
Testing Trace Equivalence for Labeled TransitionSystems1Q. M. Tan, A. Petrenko, G. Luo2 and G. v. BochmannDepartment d'IRO, University of MontrealC.P. 6128, Succ. Centre-Ville, Montreal, P.Q. H3C 3J7, Canadae-mail:tanq@iro.umontreal.ca Fax:(514)343-5834ABSTRACT: In this paper, we consider the problem on conformance testing of com-munication protocols which are modeled by labeled transition systems. The conformancerequirements of speci�cations are represented as the trace equivalence relation and derivedtest suites have �nite behavior and provide well-de�ned fault coverage. For this problem,we �rst give a testing framework and then, based on the state identi�cation technique,we present a test generation method. The advantages of our method over other methodsare that it not only ensures trace equivalence in a class of implementations whose statenumbers are bounded by a known integer, but also requires no transformation of LTSs toinput/output �nite state machines.KEYWORDS: Conformance relations, labeled transition systems, protocol conformancetesting and software testing.1 IntroductionOne of important issues of conformance testing is to derive useful tests for communicationprotocols speci�ed in labeled transition systems (LTSs), which serves as a semantic modelfor various speci�cation languages, e.g., LOTOS, CCS, and CSP and assumes a rendezvouscommunication, i.e., communication between two processes occurs if both processes o�erto interact on a particular action, and if the interaction takes place it occurs synchronouslyin both participating processes. Testing theories and methods for test derivation in theLTS formalism have been developed in [2, 13, 3, 1, 5]. In particular, a so-called confrelation and canonical tester [2] became the basis for a large body of work in this area.Unfortunately, the canonical tester approach cannot be taken into account when testgeneration for real protocols is attempted. The canonical tester has in�nite behaviorwhenever the speci�cation an in�nite behavior; no fault coverage is measured for indi-vidual tests derived in [13]. Moreover, we believe that the conf relation alone is tooweak as a criterion to accept an implementation, because only are the deadlocks that are1This work was supported by the HP-NSERC-CITI Industrial Research Chair on CommunicationProtocols, Universite de Montreal2G. Luo is with Bell Northern Research Ltd. P.O. Box 3511, Station C, Ottawa, Canada K1Y 4H71



a

b

a

τ

τ

s

ss

s
s

s

c

21

3

0

4

5

c
bFigure 1: An LTS graphimplemented after the valid traces in the speci�cation to be checked. Since this relationdoes not deal with invalid traces, this will lead to a trivial implementation M that hasa single state with looping transitions labeled with all possible actions and conforms toany LTS speci�cation S with the same alphabet with respect to conf. Thus even thoughan implementation is concluded being valid based on conf, another relation, such astrace-equivalence, has to be tested as well.Conformance testing for protocols in the LTS formalism should be developed in sucha way that the given conformance relation is determined by the real conformance require-ments and a test suite has �nite behavior and ensures fault coverage in a certain classof implementations. Several attempts have been made to apply the ideas underlying theFSM-based methods to the LTS model [6, 3, 1] for several relations. In particular, thisresearch is directed towards rede�ning the state identi�cation and eventually the checkingexperiments in the LTS realm for a given relation. [3] tries the UIO-based state identi-�ers [11], which, as it is well known, do not always exist; [6] considers the characterizationsets [4]; and [1] introduces the state identi�cation machines. However, in spite of theseattempts, the problem of deriving a �nite test suite with complete fault coverage froman arbitrary LTS for a given conformance relation remains open. In [10, 12], anotherapproach is taken, where an LTS is represented as an FSM model, the FSM method isapplied, and then the derived tests are translated back into the LTS formalism. Thisapproach has the advantage of allowing reuse of existing FSM-based methods and testingtools for the LTS speci�cations, but it requires several auxiliary transformations.In this paper, we adapt the notion of the HSI{state identi�ers [9, 8] in I/O FSMsto �t LTSs. Based on this, a test derivation method with complete fault coverage ispresented for LTS speci�cations and the trace equivalence relation, provided that thenumber of states of any implementation is bounded by a known integer. Although in ourmethod the notion of the HSI-state identi�ers is used for state identi�cation, other stateidenti�cation techniques, such as that of the W{ or Wp{method [4, 7], can be applied toLTSs in a similar way.2 Basic De�nitions and NotationsIn this section, we review some basic de�nitions and notations which are related to testingLTSs. 2



notation meaning�� set of sequences over �; � denotes such a sequencep��1 : : : �n!q there exists pk for 0 � k � n such thatp = p0��1!p1 : : :��n!pn = qp=")q p��n!q (1 � n) or p = q (note: �n means n times � )p=a)q there exist p1; p2 such that p1=")p1�a!p2=")qp=�)q there exists pk for 0 � k � n such thatp = p0=a1)p1 : : :=an)pn = q;� = a1 : : : anp=�) there exists q such that p=�)qp 6=�) no q exists such that p=�)qout(p) out(p) = fa 2 �jp=a)gp-after-� p-after-� = fq 2 Sjp=�)qgTr(p) Tr(p) = f� 2 ��jp=�)gTable 1: Notation for labeled transition systemsDe�nition 1 (Labeled transition system (LTS)): A labeled transition system is a 4-tuple< S;�;�; s0 >, where� S is a �nite set of states, s0 2 S, is the initial state.� � is a �nite set of labels, called observable actions; � 62 � is called an internal action.� � � S � (� [ f�g)� S is a transitions set. (p; �; q) 2 � is denoted by p��!q.An LTS is said to be nondeterministic if it has some transition labeled with � or thereexist p�a! p1; p�a! p2 2 � but p1 6= p2. A deterministic LTS has no internal actionsand the outgoing transitions of any state are uniquely labeled.An LTS can also be represented by a directed graph where nodes are states and labelededges are transitions. An LTS graph is shown in Figure 1.The notations shown in Table 1 are relevant to a given LTS, as introduced in [2]. Inthis paper we use M;P;S; : : : to represent LTSs; M;P;Q; : : :, for sets of states; a; b; c; : : :,for actions; and i; p; q; s : : :, for states. Additionally, we also denote Tr(S) by Tr(s0),S-after-� by s0-after-�, and the sequences in Tr(S) are called the traces of S.3 Conformance TestingThe starting point for conformance testing is a speci�cation in some (formal) notation,an implementation given in the form of a black box, and the conformance requirementsthat the implementation should satisfy. In this paper, the notation of the speci�cation isthe LTS formalism; the implementation is assumed to be described in the same model;an conformance relation, called trace equivalence, is used to formalize the conformancerequirements. We say that an implementation M conforms to a speci�cation S if M istrace-equivalent to S. 3



De�nition 2 (Trace equivalence): The trace equivalence relation between two states pand q, written p �tr q, holds if and only if Tr(p) = Tr(q).Given two LTSs S and M with initial states s0 and m0 respectively, we say that M istrace-equivalent to S, written M �tr S, if only if m0 �tr s0.Conformance testing is a �nite set of experiments, in which a set of test cases, derivedfrom a speci�cation according to a given conformance relation, is applied by a testeror experimenter to the implementation under test (IUT), such that from the results ofthe execution of the test cases, it can be concluded whether or not the implementationconforms to the speci�cation.The behavior of the tester during testing is de�ned by the used test case. Thus a testcase is a speci�cation of behavior, which, like other speci�cations, can be represented asan LTS. An experiment should last for a �nite time, so a test case should have no in�nitebehavior. Moreover, the tester should have certain control over the testing process, sonondeterminism in a test case is undesirable.De�nition 3 (Test cases and test suite): Given an LTS speci�cation S =< S;�;�; s0 >,a test case for S is a 5-tuple < T;�T ;�T ; t0; ` > where:� �T � �;� < T;�T ;�T ; t0 > is a deterministic, tree-structured LTS such that for each p 2 Tthere exists exactly one � 2 ��T with t0=�)p;� ` : T ! fpass; fail; inconclusiveg is a state labeling function.A test suite for S is a �nite set of test cases for S.From this de�nition, the behavior of test case T is �nite, since T and � are �nite.Moreover, a trace of T uniquely determines a single state in T, so we de�ne `(�) = `(t)for ftg = T-after-�.The interactions between a test case T and the IUT M can be formalized by thesynchronization operator \k" of LOTOS, that is, T k M. When T k M after an observableaction sequence � reaches a deadlock, that is, there exists a state p 2 T �M such thatfor all actions a 2 �, T k M=�)p and p 6=a), we say that this experiment completes atest run.Usually, LTSs are supposed to be nondeterministic. In order to test nondeterminis-tic implementations, one usually makes the so-called complete-testing assumption: it ispossible, by applying a given test case to the implementation a �nite number of times,to exercise all possible execution paths of the implementation which are traversed by thetest case [6, 8]. Therefore any experiment, in which M is tested by T, should includeseveral test runs and lead to a complete set of observations Obs(T;M) = f� 2 Tr(T) j 9p 2T �M;8a 2 � ((T k M)=�)p 6=a))g.Based on Obs(T;M), the success or failure of testing needs to be concluded. The way averdict is drawn from Obs(T;M) is the verdict assignment for T. The verdict pass meanssuccess, which, intuitively, should mean that no unexpected behavior is found and thetest purpose has been achieved. If we de�ne the test purpose of T, written Pur(T), to bePur(T) = f� 2 Tr(T) j `(�) = passg, then the conclusion can be drawn as follows.4



De�nition 4 (Verdict assignment v): Given an IUT M, a test case T, let Obsfail = f� 2Obs(T;M) j `(�) = failg and Obspass = f� 2 Obs(T;M) j `(�) = passg,v(Obs(T;M)) = ( pass if Obsfail = ; ^Obspass = Pur(T)fail otherwise:Given a test suite TS, we say that M passes TS if and only if for all T 2 TSv(Obs(T;M)) = pass.4 Test GenerationIn this section, we �rst present a reference model and then a test generation algorithmfor a given LTS speci�cation with respect to trace equivalence.4.1 Trace Observable SystemIn the case of nondeterminism, after an observable action sequence, an LTS may entera number of di�erent states. In order to consider all these possibilities, the set of thedi�erent states, rather than the single states, is used to de�ne the transition checking andstate identi�cation [6]. The viewpoint is reected in the FSM realm by the presentationof a nondeterministic FSM speci�cation as an observable FSM [8], in which each stateis a subset of states of the non-observable FSM. The viewpoint is also reected by therefusal graphs [5], in which a node also corresponds to a subset of states. To test traceequivalence, we do not need refusal sets in the refusal graphs. If these sets of a refusalgraph are dropped and trace-equivalent nodes are merged then we have a so-called traceobservable system for test generation.De�nition 5 (Trace observable system (TOS)): Given an LTS S =< S;�;�; s0 >, anLTS S =< S;�;�; s0 > is said to be the trace observable system of S, if there exists amapping  : �!S, where � = fSi � S j 9� 2 Tr(s0) (s0-after-� = Si)g, such that� s0 =  (S0) where S0 = fs 2 S j s0=")sg;� si�a!sj 2 � for si; sj 2 S and  (Si) = si i� there exist Si; Sj 2 � such thatSj = fs 2 S j 9p 2 Si (p=a)s)g and  (Sj) = sj;�  (Si) =  (Sj) i� Sp2Si Tr(p) = Sq2Sj Tr(q).From the above de�nition, the TOS S of S is deterministic and trace-equivalent to S;and furthermore, none of states in S are trace-equivalent, that is, S is minimal. For theLTS in Figure 1, its TOS is given in Figure 2. For any LTS, there are several existingalgorithms and tools [3] for the TOS through determinization and minimization.4.2 AlgorithmGiven any LTS S, the TOS S models all its observable behavior in trace semantics. There-fore, we assume that LTS speci�cations for test generation are given in the form of thetrace observable systems. To present our method, we need the following notion for stateidenti�cation, which is adapted from the FSM model [8].5



s

ss

s

21

0

c
b

a c
b

3

cFigure 2: A corresponding trace observable system of Figure 1Given a set of sequences V 2 ��, we use the notation Pref(V ) to represent all pre�xesof sequences in V . Formally, Pref(V ) = f�1 j 9�2 2 �� (�1:�2 2 V )g.De�nition 6 (A tuple of harmonized state identi�ers < W0;W1; : : : ;Wn�1 >): Givena TOS S with n states, < W0;W1; : : : ;Wn�1 > is said to be a tuple of harmonizedstate identi�ers of S, if, for i; j = 0; 1; : : : ; n � 1; i 6= j, Wi;Wj � �� and there exists� 2 Pref(Wi) \ Pref(Wj) such that � 2 Tr(si) � Tr(sj), where Tr(si) � Tr(sj) =(Tr(si) [ Tr(sj))n(Tr(si) \ Tr(sj)).According to this de�nition, there exists a tuple of harmonized state identi�ers for Sbecause none of states in S are trace-equivalent. Wi is a harmonized identi�er of state si.The harmonized identi�er catches the following property: for any di�erent state sj, thereexists a sequence in Pref(Wi) \ Pref(Wj) such that it is a valid trace of S in only oneof the two states, that is, si is distinguished from sj by the sequence.As an example, for the LTS in Figure 2, we can obtain the harmonized state identi�ersW0 = fa; bg;W1 = fb:ag;W2 = fb:ag;W3 = fa; bg. We only consider W0: a is used todistinguish s0 from s3, so a is also in W3; b is used to distinguish s0 from s1 and s2, soW1 and W2 have b:a where b is its pre�x.We use \." to represent the concatenation of two sets of sequences. Formally, assumingV1; V2 � ��, the concatenation of sets, V1:V2, is de�ned as a set f�1:�2 j �1 2 V1^� 2 V2g.We also write V n = V:V n�1 for n > 0 and V 0 = f"g.In the following, we give the test generation algorithm for a given TOS and traceequivalence. This algorithm derives a test suite with complete fault coverage in a class ofLTS implementations in which the number of states in the TOS of each implementationis bounded by a known integer. Thus, in order to apply this algorithm, the user mustpreviously give an estimate on this upper bound. The upper bound for implementationsis similarly required in existing test generation methods in the FSM realm. Estimatingthe bound is an intuitive process based on the knowledge of the given speci�cation andimplementation. In the simplest case, one may assume that this bound is equal to thenumber of states of the speci�cation.Test Generation Algorithm: 6



Input: A TOS S and the upper bound m on the number of the states in the TOSs ofall LTS implementations.Output: A test suite TS.Step 1: Let the number of states in S be n (n � m). Find a tuple of harmonized stateidenti�ers fW0;W1; : : : ;Wn�1g from S.Step 2: Construct a minimal set of sequences Q � �� such that8si 2 S 9� 2 Q (s0=�)si):Step 3: Construct the set P such thatP = f�:a 2 Q:(Sm�n+1i=0 �i) j s0=�)si 6=a)gStep 4: Construct a tuple of the sets fR0; R1; : : : ; Rn�1g such thatRi = f� 2 Q:(Sm�n+1i=0 �i) j s0=�)sig:Step 5: Construct the set T of action sequences such thatT = (Sn�1i=0 Ri:Wi) [ P:Step 6: Construct TS by transforming each sequence a1:a2 : : : :ak in T into a corre-sponding LTS p0�a1!p1 : : : pk�1�ak!pk and applying the following state labeling:`(pi) = 8><>: inconclusive i < jpass i = jfail otherwise:where 1 � j � k such that a1:a2 : : : :aj 2 Tr(s0) but a1:a2 : : : :aj:aj+1 62 Tr(s0).This method resembles the HSI-method [8] for non-deterministic FSMs, which wasoriginally developed for deterministic FSMs [9]. We intuitively explain the validity of thismethod. Q is a cover of all states in S; R0 [ R1 : : : [ Rn�1 is intended to be a coverof all the transitions in the IUT allowed by the speci�cation, while P is intented to bea cover of all the transitions forbidden by the speci�cation. If a speci�ed transition isimplemented, the state identi�cation is needed to check the tail state of the transition. Ifa speci�ed transition is missed, there exists a sequence in R0 [ R1 : : : [ Rn�1 which cannot be observed, and the test case corresponding to this sequence will fail the IUT. If anunspeci�ed transition is implemented, the IUT will fail the test case corresponding to asequence in P and no state identi�cation is required, unlike to testing partially speci�edFSMs. We note that in FSM testing, transition checking is considered only for the inputsallowed by the speci�cation and the state identi�cation includes the tail states of all thesetransitions.Theorem Given an LTS speci�cation S of the TOS form and any LTS implementationM. Suppose n � m where n is the number of states of S, and m is the upper bound onthe number of states in the TOS of M. Let TS be the test suite derived from S using thetest generation algorithm. We have M passes TS if and only if S �tr M.7



fail fail fail fail fail fail

pass pass pass

fail

b c

a c

b

c

c

a a a
b

a

b

pass

inconincon

ac

a

a

a

incon

inconincon

pass

b

fail

incon incon

fail fail

inconinconinconincon

inconpass

bbc

passincon

ba

pass fail

t

t

t

t

0  

1 

2

3Figure 3: A test suite for the LTS speci�cation in Figure 1In other words, we claim that the algorithm yields a �nite test suite with complete faultcoverage in the sense that it detects any trace{nonequivalent implementation, providedthat the number of states in the TOS of this implementation is not more than m.As an example, assuming the TOS of any implementation does not have more statesthan the speci�cation given in Figure 2, we derive a test suite, which checks trace equiv-alence with respect to this speci�cation as well as to the speci�cation in Figure 1 andguarantees full fault coverage, as follows.Intermediate results: s0 s1 s2 s3Wi a; b b:a b:a a; bQ " a c a:cRi "; a:b a c a:c; c:b; c:cP = fb; a:a; c:a; a:c:a; a:c:b; a:c:cgThe set T of test sequences: fb; a:a; c:a; a:b:b; a:b:a; a:c:a; a:c:b; a:c:c; c:b:a; c:b:b; c:c:a;c:c:bg. The resulting test suite TS is given in Figure 3.Considering a test case t0�a! t1�c! t2�a! t3, where sequence a:c:a is not a trace ofthe speci�cation but its pre�x a:c is. According to trace equivalence, a:c:a should not beimplemented and a:c must be implemented, so t3 is labeled with fail and t2 with pass.Due to nondeterminism of implementations, several test runs are needed to obtain allpossible observations for the application of this test case, and t0 and t1 are labeled withinconclusive for possible deadlocks. In testing, if a:c is observed but a:c:a not, the testpurpose is achieved and a pass verdict is given to the IUT for this test case. On theother hand, if a:c:a is observed or a:c does not occur, this means that an invalid trace isimplemented or a valid trace is not implemented, so a fail verdict is given.Similarly, we could also use the ideas of the W- and Wp-methods [4, 7] for test gen-eration of LTSs with respect to trace equivalence with the same fault coverage power. Infact, the union of harmonized state identi�ers for an LTS can treated as a characteriza-tion set W for the LTS, in which for any two states there exists a sequence such that oneof its pre�xes is a trace of either of the two states, not both. However, such a W may8



contain the sequences whose su�xes are not necessary for identi�cation of some states;thus it follows that the test cases derived may have certain redundancy [12]. For example,a W set for the LTS in Figure 2 includes b:a, in which the su�x a is not necessary toidentify the initial state s0 because b should be blocked in the corresponding state for anyconforming implementation. The given method does not produce the redundancy sincethe harmonized state identi�ers do not contain such su�xes.5 ConclusionLTSs are the basic semantics for the LOTOS language and other speci�cation formalisms.We presented in this paper a method for generating test cases from a speci�cation givenin the LTS formalism with respect to the so-called trace equivalence relation. For I/Omachines, several existing methods can be used to derive �nite test suites with guaran-teed fault coverage for trace equivalence, but they are not directly applicable to LTSs.The existing methods based on LTSs for the trace equivalence either do not assure faultcoverage, or require a transformation from LTSs to I/O FSMs. In the method proposed inthis paper, such transformation is not required and the derived test suites have completefault coverage, provided that the state number of the implementations is bounded by aknown integer.In our method the notion of the HSI state identi�ers is used for state identi�cation.Other state identi�cation techniques, such as the notion of a characterization set, in whichfor any two states of a given LTS there exists a sequence of observable actions such thatone of its pre�xes is is a trace of either of the two states, not both, can also be used in asimilar way.AppendixIn this appendix we give the proof of the Theorem. First we recall the basic assumptions forTest Generation Algorithm and introduce several notations to help the proof, then we prove aseries of lemmas which lead to the Theorem.Given an LTS speci�cation S and an LTS implementation M, we assume in the following:(1) All states of S and M are reachable from the initial state s0 and i0, respectively.(2) S is the corresponding trace observable system of S and has n states with n > 1.(3) M is the corresponding trace observable system of M and has at most m states with m � n.(4) si; sj ; sk; sl and mi; mj ; mk; ml represent the states of S and M, respectively.(5) A tuple of state identi�ers fW0;W1; : : : ;Wn�1g.(6) Sets Q; T and the test suite TS, which are de�ned in Test Generation Algorithm.De�nition 7 V{equivalence. Given a set V � ��, The V{equivalence relation between twostates p and q, written p �V q, holds if and only if for all � 2 Pref(V ), � 2 Tr(p), � 2 Tr(q).Given two LTSs S andM with initial states s0 andm0 respectively, we say thatM is V-equivalentto S, written S �V M, if only if s0 �V m0. 9



notation meaning[si; mi]�a! [sj ; mj ] For a 2 �; si�a!sj and mi�a!mj[si; mi]=�) [sj ; mj ] For � 2 ��; si=�)sj and mi=�)mj[si; mi]-after-V given a pair of states [si; mi] 2 S �M , and a set V � ��[si; mi]-after-V = f[sj ; mj ] j 8� 2 Pref(V ) [si; mi]=�) [sj ; mj ]gD D = [s0; m0]-after-��Dr Dr = f[si; mj ] 2 D j si �Wi mjg�k �k = Ski=0 �iLemma 1 For V � ��, assume j[s0; m0]-after-V j � k. If jDj > k, then j[s0; m0]-after-V:�1j �k + 1; if jDj � k, then [s0; m0]-after-V:�1 = [s0; m0]-after-V .Proof:(I) To prove that the lemma holds when jDj > k.The lemma holds when j[s0; m0]-after-V j > k. Consider the case that j[s0; m0]-after-V j = k.(1) jDj > k and j[s0; m0]-after-V j = k hypothesis(2) [s0; m0]-after-V � D de�nition of D(3) 9[sk; mk ] 2 Dn[s0; m0]-after-V (1),(2)9[si; mi] 2 [s0; m0]-after-V (1)9� 2 Pref(V ) 9�:a 2 ��([s0; m0]=�) [si; mi]�a! [sk ; mk]) (2)(4) [sk; mk] 2 [s0; m0]-after-V:�1n[s0; m0]-after-V (3)(5) [s0; m0]-after-V:�1 � k + 1 (4).(II) To prove that the lemma holds when jDj � k.(1) jDj � k and j[s0; m0]-after-V j = k hypothesis(2) [s0; m0]-after-V � D de�nition of D(3) [s0; m0]-after-V:�1 = [s0; m0]-after-V (1),(2).Lemma 2 Assume s0 �Q m0. If jDj > m, then j[s0; m0]-after-Q:�m�nj � m; and if jDj � m,then [s0; m0]-after-Q:�m�n = D.Proof:(I) To prove that the lemma holds when jDj > m.(1) s0 �Q m0 and jDj > m hypothesis(2) j[s0; m0]-after-Qj � n initially connected S, (1)(3) j[s0; m0]-after-Q:�m�nj � m Lemma 1, (1),(2).(II) It is evident from Lemma 1 when jDj � m.Lemma 3 If si �Wi mk and sj �Wj mk, then i = j.Proof:(1) For V � ��; si �V mk , si �Pref(V ) mk evident(2) si �Wi mk and sj �Wj mk hypothesis(3) si �Pref(Wi) mk and sj �Pref(Wj) mk (1),(2)(4) i 6= j assumption(5) 9� 2 Tr(si)� Tr(sj) \ Pref(Wi) \ Pref(Wj) de�nition of Wi, (4)(6) let � 2 Tr(si), then � 2 Tr(mk) (3)(7) � 2 Tr(sj) (3),(6)(8) i = j (6),(7)6, Tr(si)� Tr(sj):10



Lemma 4 jDrj � m.Proof:(1) jM j � m hypothesis(2) jDrj > m assumption(3) 9[si; mk]; [sj ; mk](i 6= j; si �Wi mk ^ sj �Wj mk) (1),(2)(4) jDrj � m. (3)6,Lemma 3.Lemma 5 If s0 �T m0, then [s0; m0]-after-Q:�m�n = Dr = D.Proof:(I) To prove that the lemma holds when jDj � m.(1) jDj � m hypothesis(2) s0 �T m0 hypothesis(3) s0 �Q m0 (2)(4) [s0; m0]-after-Q:�m�n = D (1),(3),Lemma 2(5) 8[si; mj ] 2 [s0; m0]-after-Q:�m�n(si �Wi mj) (2)(6) D = Dr (4),(5),de�nition of Dr(II) To prove that the lemma holds when jDj > m.(1) jDj > m assumption(2) s0 �T m0 hypothesis(3) [s0; m0]-after-Q:�m�n+1 � D de�nition of D(4) 8[si; mj ] 2 [s0; m0]-after-Q:�m�n+1(si �Wi mj) (2)(5) [s0; m0]-after-Q:�m�n+1 � Dr (3),(4),de�nition of Dr(6) j[s0; m0]-after-Q:�m�n+1 j � m+ 1 (1),(2),Lemma 2,Lemma 1(7) jDrj � m+ 1 (3),(4)(8) jDj � m (5)6,Lemma 4(9) [s0; m0]-after-Q:�m�n = Dr = D (6),Lemma 2.Lemma 6 If s0 �T m0, then s0 �tr m0.Proof:(1) s0 �T m0 hypothesis(2) 8[si; mi] 2 D 9� 2 Q:�m�n ([s0; m0]=�) [si; mi]) (1),Lemma 5(3) si �� mi (1)(4) not(s0 �tr m0) assumption(5) 9a 2 � 9[si; mi] 2 D not(si �fag mi)) (4)(6) s0 �tr m0 (5)6,(3).Lemma 7 M passes TS if and only if S �tr M.Proof: For each � 2 T , we obtain a test case be T such that `(�i) = pass where � = �i:�j and�i 2 Tr(S). If S �tr M, then �i 2 Obs(T;M) and any �0 2 Obs(T;M) implies �0 2 Pref(�i). Thusv(Obs(T;M)) = pass.On the other hand, if S �tr M does not hold, from Lemma 6, there exists � 2 T such that� 2 Tr(M)nTr(S) or � 2 Tr(S)nTr(M). For the former, T has `(�) = fail and � 2 Obs(T;M);for the latter, `(�) = pass but � 62 Obs(T;M). Thus v(Obs(T;M)) = fail.11



References[1] J. Arkko. On the existence and production of state identi�cation machines for labeledtransition systems. In R. L. Tennecy, P. D. Amer, and M. U. Uyar, editors, IFIPFormal Description Techniques VI, pages 351{365, 1993.[2] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sab-nani, editors, IFIP Protocol Speci�cation, Testing, and Veri�cation VIII, pages 63{74. North-Holland, 1988.[3] A. R. Cavalli and S. U. Kim. Automated protocol conformance test generation basedon formal methods for LOTOS speci�cations. In G.v. Bochmann, R. Dssouli, andA. Das, editors, IFIP 5th International Workshop on Protocol Test Systems, pages212{220. North-Holland, 1992.[4] T. S. Chow. Testing software design modeled by �nite-state machines. IEEE Trans-actions on Software Engineering, SE-4(3):178{187, 1978.[5] K. Drira, P. Azema, and F. Vernadat. Refusal graphs for conformance tester gen-eration and simpli�cation: a computational framework. In A. Danthine, G. Leduc,and P. Wolper, editors, IFIP Protocol Speci�cation, Testing, and Veri�cation XIII.North-Holland, 1994.[6] S. Fujiwara and G. v. Bochmann. Testing nonterministic �nite state machine withfault coverage. In J. Kroon, J. Heijink, and E. Brinksma, editors, IFIP 4th Interna-tional Workshop on Protocol Test Systems, pages 267{280. North-Holland, 1991.[7] S. Fujiwara et al. Test selection based on �nite state models. IEEE Transactions onSoftware Engineering, SE-17(6):591{603, 1991.[8] G. Luo, A. Petrenko, and G. v. Bochmann. Selecting test sequences for partially-speci�ed nondeterministic �nite machines. In IFIP 7th International Workshop onProtocol Test Systems, pages 91{106, Japan, 1994.[9] A. Petrenko. Checking experiments with protocol machines. In J. Kroon, J. Heijink,and E. Brinksma, editors, IFIP 4th International Workshop on Protocol Test Systems,pages 83{94. North-Holland, 1991.[10] A. Petrenko, G. v. Bochmann, and R. Dssouli. Conformance relations and testderivation. In IFIP 6th International Workshop on Protocol Test Systems, pages91{106, Pau, France, 1993.[11] K. Sabnani and A. T. Dahbura. A protocol test generation procedure. ComputerNetworks and ISDN Systems, 15(4):285{297, 1988.[12] Q. M. Tan, A. Petrenko, and G. v. Bochmann. Modeling basic LOTOS by FSMs forconformance testing. In IFIP Protocol Speci�cation, Testing, and Veri�cation XIIII,Poland, 1995.[13] J. Tretmans. Test case derivation from LOTOS speci�cations. In S. T. Vuong, edi-tor, IFIP 2th International Conf. on Formal Description Techniques for DistributedSysytems and Communication Protocols, pages 345{359. North-Holland, 1990.12


