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Abstract 

In protocol engineering, a common approach for  
sysrem design and implementalion is to verify i f  an 
implementation specification (or any lower level 
specijication) satisfies its service specification. I f  an 
implementation specification does not satisfy its service 
specification, it is necessary to find out the faults and 
correct them. In this paper, we present an efficient 
algorithm for  verifying whether an implementation 
satisfies its service specification related by the testing 
equivalence and the reduction relation [I], and generating 
diagnostic information if an implementation does not 
satisfy its service specification, based on the 
transformation of the service specif cation into a special 
deterministic machine, called refusal graph, and the 
coupled product of the refusal graph and the 
implementation. 

1. Introduction 

In protocol engineering, a common approach for system 
design and implementation is to verify i f  an 
implementation specification (or any lower level 
specification) satisfies its service specification. Here the 
implementation specification represents a protocol 
specification or any lower level specification of a protocol, 
specifying how the functions should be implemented; 
while a service specification describes abstractly what 
functions a protocol should have. If an implementation 
specification does not satisfy its service specification, it is 
necessary to find out the faults and correct them. To verify 
that an implementation of a protocol satisfies its service 
specification, one needs to prove the conformance relation 
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between the service specification and the implementation 
specification. Many conformance relations have been 
proposed in the literature for this purpose, among which 
are the testing equivalence and the reduction relation [l]. 

A number of methods have been proposed in recent 
years to solve this problem. An algorithm is reported in [2] 
for verifying if two specifications are testing equivalent: 
first the two specifications are transformed into acceptance 
graphs, which are deterministic and trace equivalent to 
their original specifications, with every state assigned an 
acceptance set; then an algorithm for strong bisimulation is 
used for the verification of testing equivalence. This 
algorithm is capable of verifying if two specifications 
satisfy the testing equivalence. However, when they are 
not related by the testing equivalence, the algorithm is 
unable to give diagnosis information indicating where the 
problem is. Recently, an algorithm has been developed for 
giving diagnosis information for testing preorder [3] (in 
fact, i t  is a kind of reduction relation). The algorithm also 
first transforms the two specifications into acceptance 
graphs, and then uses the algorithm proposed in [7] to 
verify if the two acceptance graphs satisfy bisimulation 
preorder. I f  they do not satisfy the bisimulation preorder, a 
postprocessing step is used to generate diagnostic 
information based on the results saved into a stack during 
the verification step. 

This paper is motivated by the following observations: 
1) The algorithms presented in [2] and [3] are 

unnecessarily complex both in time and space. 
2) The algorithm proposed in [3] can only produce 

information for a single fault, and the algorithm 
proposed in 121 is not capable of producing 
diagnostic information. 

3) Protocol design and implementation often involve 
repeated debugs and revisions, which result in 
many repeated applications of the algorithm for 
the verification of two specifications. Therefore it 
is important to improve the algorithm so that it is 
able to generate complete fault information , and 
is efficient both in time and space. 
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4) The definition of the testing preorder and testing 
equivalence in [21 and [3], although similar to the 
testing equivalence and the reduction relation 
defined in [l], discriminates two specnfications 
that have different divergenf properties. 'This may 
be unnecessary, since in protocol engineering, a 
correct specification of reliable message 
transmission through an unreliable channel 
always has some divergence, while its service 
specification may not have it. Therefore, the 
definition, and thc corresponding algorithm, need 
to be modified in protocol design. In addition, to 
detect which state is divergent needs significant 
computation. 

The contribution of this paper is as follows: 
1) A new method and a corresponding algorithm for 

the verification of testing equivalence and 
reduction relation are presentcd. The algorithm 
reduces computation significantly, both in space 
and time, compared with the method proposed in 
[2] and [3]. The simplification is mainly due to 
the fact that we only transform the service 
specification, not the implementatioru, into a 
refusal graph for computing the reduction 
relation. 

2) The algorithm produces a diagnostic information 
graph which contains complcte fault information. 

This paper is organized as follows. In the next section, 
we will define the model and the relations used in this 
paper. In Section 3, algorithms will be proposed for 
verifying the reduction relation and the testing 
equivalence, and producing diagnostic information. An 
example will be given to show the application in Section 4. 
In Section 5 ,  we will discuss and compare the results of 
this paper with those in [21 and [3]. 

2. Preliminaries 

0 

Whein the transition function is defined by 6: QxC-tQ, 

The following notations are used in the rest of this 

q0 is the initial state. 

then such an FLTS is said deterministic. 

paper. 

- ~- 
q-e+ 

q - e  k 7(q-e+), 
q - 'tk+ q' 

3q', such that q - e +q. 

An FLTS may engage in a sequence of k 
internal events, and after doing so, enters 

3k0, k l  E N, such that q - Tkoezkl + q' for 
e #z. 
3 k O ~  N, such that q-.tkO+q'. 
3q', such that q = e $9'. 
7(q = e a), i.e., there is no state q' such that 

q = e + q .  
For t = e l  ... en where e l ,  ..., en E C, 3k0, ..., 
kn E N such that q - zk0elzk1 e2 ... en T ~ : ~  
-+ 4'. t is called a trace. 
3q', such that q = t +q*. 
Is the trace set of an FLTS M, i.e., Tr(h4) =: 

S aftcr t = (qlq0 = t +q) , where q0 is the 
initial state. 
Ref(q) = (el q=e # and e6 E). 
Acc(p) = (el p = e + and E C).  
For a given set S, P(S)  denotes a power iset 
S, i.e., set of subsets of S. 

state 9' * 
q = e +qi 

q = E +qi 
q = e + 
q = e 

q = t $4' 

q = t + 
Tr (MI 

S after t 

Rcf(q) 
Acc(p) 
T(S ) 
of 

(tlqO = t +]. 

Definition 2 (Coupled product): A coupledproduct MIL # 
M2 of two FLTSS MI = (QI. C1, 61, PO) and M2 = (Q2, 
22,62,qO) is an FLTS M = (Q, C, 6p, (PO, 40)) where: 

0 

* 
0 6p 11s the transition relation defined on Q such 

I )  (p, q) - e l  -+ (PI, q) i f p  e l  + P' and e l  E 
C l u  ( 2 )  - x2; 

2) (p, q) - e2 -+ (p, 4') if q- e2 + q' and e2 E 
c 2 u  ( 2 )  - c1; 

3) (p, q) - P -3 (PI, q') if p P + p' and q- 
p+ q' with p E ClnC2. 

4) for other cases, no transition is defined. 

Q is a subset of Q lx  Q2; 
C = C1 U C2 is the set of events; 
(PO, 40) is the initial state; 

that for p, p' E Q1 and q, q' E 42: 

We will use the model of Finite Labeled Transition 
Systems (FLTS) [6]. An FLTS is defined as follov~s. 
Definition 1 (FLTS) 161: A non-deterministic FLTS M is 
a four-tuple M = (Q, C, 6, SO), where 

Q is a finite set of states. 
C is a set of observable evcnts. 
6 is a transition function, 6: QX(CU (~l)x--+2Q 
with z denoting an internal event, which defines a 
set S c 2Q of next states when an event e E X u  
(2) occurs in the current state q E Q. VVhen the 
FLTS is in state q, we say that the transition to q', 
written Q - e -+ Q' or a' E 6(q3 e), is enabled, 
where Vq, q' E Q ,  'e E Cu (T) .'The transition q 
- e + 9' is said an incoming transition of q* and 
an outgoing wansition of q; q is said a parent smte 
of 9'. 

Definition 3 (Submachine): An FLTS M = (Q', c', 8, SO') 
is a submachine of another FXTS M = (Q, X, 6, q0) if (a) 
q 0  = q0; (b) Q' c Q; (c) C E C; and (d) 6' E 6. 
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Definition 4(reduction) 111: Given two FLTSs M1 = (Ql, 
C1, 61, PO) and M2 = (Q2, C2, 62, qO), M1 is a reduction 
of M2, written M1 L M2, if the following conditions are 
satisfied: 

1) Trace (Ml) c Trace(M2). 
2) For any t c Tr(M1) n Tr(M2) and any q E S after 

t in M1, there is a state p E S after t in M2 such 
that Ref(q) c Ref(p). 

Intuitively, M1 L M2 iff  M1 has fewer traces than 
M2, and placed in any environment whose traces are 
limited to those of M1, M1 can not dcadlock when M2 can 
not deadlock, i.e., M1 deadlocks less often than M2. 

Definition 5 (testing equivalence) [ I ] :  Given two FLTSs 
M1 and M2, M1 is testing equivalent to M2, written M1 - M2, if M1 L M2and M2 L M1. 

3. The Proposed Algorithms 

3.1. The Definition of Refusal Graph 

In this section, we define a special deterministic 
machine, called Refusal Graph, for a (nondeterministic) 
FLTS, similar to the definition of an acceptance graph 
defined in [21 and [31. 
Definition 6 (After set): For M = (Q, C, 6, SO), we define 
the after set of state p as A(p) = (p' I p = E +p' ) . For any S 
E a"(Q), we denote Sz = A@). 

PE S 

The After set A(p) intuitively describes all the reachable 
states from p by executing zero, one or more internal 
events. Below we will define the concept of refusal graph, 
similar to the acceptance graph defined in [8]. 
Definition 7 (Refusal graph): A Refkwl  Graph (RG) is a 
5-tuple G = (Q, C ,  6, R, qO), where 

* 
* 

Q is a finite set of states; 
C is a set of observable events; 
6: QxC+Q is a transition function; 
R: Q-+ a"( P(c))  is a mapping from Q to a set of 
subsets of C. R@) is called a set of refusal sets of 
state p. 
q0 is the initial state. * 

Note that RG is deterministic. 

The mapping of R and 6 should satisfy the following 
constraints: 

* V ~ E  Q, there is a subset Ref€ R(p) such that C - 
Ref # 0; 

* V ~ E  Q, if there is an event e E C such that p - e 

k , then there is a subset Ref€ R(p) and e E 

Ref; 

V ~ E  Q, if 3 q ~  Q such that p-e+q, then 3Ref E 
R(p) such that e E C -Ref. 

Definition 8 (Correspondence between an FLTS and a 
RG): Given an FLTS M = (Q, C, 6, q0) and a RG G = (Q, 
C, 6', R, q0'). We say that G is a corresponding RG of M 
i f f  

1) Tr(M) = Tr(G); 
2) VtE Tr(M), if q0 = t +q, then for any state q' such 

that q0' = t +q', there is a set Ref E R(q') and Ref 
= Ref(@; similarly, if q0' = t +q', for every Ref E 
R(q'), there is a state q such that q0 = t +q, and 
Ref = Ref(@, where q E Q and q' E Q .  

Lemma 1 (Finding a corresponding RG for a given 
FLTS): Given an FLTS M = (Q, C ,  6, qO), the following G 
= (Q', C, 6', R, 40) is the corresponding RG of M: 

1) Q '=  (PIPE P(Q>, P = pZ); 

3) VPE Q', R(p) = (Ref(q)lq E PI;  
2) q0' = A(q0); 

4) Vp, qE Q', we have p-e+ iff q = (q'13p'E p such 
that p'-e+q'] 7. 

Proof: 1) The proof of Tr(M) = Tr(G) (condition 1 of 
Definition 8) can be constructed by using a similar 
method provided in [4]. 

2)To prove that the RG from Lemma 1 satisfies the 
condition 2 of Definition 8, we consider the fact 
that G is deterministic (condition 2 and 4 of Lemma 
1). For VtETr(M) and q E Q, if q0 = t +q, then 
there is one and only one state q' E Q' such that q0' 
= t +q'. Obviously, qE 9'. From condition 3 of 
Lemma 1, there is a set Ref E R(q') and Ref = 
Ref(q). Similarly, we can prove that for every Ref 
E R(q'), there is a state q E Q such that q0 = t +q, 
and Ref = Ref(@. 

In this lemma, a set of states in M (0 < i 5 n) is 
considered as one state in G. This is similar to the method 
given in [4] for transforming a nondeterministic finite state 
machine to a trace equivalent deterministic finite state 
machine, except for the refusal set. 

The following algorithm is developed to construct a 
refusal graph for a given FLTS M according to Lemma 1. 
The algorithm works as follows. In Step 1, a sub 
algorithm Algorithm-Ref(M) is used to obtain Ref(p) for 
each state p of M. It first computes the acceptance set 
Acc(p) of a state p, by simply adding every observable 
event that can be enabled from a state p' reachable from p 
through executing a number of internal events. And then, 
compuLe Ref@) = C - Acceptance-set(p), where C is the 
set of observable event for a given FLTS M. This sub- 
algorithm can be implemented more efficiently. However, 
for the sake of presentation, we do not optimize it in this 
paper. 

In Step 2, the initial state PO' is constructed by 
computing XO = A(pO), and a set of refusal sets is copied 
to PO' from the states contained in XO. P O  is marked TP, 
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representing that this state will be further processed. In 
Step 3, every state pi' marked TP is expanded according to 
the definition of coupled product. Each new state pj' 
contains a set of refusal sets from the states contained in 
Xj. The new state pj' is marked TP, and the processed state 
pi' is marked PD, representing that the processing has been 
done. The procedure continues until no state is marked TP. 

Algorithm-RGraph @I) 
Input: 
Output: 

Var: pi', pj' /*state of a refusal graph*/ 
Var: p, p' /*state of M*/ 
Var: Xi(e), Xj /*a sct of states in M*/ 

Begin 

An FLTS M = (Q, C, 6, PO); 
The refusal graph G = (Q', C, 8, R, q0') of M; 

1) Call Algorithm-Ref(M). 
2) Compute XO = A(pO), create state p 0  and mark 

it TP; /*TP = To be Processed *I 
Let R(pO') = (Ref(p)lp E XO]; 

3) Do the following while there is a state pi' marked 
TP: 
a) For every e E C do the following: 

i) C o m p u t e  X i ( e ) =  U (A(p')Ip 
PE xi 

e--$€ 6) ; 
ii) If Xi(e) is not empty and there is no 

previously created Xj containing exactly 
all the states in Xi(e)), do the following: 
- Create such an Xj containing 

exacfly all the states in Xi(€:); 
- Create a state pj' and mark it TP; 

Let R(pj') = (Ref(p)lp E Xj 1 ; 
- Create a transition labelled e from 

pi' to pj' . 
b) Mark pi' PD. /* PD = ProcesseD */ 

End 

End 

Example 1: For the given FLTS M specified by 
Fig.l(a), whe.re C = (c, d, b ) ,  the obtained refusal graph is 
shown in Fig.l(b). In Fig.l(b), we have the shadowed 
boxes: XOi = A(O), X1 =A(3), X2 = A(4), X3 = A(6). The 
refusal sets are shown beside each state of the RG. 

.I 

(b) 

Fig.1 (a) The specification M, (b) The RG of M. 

Algori thm-Ref(M) 
Input: M = (Q, C, 6, PO); 3.2. Verification and Diagnosis of the Reduction 
Output: Ref@) is assigned to Each state p of M. Relation 

Begin 
For every state p in Q 

Compute Ref(p) = C - Acceptance-set@); 
End 

Acceptance-set(p) 
Var: mark[] /*an array of state marks*/ 

Begin 
1) Let mark@] = p; 
2) For every e f ?: if there is a state p' such that p 

e+ p' then add e to Acc(p); 
3) For every p' such that p-c+ p' If mark[p'l f p 

then Acc(p) = Acc(p) U Acccptance-sct(p'); 
Return Acc(p) 

The purpose of the algorithm proposed in this section 
is: given am implementation specification P = (Qp, Zp, SI,, 
PO) and a service specification S = (Qs, Cs, as, q0) , to 
check 1) whether P L S is true; 2) if not, generating thle 
diagnostic information. 

We have defined the concept of refusal graph. An 
important property of a refusal graph is that: for any trace t 
of G = (Q', C, 6', R, qO'), there is only one state q such that 
qO' = t + q. Conslruct the product P#G, for any trace t tf 
Tr(P)nTr(S) and every state p E S after t in P, there is only 
one (p, q) in F'#G such that (q0, q0) = t + (p, s>. If P L !3, 
then according to the definition of the reduction relation, 
there is at least one refusal set Ref E R(q) such that Ref(€)) 
E Rcf since q is the only state such that q 0  = t + q in G. In 
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addition, to satisfy Tr(P) c Tr(S), for any event e E C p ,  p 
- e +p' in P implies that there is a state (p', 9') such that 
(p, q) - e -+(PI, q') in P#G. Based on this discussion, we 
have the following theorem. 
Theorem 1: Given P = (Qp, C p ,  6p, PO) and S = (Qs, Cs, 
6s, qO), let Gs = (Q, Cs, 6, R, SO') be the corresponding 
RG of S. P L S iff there is a submachine M of P#Gs such 
that for every state (p, q) of M, 

1) There is at least one refusal set Ref  ER(^) such 
that Ref(p) c Ref. 

2) For any event e E &,, p - e -+p' in P implies that 

proof: 

there is a state (p', q'i such that (p, q) - e-+(p', q') 
in M. 

(+) If P L S, then Tr(P) c Tr(S), that is to say, the 
condition 2 of Theorem 1 is true. For any trace t E 
Tr(P)nTr(S) and every state p E S after t in P, there 
is only one (p, q) in P#G such that (q0, SO') = t + 
(p. q). According to Definition 4, the condition 2 of 
Theorem 1 is true. 
(6) From condition 2, Tr(P) G Tr(S). For any trace 
t E Tr(P)nTr(S) such that p0 = t S p  and q0 = t +q, 
there must be a state (p, q) in M from the definition 
of # product and the fact Tr(P) c Tr(S). From 
condition 1, therc is at least one refusal set Ref 
E R(q) such that Ref@) c Ref. Therefore, P L S is 
moved. 

This theorem gives us the idea how to construct an 
algorithm for verifying the reduction relation and 
generating diagnostic information: we can first construct 
the product P#Gs, and then check if there is any state 
violating the two conditions in P#Gs. 

The algorithm works as follows. In Step 1, it computes 
Ref(p) for each state p of P by using Algorithm-Ref, and 
compute Gs of S by Algorithm-RGraph. 

In the second step, M = P#Gs is computed, at the same 
time, the following two conditions are verified: 

1) Tr(P) c Tr(S) is verified by checking if there is a 
state (p, q) in M such that F e +  in P but q - e 

k in Gs. 
For every state (p, q) of M, checking if there is at 
least one refusal set Ref E R(q) such that Ref(p) 2 
Ref. 

Since a RG is also an FLTS except for the refusal set 
assigned to each state, we simply ignore the refusal set 
when computing P#Gs. 

If the first condition is violated at a state (p, q), then 
(p. q) is marked BDO; if the second condition is violated, 
then (p, q) is marked BD1. We call a statefadl state if i t  is 
marked either BDO or BD1. Each state (p, q) contains a set 
of pointers pointing to its parent states (this will be used in 
Step 3). A variable FS is used to hold a set of pointers that 
point to the fault states, which will also be used in Step 3. 
If no state is marked either BDO or BD1, then PL S. 
Otherwise, the markings will be used in Step 3 to generate 
a diagnostic information graph by Dia-Info(M, FS), which 

2) 

removes all the states and related transitions in M that can 
not reach any fault state without visiting the initial state. 
Hence, the final result contains all the traces ,from (PO, qo') 
to the fault states. The diagnosis information graph has the 
power of Intuitionistic Hennessy-Milner Logic used in [3] 
and [7]. 

Algorithm-DiaRed(P, S) 
Input: Protocol specification P = (Qp, , +,, p0) and 

service specification S = (Qs, Cs, 3 st q0). 
Output: report PL  S, or a diagnosis information graph. 
Var: FS a set of pointers to states; 

/*each of the pointer points to a state*/ 
states in P, S or Gs; p, q 

(p, q) state of P#Gs; 
e anevent: 
Ref a set of events: 

Begin 
1) Computing Ref(p) for every state p in P by 

Algorithm-Ref, and compute the RG Gs = (Qs', 
Cs, 6s', R, SO') of S by Algorithm-RGraph; 

2) let FS = @, computing M = WGs = (Q. E, 6, (PO, 
q0')): the following two conditions are checked for 
each state (p, q) of P#Gs during the computation: 

a) if p e +  in P but q - e k in Gs for e f z  , 
then mark (p, q) BDO and create a pointer in 
FS which points to (p, 9); otherwise 
if thcre is at least one refusal set Ref E R(q) 
such that Ref@) L Ref, then mark state (p, q) 
BD1 and create a pointer in FS which points 

3) If FS = $, then report S L P; otherwise compute 
Dia-Info(M, FS). 

b) 

to (P, s); 

End 

Dia-Info(M, FS) 

Begin 
1) Mark (PO, SO') PF; 

2) While FS # @ do the following 
/*a PF marks a state that can reach a fault state*/ 

a) Take a pointer from FS that points to a fault 
state (p, q) in M; 

b) Checkparent(p, q); 

PF; 
3) Remove from M all the states that are not marked 

End 

C heck par en t ( p, q) 

Ifegin 
Mark (P, q) PF; 
For each parent state (p', q') of (p, q): 
if  (p', 4') is not marked PF then Checkparent(p', q') 
Return 

End 
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Theorem 2: PL S iff FS = @ at the end of Step 2 of 
Algorithm-DiaRed. 
Proof: 1) If PL S ,  then Tr(P) c Tr(S). Hence, no state will 

be marked BDO by Step 2a of the algorithm. For 
every state (p. q) in M, there is a trace 1 E Tr(P) 
nTr(S) such that PO = t S p  and q0 = t Sq from the 
definition of # product. From the definition of 
reduction relation, there is at least one refusal set 
Ref E R(q) such that Ref(p) E Ref. Therefore, no 
state will be marked BD1. That is, FS = @. 
2) If FS = @ at the end of step 2 of Algorithm- 
DiaRed, then Tr(P) c Tr(S) from step %a. Since 
Tr(P) E Tr(S), for every t E Tr(P) nTr(S) there 
must be a state (p, q) such that p0 = t S p  and q0 = t 
Sq. If no state will be marked BDl ,  then for every 
state (p, q) in M, there is at least one refusal set Ref 
E R(q) such that Ref@) c Ref. Henceforth PL S.  

Proposition 1: The time and space complexity of 
Algorithm-DiaRed(P, S )  is O(IQplxIQs'lxlQsl)) in the 
worst case. 

This can be proved by the fact that the main 
computation of the algorithm is in step 2. The number of 
states of P#Gs is at most IQplxlQs'l. For any state: (p, q) of 
P#Gs, q contains at most IQsl refusal sets. Therefore, the 
computation needed in step 2 is O(IQplxlQs'l~IQsl)). 

In the worst case IQs'l has ?IQs1 states. However, if Qs 
is small (this is true since a service specification is much 
smaller than its implementation specification) or the 
service specification is "less nondcterministic", the number 
of states of Gs will not be large. 

3.3. 
Equivalence 

Verification and Diagnosis of Testing 

From the definition of the testing equivalence, it is 
very easy to construct an algorithm to verify the testing 
equivalence and generate diagnosis information from the 
algorithm proposed in the last section: it  simply combines 
Algorithm-DiaTe(P, S )  with Algorithm-DiaTe(S, P) to 
verify PL S and S L  P, respectivcly. 

Algorithm-DiaTe(P, S) 
Input: 

Output: 

Var: 

? 6p9 and 
Protocol specification P = (Qp, 

service spccification S = (Qs, Cs, s, 40). 
report P- S, or a diagnosis information graph. 

FS 1 ~ FS2 

PI 9 
(p, q) 
e an event: 
Ref a set of events; 

a set of pointers to statcs; 

states in P, S or Gs; 
state of P#Gs or S#Gp; 

/*each of the pointer points to a state*/ 

Begin 

1) Computing Ref(p) for every state p in P and S by 
Algorithm-Ref; 

2) computing the refusal graphs, Gp = (Qp', $', T j ' ,  

Rp, PO') and GS = (Qs'. C i ,  &', Rs, SO), of P i " d  
!S by Algorithm-RGraph, respectively; 

3) let IFS 1 = @, compute M = P#Gs = (Ql, C, 61, ((Po, 
q0')i): the following two conditions are checked 
during the computation for any state (p, (1) of 
P#Gs: 

a> if p e +  in P but q - e k in Gs for ez'c , 
then mark @, q) BDO and add a pointer to FS 
which points to (p, 9); 

b) if there is at least one refusal set Ref E Ri;q) 
such that Ref(p) c Ref, then mark state (p, q) 
BD1 and create a pointer in FS which poiints 

4) let IFS2 = @, compute M2 = Gp#S = (42, C, iS2, 
(PO', q0)): the following two conditions are 
checked during the computation for any state @, 
q) of M2: 

a) if q-e-+ in S but p - e k in Gp for e+*c , 
then mark (p, q) BDO and add a pointer to 
FS" which points to @, q); 

b) if there is at least one refusal set Ref E R(q) 
such that Ref(p) c Ref, then mark state (p, q) 
BD P and create a pointer in FS2 which points 

If FS1 = Cp and FS2 = @, then Report S - P; 
otherwise, if FS1 f C$ then compute Dia-Info(M1, 
FS I), and if FS2 f @ then compute Dia-Info(h42, 
FS2). 

to (P9 9): 

to (P? 9): 
5)  

End 

From proposition 1, we have the following result. 
Propositlion 2: The time and space complexity of 
Algorithm-DiaTe is O(IQplxIQp'lx1Qsl) in the worst case. 

The proof of this proposition is obvious from 
proposition 1 by considering that O(IQplxlQs'lxlQsl) *:< 
O(IQplxl(~p'lxiQsl), where << means "much smaller". 

4. Example 

Given an implementation P and a service specification 
S as shown in Fig2(a) and (b), respectively, we need 1) to 
verify whcther PLS; 2) if PLS is not Vue, Eo generate 
diagnosis information. 

We obtain the RG Gs of S as shown in Fig.3(a), in 
which thc characters in ( )  beside a state q represent the 
refusal sct R(q) of q. Fig.3(b) shows the results of Step 2, 
in which each statc is named by two digits to represent a 
state (p, q) of P#Gs. Algorithm-DiaRed finds two fault 
states: 95 and 75. For state 95, there is not a refusal set Ref 
in R(5) such that Ref(9)cRef.  Therefore, state 95 is 
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marked BD1. For state 75, there is an event e can be 
enable at state 7 in P, but no such an event can be enabled 
at state 5 of Gs. Therefore, state 75 is marked BDO. 
Fig.(3b) is also the result of Step 3 in this example. 

We modify the specification P as shown in Fig.4(a). 
Applying the algorithm to Fig.4(a) and Fig.2(b), we have 
the result depicted in Fig.4(b). It is clear that the modified 
implementation specification is a reduction of the service 
specification S. 

(b) 

Fig.2 (a) The implementation P; (b) The service S. 

Fig3 
CO) 

(a) The RG of P; (b) The output of the algorithm. 
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@) 

Fig.4 (a) the modification of P; (b) The result. 

5. Discussions and Conclusions 

In this paper, we have presented two efficient 
algorithms: the first one, Algorithm-DiaRed, is used for 
generating diagnostic information if an implementation is 
not a reduction of its service specification (i.e., the two 
specifications do not satisfy the reduction relation [ 13). The 
basic method of verifying the reduction relation is to first 
transform the service specification into a refusal graph, 
then to check and record any violation of the two 
conditions given in Theorem 1 for each state of the 
coupled product of the refusal graph and the 
implementation specification P. The second algorithm, 
Algorithm-DiaTe for testing equivalence, is based on the 
one for the reduction relation. The advantages of our 
method are: 

1) The time and space complexity of Algorithm- 
DiaRed is O(IQplxlQs'lxlQsl). For the: related 
work proposed in [3], the time and space 
complexity is O(IQplxlQp'lxlQs'IxlQsl) (note that 
in [3] it claimed that the computation needed is 
IQp'lxlQs'l, this is not correct since during the 
computation of bisimulation of two acceptance 
graphs, each state of the acceptance graph 
contains a set of acceptance sets in dimension 
IQpl and IQsl in the worst case. In addition, the 
computation of the postprocessing step is not 
counted there). Therefore, compared with the 
time and space complexity of the method 

]proposed in [3], Algorithm-DiaRed may save a 
jfactor of O(IQp'1) in time and space in the worst 
case. Since IQp'l = 2IQPl in the worst case, the 
improvement of our algorithm is significant. In 
addition, our algorithm does not need a complex 
postprocessing algorithm. 

2) The time and space complexity of Algorithm- 
1DiaTe is O(IQplxlQp'lxlQsl) in the worst case. For 
the related work proposed in [2], the time and 
space complexity is O(IQplxlQp'lxlQs'Ixl~!sl) 
(with the same reason discussed above). Our 
algorithm, Algorithm-DiaTe, may save a factor 
of O(IQs'1) in time and space complexity. 

3) 1Bol.h Algorithm-DiaRed and Algorithm-DiaTe 
are able to generate all fault information. 
However, the algorithm proposed in [2] is not 
capable of producing diagnosis information. The 
algorithm proposed in [3] can only produce the 
information for a single fault. 
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