[5] Brookes S. D. and et al. A theory of communicating sequen-
tial processes. J. ACM, 31(3):560-599,1984.

[6] K. Drira, and et al. Testability of a communicating system
through an environment. In 4th International Joint Con$
on Theory and Practice of Software Development, 329-341,
1993.

[7] K. Drira, P. Azema, and F. Vemadat. Refusal graphs for
conformance tester generation and simplification: a compu-
tational framework. In IFIP Protocol Specifcation, Testing,
and verification XIII, 257-272,1994.

[8] S. Fujiwara and G. v. Bochmann. Testing nonterministic finite
state machine with fault coverage. In IFIP 4th International
Workshop on Protocol Test Systems, 267-280,1991.

Communicating Sequential Processes.
Prentice-Hall, 1985.

[lo] Z. Kohavi. Switching andFinite AutomataTheory. McGraw-
Hill Computer Science Series, New York, 1970.

[1 I] G. Leduc. Conformance relation, associated equivalence and
new canonical tester in LOTOS. In IFIP Protocol Specifca-
tion, Testing, and Verification X, 249-264,1991.

[I21 G. Luo, G. v. Bochmann, and A. Petrenko. Test selection
based on communicating nondeterministic finite state ma-
chines using a generalized Wp-method. IEEE Trans. Som.
Eng., SE-20(2): 149-1 62,1994.

[13] G. Luo, A. Petrenko, and G. v. Bochmann. Selecting test
sequences for partially-specified nondeterministic finite ma-
chines. In IFIP 7th International Workshop on Protocol Test
Systems, 91-106, 1994.

[14] R. Milner. A Calculus of Communicating Systems (Lecture
Notes in Computer Science, vol. 92). McGraw-Hill Computer
Science Series, New York, 1980.

[15] D. H. Pitt and D. Freestone. The derivation of comformance
tests from LOTOS specifications. IEEE Trans. Softw, Eng.,

[16] Q. M. Tan, A. Petrenko, andG. v. Bochmann. Modeling basic
LOTOS by FSMs for conformance testing. In IFIP Protocol
Specification, Testing, and Verification XV, 137-152, 1995.

[17] J. Tretmans. TestcasederivationfromLOTOS specifications.
In IFIP 2th International Con$ on Formal Description Tech-
niques for Distributed Sysytems and Communication Proto-
cols, 345-359,1990.

[18] J. Tretmans. Testing label!ed transition systems with inputs
and outputs. In IFIP 8th International Workshop on Protocol
Test Systems, France, 1995.

[19] J. Treknans, P. Kars, and E. Brinskma. Protocolconformance
testing: A formal perspective on IS0 IS-9646. In IFIP 4th
International Workshop on Protocol Test System, 131-142,
1991.

[20] R. J. van Glabbeek. The linear time-branching time spectrum.
L.ecture Notes on Computer Science (456), 278-297,1990.

[21] C. D. Wezeman. The CO-OP method for compositional
derivation of conformance testers. In IFIP Protocol Spec-
ification, Testing, and Verijication IX, 145-158,1990.

[9] C. R. A. Hoare.

SE-1 6(12): 1337-1 343,1990.

238

Authorized licensed use limited to: University of Ottawa. Downloaded on July 15, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

SESSI(DN B5

Design

Chair

Algirdas Aviiienis
USA

Authorized licensed use limited to: University of Ottawa. Downloaded on July 15, 2009 at 16:17 from IEEE Xplore. Restrictions apply.

