
Verification and Diagnosis of Testing Equivalence and Reduction Relation"

Z.P.Tao, G.v. Bochmann and R. Dssouli
UniversitC de MontrCal, DCpartement dInformatique et de

Recherche Operationnelle, C.P. 6128, Succ. "A"
MontrCal, P.Q., Canada H3C-3J7

Email: { tao, bochmann, dssouli)@iro.umontreal.ca

Abstract

In protocol engineering, a common approach for
sysrem design and implementalion is to verify i f an
implementation specification (or any lower level
specijication) satisfies its service specification. I f an
implementation specification does not satisfy its service
specification, it is necessary to find out the faults and
correct them. In this paper, we present an efficient
algorithm for verifying whether an implementation
satisfies its service specification related by the testing
equivalence and the reduction relation [I], and generating
diagnostic information if an implementation does not
satisfy its service specification, based on the
transformation of the service specif cation into a special
deterministic machine, called refusal graph, and the
coupled product of the refusal graph and the
implementation.

1. Introduction

In protocol engineering, a common approach for system
design and implementation is to verify i f an
implementation specification (or any lower level
specification) satisfies its service specification. Here the
implementation specification represents a protocol
specification or any lower level specification of a protocol,
specifying how the functions should be implemented;
while a service specification describes abstractly what
functions a protocol should have. If an implementation
specification does not satisfy its service specification, it is
necessary to find out the faults and correct them. To verify
that an implementation of a protocol satisfies its service
specification, one needs to prove the conformance relation

* This work is supported by the IDACOM-NSEKC-CWARC
Industrial Research Chair on Communication Protocols.

between the service specification and the implementation
specification. Many conformance relations have been
proposed in the literature for this purpose, among which
are the testing equivalence and the reduction relation [l].

A number of methods have been proposed in recent
years to solve this problem. An algorithm is reported in [2]
for verifying if two specifications are testing equivalent:
first the two specifications are transformed into acceptance
graphs, which are deterministic and trace equivalent to
their original specifications, with every state assigned an
acceptance set; then an algorithm for strong bisimulation is
used for the verification of testing equivalence. This
algorithm is capable of verifying if two specifications
satisfy the testing equivalence. However, when they are
not related by the testing equivalence, the algorithm is
unable to give diagnosis information indicating where the
problem is. Recently, an algorithm has been developed for
giving diagnosis information for testing preorder [3] (in
fact, i t is a kind of reduction relation). The algorithm also
first transforms the two specifications into acceptance
graphs, and then uses the algorithm proposed in [7] to
verify if the two acceptance graphs satisfy bisimulation
preorder. I f they do not satisfy the bisimulation preorder, a
postprocessing step is used to generate diagnostic
information based on the results saved into a stack during
the verification step.

This paper is motivated by the following observations:
1) The algorithms presented in [2] and [3] are

unnecessarily complex both in time and space.
2) The algorithm proposed in [3] can only produce

information for a single fault, and the algorithm
proposed in 121 is not capable of producing
diagnostic information.

3) Protocol design and implementation often involve
repeated debugs and revisions, which result in
many repeated applications of the algorithm for
the verification of two specifications. Therefore it
is important to improve the algorithm so that it is
able to generate complete fault information , and
is efficient both in time and space.

0-8186-7216-1/95 $04.00 0 1995 IEEE
14

4) The definition of the testing preorder and testing
equivalence in [21 and [3], although similar to the
testing equivalence and the reduction relation
defined in [l], discriminates two specnfications
that have different divergenf properties. 'This may
be unnecessary, since in protocol engineering, a
correct specification of reliable message
transmission through an unreliable channel
always has some divergence, while its service
specification may not have it. Therefore, the
definition, and thc corresponding algorithm, need
to be modified in protocol design. In addition, to
detect which state is divergent needs significant
computation.

The contribution of this paper is as follows:
1) A new method and a corresponding algorithm for

the verification of testing equivalence and
reduction relation are presentcd. The algorithm
reduces computation significantly, both in space
and time, compared with the method proposed in
[2] and [3]. The simplification is mainly due to
the fact that we only transform the service
specification, not the implementatioru, into a
refusal graph for computing the reduction
relation.

2) The algorithm produces a diagnostic information
graph which contains complcte fault information.

This paper is organized as follows. In the next section,
we will define the model and the relations used in this
paper. In Section 3, algorithms will be proposed for
verifying the reduction relation and the testing
equivalence, and producing diagnostic information. An
example will be given to show the application in Section 4.
In Section 5 , we will discuss and compare the results of
this paper with those in [21 and [3].

2. Preliminaries

0

Whein the transition function is defined by 6: QxC-tQ,

The following notations are used in the rest of this

q0 is the initial state.

then such an FLTS is said deterministic.

paper.

- ~-
q-e+

q - e k 7(q-e+),
q - 'tk+ q'

3q', such that q - e +q.

An FLTS may engage in a sequence of k
internal events, and after doing so, enters

3k0, k l E N, such that q - Tkoezkl + q' for
e #z.
3 k O ~ N, such that q-.tkO+q'.
3q', such that q = e $9'.
7(q = e a), i.e., there is no state q' such that

q = e + q .
For t = e l ... en where e l , ..., en E C, 3k0, ...,
kn E N such that q - zk0elzk1 e2 ... en T ~ : ~
-+ 4'. t is called a trace.
3q', such that q = t +q*.
Is the trace set of an FLTS M, i.e., Tr(h4) =:

S aftcr t = (qlq0 = t +q) , where q0 is the
initial state.
Ref(q) = (el q=e # and e6 E).
Acc(p) = (el p = e + and E C).
For a given set S, P(S) denotes a power iset
S, i.e., set of subsets of S.

state 9' *
q = e +qi

q = E +qi
q = e +
q = e

q = t $4'

q = t +
Tr (MI

S after t

Rcf(q)
Acc(p)
T(S)
of

(tlqO = t +].

Definition 2 (Coupled product): A coupledproduct MIL #
M2 of two FLTSS MI = (QI. C1, 61, PO) and M2 = (Q2,
22,62,qO) is an FLTS M = (Q, C, 6p, (PO, 40)) where:

0

*
0 6p 11s the transition relation defined on Q such

I) (p, q) - e l -+ (PI, q) i f p e l + P' and e l E
C l u (2) - x2;

2) (p, q) - e2 -+ (p, 4') if q- e2 + q' and e2 E
c 2 u (2) - c1;

3) (p, q) - P -3 (PI, q') if p P + p' and q-
p+ q' with p E ClnC2.

4) for other cases, no transition is defined.

Q is a subset of Q lx Q2;
C = C1 U C2 is the set of events;
(PO, 40) is the initial state;

that for p, p' E Q1 and q, q' E 42:

We will use the model of Finite Labeled Transition
Systems (FLTS) [6]. An FLTS is defined as follov~s.
Definition 1 (FLTS) 161: A non-deterministic FLTS M is
a four-tuple M = (Q, C, 6, SO), where

Q is a finite set of states.
C is a set of observable evcnts.
6 is a transition function, 6: QX(CU (~l)x--+2Q
with z denoting an internal event, which defines a
set S c 2Q of next states when an event e E X u
(2) occurs in the current state q E Q. VVhen the
FLTS is in state q, we say that the transition to q',
written Q - e -+ Q' or a' E 6(q3 e), is enabled,
where Vq, q' E Q , 'e E Cu (T) .'The transition q
- e + 9' is said an incoming transition of q* and
an outgoing wansition of q; q is said a parent smte
of 9'.

Definition 3 (Submachine): An FLTS M = (Q', c', 8, SO')
is a submachine of another FXTS M = (Q, X, 6, q0) if (a)
q 0 = q0; (b) Q' c Q; (c) C E C; and (d) 6' E 6.

15

Definition 4(reduction) 111: Given two FLTSs M1 = (Ql,
C1, 61, PO) and M2 = (Q2, C2, 62, qO), M1 is a reduction
of M2, written M1 L M2, if the following conditions are
satisfied:

1) Trace (Ml) c Trace(M2).
2) For any t c Tr(M1) n Tr(M2) and any q E S after

t in M1, there is a state p E S after t in M2 such
that Ref(q) c Ref(p).

Intuitively, M1 L M2 iff M1 has fewer traces than
M2, and placed in any environment whose traces are
limited to those of M1, M1 can not dcadlock when M2 can
not deadlock, i.e., M1 deadlocks less often than M2.

Definition 5 (testing equivalence) [I] : Given two FLTSs
M1 and M2, M1 is testing equivalent to M2, written M1 - M2, if M1 L M2and M2 L M1.

3. The Proposed Algorithms

3.1. The Definition of Refusal Graph

In this section, we define a special deterministic
machine, called Refusal Graph, for a (nondeterministic)
FLTS, similar to the definition of an acceptance graph
defined in [21 and [31.
Definition 6 (After set): For M = (Q, C, 6, SO), we define
the after set of state p as A(p) = (p' I p = E +p') . For any S
E a"(Q), we denote Sz = A@).

PE S

The After set A(p) intuitively describes all the reachable
states from p by executing zero, one or more internal
events. Below we will define the concept of refusal graph,
similar to the acceptance graph defined in [8].
Definition 7 (Refusal graph): A Refkwl Graph (RG) is a
5-tuple G = (Q, C , 6, R, qO), where

*
*

Q is a finite set of states;
C is a set of observable events;
6: QxC+Q is a transition function;
R: Q-+ a"(P(c)) is a mapping from Q to a set of
subsets of C. R@) is called a set of refusal sets of
state p.
q0 is the initial state. *

Note that RG is deterministic.

The mapping of R and 6 should satisfy the following
constraints:

* V ~ E Q, there is a subset Ref€ R(p) such that C -
Ref # 0;

* V ~ E Q, if there is an event e E C such that p - e

k , then there is a subset Ref€ R(p) and e E

Ref;

V ~ E Q, if 3 q ~ Q such that p-e+q, then 3Ref E
R(p) such that e E C -Ref.

Definition 8 (Correspondence between an FLTS and a
RG): Given an FLTS M = (Q, C, 6, q0) and a RG G = (Q,
C, 6', R, q0'). We say that G is a corresponding RG of M
i f f

1) Tr(M) = Tr(G);
2) VtE Tr(M), if q0 = t +q, then for any state q' such

that q0' = t +q', there is a set Ref E R(q') and Ref
= Ref(@; similarly, if q0' = t +q', for every Ref E
R(q'), there is a state q such that q0 = t +q, and
Ref = Ref(@, where q E Q and q' E Q .

Lemma 1 (Finding a corresponding RG for a given
FLTS): Given an FLTS M = (Q, C , 6, qO), the following G
= (Q', C, 6', R, 40) is the corresponding RG of M:

1) Q '= (PIPE P(Q>, P = pZ);

3) VPE Q', R(p) = (Ref(q)lq E PI;
2) q0' = A(q0);

4) Vp, qE Q', we have p-e+ iff q = (q'13p'E p such
that p'-e+q'] 7.

Proof: 1) The proof of Tr(M) = Tr(G) (condition 1 of
Definition 8) can be constructed by using a similar
method provided in [4].

2)To prove that the RG from Lemma 1 satisfies the
condition 2 of Definition 8, we consider the fact
that G is deterministic (condition 2 and 4 of Lemma
1). For VtETr(M) and q E Q, if q0 = t +q, then
there is one and only one state q' E Q' such that q0'
= t +q'. Obviously, qE 9'. From condition 3 of
Lemma 1, there is a set Ref E R(q') and Ref =
Ref(q). Similarly, we can prove that for every Ref
E R(q'), there is a state q E Q such that q0 = t +q,
and Ref = Ref(@.

In this lemma, a set of states in M (0 < i 5 n) is
considered as one state in G. This is similar to the method
given in [4] for transforming a nondeterministic finite state
machine to a trace equivalent deterministic finite state
machine, except for the refusal set.

The following algorithm is developed to construct a
refusal graph for a given FLTS M according to Lemma 1.
The algorithm works as follows. In Step 1, a sub
algorithm Algorithm-Ref(M) is used to obtain Ref(p) for
each state p of M. It first computes the acceptance set
Acc(p) of a state p, by simply adding every observable
event that can be enabled from a state p' reachable from p
through executing a number of internal events. And then,
compuLe Ref@) = C - Acceptance-set(p), where C is the
set of observable event for a given FLTS M. This sub-
algorithm can be implemented more efficiently. However,
for the sake of presentation, we do not optimize it in this
paper.

In Step 2, the initial state PO' is constructed by
computing XO = A(pO), and a set of refusal sets is copied
to PO' from the states contained in XO. P O is marked TP,

16

representing that this state will be further processed. In
Step 3, every state pi' marked TP is expanded according to
the definition of coupled product. Each new state pj'
contains a set of refusal sets from the states contained in
Xj. The new state pj' is marked TP, and the processed state
pi' is marked PD, representing that the processing has been
done. The procedure continues until no state is marked TP.

Algorithm-RGraph @I)
Input:
Output:

Var: pi', pj' /*state of a refusal graph*/
Var: p, p' /*state of M*/
Var: Xi(e), Xj /*a sct of states in M*/

Begin

An FLTS M = (Q, C, 6, PO);
The refusal graph G = (Q', C, 8, R, q0') of M;

1) Call Algorithm-Ref(M).
2) Compute XO = A(pO), create state p 0 and mark

it TP; /*TP = To be Processed *I
Let R(pO') = (Ref(p)lp E XO];

3) Do the following while there is a state pi' marked
TP:
a) For every e E C do the following:

i) C o m p u t e X i (e) = U (A(p')Ip
PE xi

e--$€ 6) ;
ii) If Xi(e) is not empty and there is no

previously created Xj containing exactly
all the states in Xi(e)), do the following:
- Create such an Xj containing

exacfly all the states in Xi(€:);
- Create a state pj' and mark it TP;

Let R(pj') = (Ref(p)lp E Xj 1 ;
- Create a transition labelled e from

pi' to pj' .
b) Mark pi' PD. /* PD = ProcesseD */

End

End

Example 1: For the given FLTS M specified by
Fig.l(a), whe.re C = (c, d, b) , the obtained refusal graph is
shown in Fig.l(b). In Fig.l(b), we have the shadowed
boxes: XOi = A(O), X1 =A(3), X2 = A(4), X3 = A(6). The
refusal sets are shown beside each state of the RG.

.I

(b)

Fig.1 (a) The specification M, (b) The RG of M.

Algori thm-Ref(M)
Input: M = (Q, C, 6, PO); 3.2. Verification and Diagnosis of the Reduction
Output: Ref@) is assigned to Each state p of M. Relation

Begin
For every state p in Q

Compute Ref(p) = C - Acceptance-set@);
End

Acceptance-set(p)
Var: mark[] /*an array of state marks*/

Begin
1) Let mark@] = p;
2) For every e f ?: if there is a state p' such that p

e+ p' then add e to Acc(p);
3) For every p' such that p-c+ p' If mark[p'l f p

then Acc(p) = Acc(p) U Acccptance-sct(p');
Return Acc(p)

The purpose of the algorithm proposed in this section
is: given am implementation specification P = (Qp, Zp, SI,,
PO) and a service specification S = (Qs, Cs, as, q0) , to
check 1) whether P L S is true; 2) if not, generating thle
diagnostic information.

We have defined the concept of refusal graph. An
important property of a refusal graph is that: for any trace t
of G = (Q', C, 6', R, qO'), there is only one state q such that
qO' = t + q. Conslruct the product P#G, for any trace t tf
Tr(P)nTr(S) and every state p E S after t in P, there is only
one (p, q) in F'#G such that (q0, q0) = t + (p, s>. If P L !3,
then according to the definition of the reduction relation,
there is at least one refusal set Ref E R(q) such that Ref(€))
E Rcf since q is the only state such that q 0 = t + q in G. In

17

addition, to satisfy Tr(P) c Tr(S), for any event e E C p , p
- e +p' in P implies that there is a state (p', 9') such that
(p, q) - e -+(PI, q') in P#G. Based on this discussion, we
have the following theorem.
Theorem 1: Given P = (Qp, C p , 6p, PO) and S = (Qs, Cs,
6s, qO), let Gs = (Q, Cs, 6, R, SO') be the corresponding
RG of S. P L S iff there is a submachine M of P#Gs such
that for every state (p, q) of M,

1) There is at least one refusal set Ref ER(^) such
that Ref(p) c Ref.

2) For any event e E &,, p - e -+p' in P implies that

proof:

there is a state (p', q'i such that (p, q) - e-+(p', q')
in M.

(+) If P L S, then Tr(P) c Tr(S), that is to say, the
condition 2 of Theorem 1 is true. For any trace t E
Tr(P)nTr(S) and every state p E S after t in P, there
is only one (p, q) in P#G such that (q0, SO') = t +
(p. q). According to Definition 4, the condition 2 of
Theorem 1 is true.
(6) From condition 2, Tr(P) G Tr(S). For any trace
t E Tr(P)nTr(S) such that p0 = t S p and q0 = t +q,
there must be a state (p, q) in M from the definition
of # product and the fact Tr(P) c Tr(S). From
condition 1, therc is at least one refusal set Ref
E R(q) such that Ref@) c Ref. Therefore, P L S is
moved.

This theorem gives us the idea how to construct an
algorithm for verifying the reduction relation and
generating diagnostic information: we can first construct
the product P#Gs, and then check if there is any state
violating the two conditions in P#Gs.

The algorithm works as follows. In Step 1, it computes
Ref(p) for each state p of P by using Algorithm-Ref, and
compute Gs of S by Algorithm-RGraph.

In the second step, M = P#Gs is computed, at the same
time, the following two conditions are verified:

1) Tr(P) c Tr(S) is verified by checking if there is a
state (p, q) in M such that F e + in P but q - e

k in Gs.
For every state (p, q) of M, checking if there is at
least one refusal set Ref E R(q) such that Ref(p) 2
Ref.

Since a RG is also an FLTS except for the refusal set
assigned to each state, we simply ignore the refusal set
when computing P#Gs.

If the first condition is violated at a state (p, q), then
(p. q) is marked BDO; if the second condition is violated,
then (p, q) is marked BD1. We call a statefadl state if i t is
marked either BDO or BD1. Each state (p, q) contains a set
of pointers pointing to its parent states (this will be used in
Step 3). A variable FS is used to hold a set of pointers that
point to the fault states, which will also be used in Step 3.
If no state is marked either BDO or BD1, then PL S.
Otherwise, the markings will be used in Step 3 to generate
a diagnostic information graph by Dia-Info(M, FS), which

2)

removes all the states and related transitions in M that can
not reach any fault state without visiting the initial state.
Hence, the final result contains all the traces ,from (PO, qo')
to the fault states. The diagnosis information graph has the
power of Intuitionistic Hennessy-Milner Logic used in [3]
and [7].

Algorithm-DiaRed(P, S)
Input: Protocol specification P = (Qp, , +,, p0) and

service specification S = (Qs, Cs, 3 st q0).
Output: report PL S, or a diagnosis information graph.
Var: FS a set of pointers to states;

/*each of the pointer points to a state*/
states in P, S or Gs; p, q

(p, q) state of P#Gs;
e anevent:
Ref a set of events:

Begin
1) Computing Ref(p) for every state p in P by

Algorithm-Ref, and compute the RG Gs = (Qs',
Cs, 6s', R, SO') of S by Algorithm-RGraph;

2) let FS = @, computing M = WGs = (Q. E, 6, (PO,
q0')): the following two conditions are checked for
each state (p, q) of P#Gs during the computation:

a) if p e + in P but q - e k in Gs for e f z ,
then mark (p, q) BDO and create a pointer in
FS which points to (p, 9); otherwise
if thcre is at least one refusal set Ref E R(q)
such that Ref@) L Ref, then mark state (p, q)
BD1 and create a pointer in FS which points

3) If FS = $, then report S L P; otherwise compute
Dia-Info(M, FS).

b)

to (P, s);

End

Dia-Info(M, FS)

Begin
1) Mark (PO, SO') PF;

2) While FS # @ do the following
/*a PF marks a state that can reach a fault state*/

a) Take a pointer from FS that points to a fault
state (p, q) in M;

b) Checkparent(p, q);

PF;
3) Remove from M all the states that are not marked

End

C heck par en t (p, q)

Ifegin
Mark (P, q) PF;
For each parent state (p', q') of (p, q):
if (p', 4') is not marked PF then Checkparent(p', q')
Return

End

18

Theorem 2: PL S iff FS = @ at the end of Step 2 of
Algorithm-DiaRed.
Proof: 1) If PL S , then Tr(P) c Tr(S). Hence, no state will

be marked BDO by Step 2a of the algorithm. For
every state (p. q) in M, there is a trace 1 E Tr(P)
nTr(S) such that PO = t S p and q0 = t Sq from the
definition of # product. From the definition of
reduction relation, there is at least one refusal set
Ref E R(q) such that Ref(p) E Ref. Therefore, no
state will be marked BD1. That is, FS = @.
2) If FS = @ at the end of step 2 of Algorithm-
DiaRed, then Tr(P) c Tr(S) from step %a. Since
Tr(P) E Tr(S), for every t E Tr(P) nTr(S) there
must be a state (p, q) such that p0 = t S p and q0 = t
Sq. If no state will be marked BDl , then for every
state (p, q) in M, there is at least one refusal set Ref
E R(q) such that Ref@) c Ref. Henceforth PL S.

Proposition 1: The time and space complexity of
Algorithm-DiaRed(P, S) is O(IQplxIQs'lxlQsl)) in the
worst case.

This can be proved by the fact that the main
computation of the algorithm is in step 2. The number of
states of P#Gs is at most IQplxlQs'l. For any state: (p, q) of
P#Gs, q contains at most IQsl refusal sets. Therefore, the
computation needed in step 2 is O(IQplxlQs'l~IQsl)).

In the worst case IQs'l has ?IQs1 states. However, if Qs
is small (this is true since a service specification is much
smaller than its implementation specification) or the
service specification is "less nondcterministic", the number
of states of Gs will not be large.

3.3.
Equivalence

Verification and Diagnosis of Testing

From the definition of the testing equivalence, it is
very easy to construct an algorithm to verify the testing
equivalence and generate diagnosis information from the
algorithm proposed in the last section: it simply combines
Algorithm-DiaTe(P, S) with Algorithm-DiaTe(S, P) to
verify PL S and S L P, respectivcly.

Algorithm-DiaTe(P, S)
Input:

Output:

Var:

? 6p9 and
Protocol specification P = (Qp,

service spccification S = (Qs, Cs, s, 40).
report P- S, or a diagnosis information graph.

FS 1 ~ FS2

PI 9
(p, q)
e an event:
Ref a set of events;

a set of pointers to statcs;

states in P, S or Gs;
state of P#Gs or S#Gp;

/*each of the pointer points to a state*/

Begin

1) Computing Ref(p) for every state p in P and S by
Algorithm-Ref;

2) computing the refusal graphs, Gp = (Qp', $', T j ' ,

Rp, PO') and GS = (Qs'. C i , &', Rs, SO), of P i " d
!S by Algorithm-RGraph, respectively;

3) let IFS 1 = @, compute M = P#Gs = (Ql, C, 61, ((Po,
q0')i): the following two conditions are checked
during the computation for any state (p, (1) of
P#Gs:

a> if p e + in P but q - e k in Gs for ez'c ,
then mark @, q) BDO and add a pointer to FS
which points to (p, 9);

b) if there is at least one refusal set Ref E Ri;q)
such that Ref(p) c Ref, then mark state (p, q)
BD1 and create a pointer in FS which poiints

4) let IFS2 = @, compute M2 = Gp#S = (42, C, iS2,
(PO', q0)): the following two conditions are
checked during the computation for any state @,
q) of M2:

a) if q-e-+ in S but p - e k in Gp for e+*c ,
then mark (p, q) BDO and add a pointer to
FS" which points to @, q);

b) if there is at least one refusal set Ref E R(q)
such that Ref(p) c Ref, then mark state (p, q)
BD P and create a pointer in FS2 which points

If FS1 = Cp and FS2 = @, then Report S - P;
otherwise, if FS1 f C$ then compute Dia-Info(M1,
FS I), and if FS2 f @ then compute Dia-Info(h42,
FS2).

to (P9 9):

to (P? 9):
5)

End

From proposition 1, we have the following result.
Propositlion 2: The time and space complexity of
Algorithm-DiaTe is O(IQplxIQp'lx1Qsl) in the worst case.

The proof of this proposition is obvious from
proposition 1 by considering that O(IQplxlQs'lxlQsl) *:<
O(IQplxl(~p'lxiQsl), where << means "much smaller".

4. Example

Given an implementation P and a service specification
S as shown in Fig2(a) and (b), respectively, we need 1) to
verify whcther PLS; 2) if PLS is not Vue, Eo generate
diagnosis information.

We obtain the RG Gs of S as shown in Fig.3(a), in
which thc characters in () beside a state q represent the
refusal sct R(q) of q. Fig.3(b) shows the results of Step 2,
in which each statc is named by two digits to represent a
state (p, q) of P#Gs. Algorithm-DiaRed finds two fault
states: 95 and 75. For state 95, there is not a refusal set Ref
in R(5) such that Ref(9)cRef. Therefore, state 95 is

19

marked BD1. For state 75, there is an event e can be
enable at state 7 in P, but no such an event can be enabled
at state 5 of Gs. Therefore, state 75 is marked BDO.
Fig.(3b) is also the result of Step 3 in this example.

We modify the specification P as shown in Fig.4(a).
Applying the algorithm to Fig.4(a) and Fig.2(b), we have
the result depicted in Fig.4(b). It is clear that the modified
implementation specification is a reduction of the service
specification S.

(b)

Fig.2 (a) The implementation P; (b) The service S.

Fig3
CO)

(a) The RG of P; (b) The output of the algorithm.

20

@)

Fig.4 (a) the modification of P; (b) The result.

5. Discussions and Conclusions

In this paper, we have presented two efficient
algorithms: the first one, Algorithm-DiaRed, is used for
generating diagnostic information if an implementation is
not a reduction of its service specification (i.e., the two
specifications do not satisfy the reduction relation [13). The
basic method of verifying the reduction relation is to first
transform the service specification into a refusal graph,
then to check and record any violation of the two
conditions given in Theorem 1 for each state of the
coupled product of the refusal graph and the
implementation specification P. The second algorithm,
Algorithm-DiaTe for testing equivalence, is based on the
one for the reduction relation. The advantages of our
method are:

1) The time and space complexity of Algorithm-
DiaRed is O(IQplxlQs'lxlQsl). For the: related
work proposed in [3], the time and space
complexity is O(IQplxlQp'lxlQs'IxlQsl) (note that
in [3] it claimed that the computation needed is
IQp'lxlQs'l, this is not correct since during the
computation of bisimulation of two acceptance
graphs, each state of the acceptance graph
contains a set of acceptance sets in dimension
IQpl and IQsl in the worst case. In addition, the
computation of the postprocessing step is not
counted there). Therefore, compared with the
time and space complexity of the method

]proposed in [3], Algorithm-DiaRed may save a
jfactor of O(IQp'1) in time and space in the worst
case. Since IQp'l = 2IQPl in the worst case, the
improvement of our algorithm is significant. In
addition, our algorithm does not need a complex
postprocessing algorithm.

2) The time and space complexity of Algorithm-
1DiaTe is O(IQplxlQp'lxlQsl) in the worst case. For
the related work proposed in [2], the time and
space complexity is O(IQplxlQp'lxlQs'Ixl~!sl)
(with the same reason discussed above). Our
algorithm, Algorithm-DiaTe, may save a factor
of O(IQs'1) in time and space complexity.

3) 1Bol.h Algorithm-DiaRed and Algorithm-DiaTe
are able to generate all fault information.
However, the algorithm proposed in [2] is not
capable of producing diagnosis information. The
algorithm proposed in [3] can only produce the
information for a single fault.

Reference

E. Brinksma, "A Theory for the Derivation of Tests",
in Piroceedings of IFIP Workshop PSTV, 1988.
R.Cleaveland and M. Hennessy "Testing Equivalence
as a Bisimulation Equivalence" in Formal Aspects of
Computing, Vo1.5, No.l,1993.
U. Celikkan and R. R.Cleaveland "Computing
Diagnostic Tests for Incorrect Processes" in
Proceedings of PSTV, XII, 1992.
Hariry R. Lewis, Elements of the Theory of
Cornplation, Printice-Hall, 198 1, pp59-pp62.
Kanellakis, P.C. and Smolka, S.A. "CCS
Expressions, Finite State Processes, and Three
Problems of Equivalence." in Information and
Computation, Vo1.86, No. 1, may 1990, pp. 43-68.
Roccs De Nicola, "Extensional Equivalencies for
Transition Systems", Acta Informatica 24, 1987.
U. Celikkan "Generating Diagnostic Information for
Bchavisral Preorders"
in proceedings of Computer-Aided Verification,
19911.
F. Khendek, G.v. Bochmann "Merging Behavior
Specifications" Publication #856, Dept. IRO,
Universire de Montreal.

21

