
Validation of Distributed Algorithms and Protocols

Qimg Gaol Roland Groz2 Gregor v. Bochmann3 Joumana Dargham3 E. Houssain Htite4

1. International Validation 8z Testing Corp.
P.O. Box, 321 15, 1386 Richmond Road, Ottawa, Ontario, Canada, K2B 8B0

2. CNET L A A E M V P , Bat WB, Technopole Anticipa, 2 avenue Pierre Marzin F-22307 Lannion cedex France.

3. Universite de Montrbal, Dept. I.RO, C.P. 6128, Succ Centre Ville, Montreal, Quebec, Canada, H3C, 357

4. Hewlett-Parchd Protocol Test Centre, 3333 Cavendish Place Suit 501, St-Laurent, Quebec, Canada, H4M 2x6

Abstract: The use of formal description techniques
allows the partial automation of the design, the
validation, and the implementation of
communication protocols and distn‘buted algorithms.
In this paper, we present a methodology for
validation of distributed algorithms and protocols,
and our experiences of using the Estelle (71
language, and a simulation and validation tool, called
Veda [12], to simulate and validate complex
distributed algorithms for the distributed
implementation of multi-rendezvous. Some design
errors in published distributed rendezvous algorithms
were found. We obtain from these experiences
heuristic guidelines for trouble shooting of
distributed algorithms.

Key Words: Protocol validation, distributed
algorithms, rendezvous

1. Introduction

In distributed systems, processes
proceed with different speeds and
communicate with each other by message
passing with unknown bound on message
transmission delay. This asynchronous
nature, together with concurrency and
overlapping of different processing
activities, makes coordination between
processes difficult, and complicates the
design and validation of distributed
algorithms and protocols. The validation
methods can be classified into logical proof,
exhaustive reachability analysis, and
simulation methhods.

The logical proof method proceeds
by proving assertions about the values of
program variables. However, it is not

possible to derive and prove the assertions in
an algorithmic manner from the
specification. This method relies on the
human intuition to formulate critical
assertions, and it is very difficult to apply
this method to complex distributed
algorithms and protocols.

The exhaustive methods consider all
possible situations that may occur during the
execution of distributed algorithms and
protocols which are modeled by several
interconnected processes, each can be
modeled by a simple or extended finite state
machine (FSM). The global state is
determined by the states of each of the
individual processes and the “messages” in
transit between them. The method is aimed at
deriving a reachability graph of all the global
states that are reachable from the initial
global state. The reachability graph is
analyzed for deadlock, livelock, and
unspecified receptions. This method is called
reachability analysis. Another similar method
is based on Petri net analysis. These two
methods tend to lead to state space
explosion when applied to complex
distributed algorithms. To apply the above
proof techniques, we have to simplify the
description of the algorithm or the protocol.
For instance, we could consider only a
simple “phase” of the algorithm or protocol
(and we may miss the problems related to
inter-phase relations) or we could consider a
reduced architecture (two or three stations).

The simulation method proceeds by
executing the specification in a centralized

0-8186-7216-1/95 $04.00 0 1995 IEEE
110

way. It is aimed at inspecting; as many
reachable system states as possible by
randomly-walking through the state space
[23]. Simulation can also be
some heuristic guidelines. The real
distributed environment is modeled and
embedded in the simulation processes. It
avoids the limitations of the above
verification methods, at the expense of
possibly missing some errors.

We present in this paper a
methodology for validation of distributed
algorithms and protocols, and olur
experiences and results of using the fomial
specification language Estelle 171, and, a
simulation tool called Veda [123, to simul;%te
and validate some complex distributed
rendezvous algorithms. The first algorithm
we simulated was a virtual ring rendezvous
algorithm [8]. It was designed in the context
of the distributed implementation of LOTOS
specifications [5]. Before we implemented
the algorithm on a real network, we first
perfonned its validation. In this process we
found some design problems. Then we tried
other algorithms [13,20], and found similar
problems. We summarize these experiences
in heuristic guidelines for trouble shooting of
distributed algorithms.

e rest of this paper is organized as
2, we present a

gy for distributed
algorithms and protocols, tools needed to
support it. Following this methodology, we
have validated several distributed rendezvous
algorithms as presented in Section 3. We
summarize the experiences obtained f h m
this validation process in
guidelines for trouble shooting of
algorithms in Section 4. The paper mds with
a conclusion.

and Tool Support

2.1 Methodolo

Formal description techniques have
been proposed for protocol engineering to
support the different phases of the life cycle
of protocol development. For the validation
of distributed algorithms and protocols
within an FDT-based ~ R v ~ r o n m € ~ ~ t 19, 10,

ropose the following steps

(a) Defining the Requirements: This
phase consists of designing a formal model
of the service to be provided and of the
properties to be satisfied by protocols and
algorithms. In the case of protocols, this is
called the service description. This task is
difficult in general, becaiuse the assumptions
of correctness are almost never explicitly
stated in the informal design description.
However, we do not need to write a full
service description. We (;an restrict ourselves
to the verification of selected properties of
particular interest. The: description of the
service may be linked to the verification
technique used (different techniques have
different abilities of checking properties).
For instancx, Ve 2.0 [11 uses an observer
language to describe the properties. This is
powerful, but limited to safety properties,
including bounded liveness.

pedornned in sequence.

(b) Modeling:
protocol describe
loose pseudo-@ode fashion, we should first
make a formal description of it in Estelle [7],

fforts are needed for the
architecture aspects of a

description of an algorithm usually makes
very rough and naive ;assumptions in this
area. This .is very important because crucial
choices in {his area will influ
ability to detect certain kin
Therefore, some infonnatio

istributed algorithm because

virorunent may have to be

cl Conformance
I: This phase is

references etc.), and
simulations just to chc
model can be executed 1
and it is ;a faithful re
algorithm c r a protocol. At this point, we are
not looking for a foimal proof, which
anyway cannot exist. But we can perform
some basic tests by trying to reproduce, with
the interactive facilities of the simulator. It is

w how much of the fo

111

specification has been covered in the process
of running these few typical examples.
Ideally, this should be 100%, however, this
level may not always be easy to reach.

After steps (a), (b) and (c) have been
performed, we are reasonably confident that
the simulation will tell us something about
the original informal description of design.
We can now proceed to the real validation
phases. Two levels of validation can be
distinguished:

- A naive level consists of going on with
simulation scenarios and checking the results
(messages exchanged, states reached by
stations) until it is very rare to find any error
during the analysis of simulation runs. This
is a simple prolongation of phase (c).

- A higher-level validation, as described
under points (d) and (e) consists of
performing an automated intensive
verification based on a formal model
captured in phase (a). This formal model
will serve as an input to the automatic
verification tool in order to replace the
human analysis of traces and configurations
by a much faster verification done by a
program.

(d) Random Simulation: In this phase,
verification proceeds through long random
simulation runs. The ability to detect errors
may be influenced by the ingenuity of the
(human) validator to use varied simulation
parameters (such as transmission delays,
error rates, rates of requests, depending on
the model for the environment).

cation: Verification is done by
going through exhaustive analysis,
reachability analysis or model-checking, for
instance.

.2 Tool Support

We will describe in this section the
tools and their features needed to support
each of the above phases. Although the
methodology is independent of any choice of
tool, the discussion is based on the
experience we acquired with a series of tools
for Estelle [7]: Veda 2.0 [I]? Xesar [21],

EWS [2] . Veda 2.0 has been used for most
of these steps.

Phase (a) may depend on the choice
of validation techniques used for phases (d)
and (e). Different tools would accept
different forms of requirement
specifications: e.g., temporal logic formulas,
FSM or EFSM specification for a service,
behavior trees. In our case, things were
made simpler by the fact that Veda 2.0
implements both a model-checking technique
(e) and a random simulator (d), using a
common description for the service in both
cases. Service properties or requirements are
described in the observer language, a
modified syntax taken from Estelle [7]. The
observer comes in during the course of
execution to check the correctness during
behavior explorations.

Phase (b) goes from informal to
formal. Tool support may consist of
syntactical help (~ a ~ h i ~ tax-directed
editors, e.g., Veda 2.0 a graphical
editor), and a generation of
systematic parts buted model. For
instance, most d algorithms make
assumptions about the underlying
communication networks: topology (ring
structure, or various s), reliability (loss
or corruption of m es), transmission
parameters (order preserved, transmission
delays), etc. A model of such a network may
be built from standard building blocks. This
idea has been implemented in e.g., the Oscar
tool [181. And also, for many tools, a closed
environment is assumed. Unspecified
environment modules can be derived
automatically by using a tool like the
Universal Test Drivers Generator [14]. We
have not used any such generation tool for
the experiment reported in this paper.

require a compiler
and animation facilities. Apart from usual
traces, Veda 2.0 offers “watch windows”
that can be opened on instances of modules
to trace their changes of states or the contents
of their input queues. Other tools, like Grope
[19] offer much more: it is possible to
provide the user with graphic representation
of the actual behavior including motion of
messages along channel links between
modules, and the change of states of the

112

traces added.

used, the system that we
is correct.

3. Simulat
Distributed

Processes do not
communicate wit

distinct identifier.
considered when
achitecture.

extension of t
more than two
rendezvous. A rendezvous can only happen
when all the processes ~ ~ v o ~ ~ ~ d in the
rendezvous are ready, i.e., there is
synchronization among all
belonging to the same r
process can only parti
rendezvous at a time, i.e., there
exclusion between a
share C O ~ ~ W

8s referred to as the
problem [6].

made in Section 3
em is considered in

1 the processes in
connected by Estelle
addressed by their

bership information of
initialization part

in the Section 2.1, it is
the architecture of a

ring algorithm; the
Ramesh's algorithm

p 3
The virtual ring configuration

The umbrella configuration

P

-v
p3

The lattice configuration

Fig. 1. Different configurations

A given algorithm has to be able to
work in all possible actual configurations of
one of the above three types. However, the
designer may consider only a few
situations. After going through the
simulation and validation without finding
errors with the configuration shown in
Fig.1, we have written a program to
generate randomly the membership
configuration for each of the above three
types as follows. Recall that there is a set of
“n” processes in the system. For each
interaction, we choose at random an integer
“k” (0 < k <= n) to be the number of
processes involved in the interaction, and we
choose at random “k” times from the set of
“n” processes to select the members of the
interaction.

The results described in the next
session indicate that careful design of the
configurations helps to detect errors.

For the validation of protocols and
distributed algorithms, it is good to have a
random delay box in modeling the
communication channel since lot of design
errors are due to race condition and relative
delay.

3.3 Verification and Results

After going through long simulations
without finding any error, we would like to
perform an automatic intensive verification.
The important property that a distributed
rendezvous algorithm should have, is to
satisfy mutual exclusion and
synchronization.

We wrote a program in the Veda
observer to check automatically that
processes obey these conditions in the
execution. The fairness property can be
checked by looking at the traces. If
rendezvous always happens at certain
interactions, and never happens on some
other interactions, we would suspect that the
algorithm is unfair. Further analysis is
necessary to come to a conclusion, as
discussed later together with the example
shown in Fig. 3.

Veda 2.0 provides reachability
analysis. The state limit depends on the
memory of the machine used, and is of the
order of several minions.

Many errors have been found during
simulation and validation activities. They fall
into two large categories:

(1) Errors in the Estelle specification

The specification is an unfaithful
representation of the design. Specification
errors are most likely detected in the
simulation through modeling, debugging and
conformance checking. These are errors in
Estelle coding, such as the following:
- Value out of range;
- Variables are not initialized, not updated
properly, or not re-initialized after each
session;

114

- The guard of a transition is not specified
correctly to cover all the cases considered in
the design.

(2) Design Errors

Design errors are much more
serious. In most cases, they could be
detected by running the simulation and
analyzing simulation traces. They could be
many types, such as the following:

- Internal logical consistency is not satisfied
after some design modifications; - Incomplete designs, unspecified receptions; - Non-progress cycles;
- System deadlocks (i.e., circular waiting); - Deadlock due to the delay in the FIFO
queue; - Erron due to wllision or relative delay.

Examples of Errors Detected

Many errors were found in the
validation process. Due to the space
limitation, we can not list them alll. Here we
only give two examples. A design problem
was found in the Ramesh's algorithm [20].
There are three processes, and two
rendezvous between P1, P2 and P2, P3 as
shown in Fig. 2. P3 sends Req(P3, E) to
capture P2 for rendezvous. P2 sends
Req(P2, PI) to capture PI. However, P2
could not capture itself without capturing PI
first. So when P2 receives Req(P3, P-3)
from P3, P2 has to send YE§ to P'3, and P2
will receive Success for rendezvous from
P3. Then P2 goes to the initial state. The
YES message sent by P1 to P2 in response
to Req(P2, PI) will not be processed,
therefore P1 will wait forever.

A possible way to fix this problem is
to send a special Cmcel message from P2 to
P1, and P2 has to wait for this Cancel
message to come back. So if there is a
message PES) sent out from P1 to P2, this
special CanceZ message will carry this
information to P2, and P2 will wait until it
receives this (YES) message before it goes
to the initial state.

When we simulated Kumar's
algorithm [131, we designed a combination

of the virtual ring configuration as shown in
the Fig.3, which permits, us to

F' 1 P2 P3

Q2 state

Q1 state

E state

I

Fig. 2. Unprocessed message YES left in
e channel

P4

P5
pmess token

Fig. 3. A scenarb sf
rendezvous implementation

observe the fact that rendezvous always
happens at interaction C1 in the simula
and shows that the algorithm is unfair.
Kumar's a.lgori a token has to be
circulated in the order of decreasing process
identifier. The implementation could be such
that Token 1 always mives at process P1
earlier than other tokens, and captures P1
first. This is why rendezvous may always
happen at interaction 1, and may never
happen at the other two interactions. We
conclude that this algorithm is unfair.

115

4. Hints for trouble shooting of
distributed algorithms

The asynchronous nature of
distributed systems makes the design and
verification of distributed algorithms
difficult. The errors detected by simulation
and exhaustive validation are related to this
nature. Based on our experiences with the
validation of rendezvous algorithms, we
present in the following several points that
may be useful to detect errors in distributed
algorithms in general.

(a) If an algorithm has to be able to work
continuously, overlapping of different
rounds (sessions) is likely to lead to
problems related to variables, contents of
queues, or token reallocations. These
problems may cause total or partial system
blocking.

@) Some distributed algorithms use FIFO
queues. In the specification, the size of the
FIFO queues of these algorithms is infinite,
but in an implementation it is finite. This
may lead to message losses due to queue
overflow.

(c) Random selection has been used in
distributed algorithms for fair conflict
resolutions [8], [15]. A practical problem
may arise with the random number
generator. When the random number
generated is not very “random,” it may take
many random selections before a successful
selection can be made, or it may even lead to
livelock in extreme cases.

(d) Relative delay of messages could cause
problems. One can always ask the question
what will happen if a certain message is late.
The sequence of messages is an important
aspect to examine, the execution behavior
can depend on it.

(e) In order to detect errors more effectively,
simulation with different randomly generated
architecture (different combinations of
certain type of configurations) is
recommended. Different architecture may
have different aspects that are not covered in
the original design.

5. Conclusion

In this paper, we present a
methodology for the validation of distributed
algorithms and protocols, and our
experiences of using the Estelle language,
and a simulation and vali
Veda, to simulate and validate complex
distributed algorithms for the d i s ~ b u t e d
implementation of multi-rendezvous. Some
design errors in published distributed
rendezvous algorithms were found. We
obtain from these experiences heuristic
guidelines for trouble shooting of
distributed algorithms. Although the
experiences come directly fiom validation of
distributed algorithms, it is applicable to
protocols which can be considered as special
cases of distributed algorithms.

The effectiveness of the random
simulation technique is discussed in [23].
West claimed that a random exploration of
the reachable-state is as effective as an
attempt to perform an exhaustive state
exploration. Our experiments also support
this claim. We found that simulation is very
effective to detect errors especial at the early
stage of validation process. One major
disadvantages of simulation is that there is
no clear termination of the simulation
process. Therefore, there is no way to
determine when all the errors have found. In
practice, we can terminate simulation after
several days or a week Without finding any
errors. The application of the methodology
proposed here gives us a high level of
confidence in the quality of the formal
design.

Acknowledgment: This work was partly
supported by the Natural Sciences and Engineering
Research Council of Canada, the Ministry of
Education of Quebec and the Hewlett-Packard-
NSERC-CITI Industrial Research Chair on
Communication Protocols.

References:

[l] B. Algayres, et al., “VESAR: A Pragmatic
Approach to Formal Specification and Verification,”
Computer Networks and ISDN Systems, Special
Issue on Tools for FDTs, vol. 25, NO. 7, Feb. 1993.

[2] J. M. Ayache, et a1 , “EWS; An Integrated
Workstation for Design and the Automatic

116

and Performance Evaluation of Distributed
Algorithms,” IEEE Trans. on Software Engineexing,
vol. 15, No. 9, Sept. 1989.

[8] Qiang. Gao, “On the Design, Validation and
Implementation of uted Rendezvous
Algorithms,” Ph. D. Thesis, University of Montreal,
Dept. IRO, July, 1995.

[9] R Groz, C. Jard, C. Las
Complex Distributed Algorithm from. Different
Sides: an Experience with Complementary
Validation Tools,” Computer Network and ISDN
Systems, No. 10, 1985, pp 245-257.

[IO] G. J. Hoitzmann, Design and Validation of
Computer Protocols, Prentice Mall, 1991.

[l l] C. A. R. Boare, “Communication Sequentid
Processes,” Communications of the ACM, Au
1978, Vol. 21, No. 8.

[12] C. Jard, R Groz, J. F. Monin, “Development
of Veda: a prototyping tool for distributed
algorithms,” IEEE Trans. on Software Engineering,

[13] D. Kumar, “An Implementation of N-Party
Synchronization Using Tokens,” Proceedings of the
10th International Conference on Distributed
Computing Systems, Paris, France, 1990.

March 1988. pp. 339-352.

:in, “On the Advantages
tric and Fully Distributed
Philosophers Problem,”
d of the Eighth Annual

the Principles of
Programming Language, W illiamsburg, Virginia,
Jan. 26-28, 1981.

[16] A. A. IF. Loureiro et al, “FDT Tools for
Protocol Development,’’ In the Tutorial of
FORTE’92, The Fifth International Conference on

sciipttisn Techniques, Lannion, France,

,n Processing Systems,
In. LBTOS: A Formal
he Temporal ordering

[I81 P. Miavid “Definition de la classe
d’environnements reseaux pour la simulatioon
d’algorithmes distribues,” These de doctorat de
l’universite Paris 6, Fev. 1987.

[19] D. New, “Protocol Visualization, ” Ph.D.
thesis, Univ. of Delaware, 1991.

[20] S. Rarmesh, “A New and Efficient
Implementation of Multiprocesses Synchroniza-
tion,” PARLE conf. Eindhove:n, June 1987.

[21] J. IC Richer et al, Xesac A Tool for Protocol
Validation -User Manual. ILaboratoire de Genie
Informatique, Crenoble, France, 1.2 edition,
September 1987.

[22] CCITT Specification and Description language
SDL. Recommendation 2.100. CCITT Blue Book,
1988.

[23] Colin H. West “Protocol Validation by Random
State Exploratio~~” Protocol Specification, Testing
and Verification, VI , B. Sarikaya and G. v.
Bochmann (editors), Elsevier Science Publishers B.
V. (North-Holland) IFP, 198’7.

[14] E. Lallet, Ch. A. Lebrun, J. F. Martin, “Un
outil de generation automatique de l’environnement
&execution de specifications Estelle,” C13P191, Pau
17- 19 Sept. 199 1, Hemes publised.

117

